ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

High Temperature, 2.5 A Output Current, Gate Drive Optocoupler

FOD3125

Description

The FOD3125 is a 2.5 A Output Current Gate Drive Optocoupler, capable of driving most medium IGBTs or MOSFETs across extended industrial temperature range, -40°C to 125°C. It is ideally suited for fast switching driving of power IGBTs and MOSFETs used in motor control inverter applications, and high performance power system.

It utilizes ON Semiconductor patented coplanar packaging technology, Optoplanar[®], and optimized IC design to achieve high noise immunity, characterized by high common mode rejection.

It consists of a gallium aluminum arsenide (AlGaAs) light emitting diode optically coupled to an integrated circuit with a high–speed driver for push–pull MOSFET output stage.

Features

- Extended Industrial Temperate Range, -40°C to 125°C
- High Noise Immunity characterized by 35 kV/µs minimum Common Mode Rejection
- 2.5 A Peak Output Current Driving Capability for Most 1200 V/ 20 A IGBT
- Use of P-channel MOSFETs at Output Stage Enables Output Voltage Swing close to the Supply Rail
- Wide Supply Voltage Range from 15 V to 30 V
- Fast Switching Speed
 - 400 ns maximum Propagation Delay
 - 100 ns maximum Pulse Width Distortion
- Under Voltage LockOut (UVLO) with Hysteresis
- Safety and Regulatory Approvals
 - UL1577, 5000 V_{RMS} for 1 minute
 - DIN EN/IEC60747–5–5 (pending approval)
- >8.0 mm Clearance and Creepage Distance (Option 'T' or 'TS')
- 1,414 V Peak Working Insulation Voltage (VIORM)
- This is a Pb–Free Device

Applications

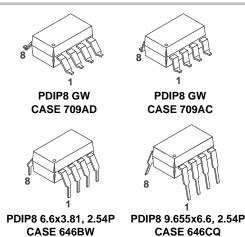
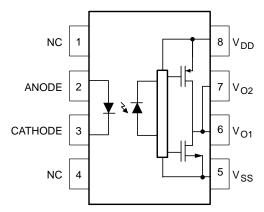
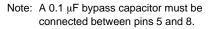

- Industrial Inverter
- Uninterruptible Power Supply
- Induction Heating
- Isolated IGBT/Power MOSFET Gate Drive

Table 1. TRUTH TABLE




ON Semiconductor®

www.onsemi.com

FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet.

LED	V _{DD} – V _{SS} "Positive Going" (Turn–on)	V _{DD} – V _{SS} "Negative Going" (Turn–off)	vo
Off	0 V to 30 V	0 V to 30 V	Low
On	0 V to 11 V	0 V to 9.7 V	Low
On	11 V to 14 V	9.7 V to 12.7 V	Transition
On	14 V to 30 V	12.7 V to 30 V	High

Table 2. PIN DEFINITIONS

Pin #	Name	Description	
1	NC	Not Connected	
2	Anode	LED Anode	
3	Cathode	LED Cathode	
4	NC	Not Connected	
5	Vss	Negative Supply Voltage	
6	VO2	Output Voltage 2 (internally connected to V _{O1})	
7	VO1	Output Voltage 1	
8	VDD	Positive Supply Voltage	

Table 3. SAFETY AND INSULATION RATINGS

As per DIN EN/IEC 60747–5–5 (pending approval). This optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Installation Classifications per DIN VDE 0110/1.89 Table 1 For Rated Main Voltage < 150 Vrms		I–IV		
	For Rated Main Voltage < 300 Vrms		I–IV		
	For Rated Main Voltage < 450 Vrms		I–III		
	For Rated Main Voltage < 600 Vrms		I–III		
	For Rated Main Voltage < 1000 Vrms (option T, TS)		I–III		_
	Climatic Classification		40/125/21		
	Pollution Degree (DIN VDE 0110/1.89)		2		
СТІ	Comparative Tracking Index	175			
V _{PR}	Input to Output Test Voltage, Method b, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with tm = 1 second, Partial Discharge < 5 pC	2651			
	Input to Output Test Voltage, Method a, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with tm = 10 second, Partial Discharge < 5 pC	2262			
V _{IORM}	Max Working Insulation Voltage	1414			Vpeak
VIOTM	Highest Allowable Over Voltage	6000			Vpeak
	External Creepage	≥8			mm
	External Clearance	≥7.4			mm
	External Clearance (for Option T or TS, 0.4" Lead Spacing)	≥ 10.16			mm
	Insulation Thickness	≥ 0.5			mm
T _{Case}	Case Temperature – Maximum Values Allowed in the Event of a Failure	175			°C
I _{S,INPUT}	Input Current – Maximum Values Allowed in the Event of a Failure	400			mA
P _{S,OUTPUT}	Output Power (Duty Factor \leq 2.7 %) – Maximum Values Allowed in the Event of a Failure	700			mW
R _{IO}	Insulation Resistance at T_S , V_{IO} = 500 V – Maximum Values Allowed in the Event of a Failure	> 10 ⁹			Ω

Symbol	Parameter		Value	Units
T _{STG}	Storage Temperature		-40 to +125	°C
T _{OPR}	Operating Temperature		-40 to +125	°C
TJ	Junction Temperature		-40 to +125	°C
T _{SOL}	Lead Wave Solder Temperature (refer to page 12 for reflow solder profile)			°C
I _{F(AVG)}	Average Input Current	Average Input Current		mA
f	Operating Frequency ⁽¹⁾		50	kHz
V _R	Reverse Input Voltage		5	V
I _{O(PEAK)}	Peak Output Current (2)		3	А
$V_{DD} - V_{SS}$	Supply Voltage		0 to 35	V
		$T_A \geq 90^\circ C$	0 to 30	
V _{O(PEAK)}	Peak Output Voltage	•	0 to V _{DD}	V
t _{R(IN)} , t _{F(IN)}	Input Signal Rise and Fall Time		500	ns
PDI	Input Power Dissipation ^{(3) (5)}		45	mW
PD _O	Output Power Dissipation (4) (5)		250	mW

Table 4. ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise specified.)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality Stresses exceeding those listed in the Maximum Ratings table may damage in should not be assumed, damage may occur and reliability may be affected. 1. Exponential Waveform, $I_{O(PEAK)} \le |2.5 \text{ A}| \le 0.3 \ \mu\text{s}$ 2. Maximum pulse width = 10 μ s, maximum duty cycle = 1.1 %. 3. Derate linearly above 87°C, free air temperature at a rate of 0.77 mW/°C. 4. Derate linearly above 100°C, free air temperature at a rate of 5.7 mW/°C.

5. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings.

Table 5. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Units
T _A	Ambient Operating Temperature	-40 to +125	°C
$V_{DD} - V_{SS}$	Power Supply	15 to 30	V
I _{F(ON)}	Input Current (ON)	7 to 16	mA
V _{F(OFF)}	Input Voltage (OFF)	0 to 0.8	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 6. ISOLATION CHARACTERISTICS

Apply over all recommended conditions, typical value is measured at $T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{ISO}		T_{A} = 25°C, R.H.< 50 %, t = 1.0 minute, I_{I-O} \leq 10 $\mu A,$ 50 Hz $^{(6)}$ $^{(7)}$	5000			V _{RMS}
R _{ISO}	Isolation Resistance	$V_{I-O} = 500 V^{(6)}$		10 ¹¹		Ω
C _{ISO}	Isolation Capacitance	$V_{I-O} = 0$ V, Frequency = 1.0 MHz ⁽⁶⁾		1		pF

6. Device is considered a two terminal device: pins 2 and 3 are shorted together and pins 5, 6, 7 and 8 are shorted together.

7. 5,000 V_{RMS} for 1 minute duration is equivalent to 6,000 VAC_{RMS} for 1 second duration.

Table 7. ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _F	Input Forward Voltage	I _F = 10 mA	1.1	1.5	1.8	V
(Temperature Coefficient of Forward Voltage			-1.8		mV/°C
BV _R	Input Reverse Breakdown Voltage	I _R = 10 μA	5			V

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
CIN	Input Capacitance	f = 1 MHz, V _F = 0 V		20		pF
Іон	High Level Output Current (1)	$V_0 = V_{DD} - 3 V$	-1.0	-2.0		А
		$V_{\rm O} = V_{\rm DD} - 6 \ V$	-2.0			
IOL	Low Level Output Current (1)	$V_0 = V_{SS} + 3 V$	1.0	2.0		А
		$V_0 = V_{SS} + 6 V$	2.0			
Vон	High Level Output Voltage	$I_F = 10 \text{ mA}, I_O = -2.5 \text{ A}$	V _{DD} -6.25 V	V _{DD} -2.5 V		V
		$I_{\rm F} = 10$ mA, $I_{\rm O} = -100$ mA	V _{DD} -0.25 V	V _{DD} -0.1 V		
Vol	Low Level Output Voltage	$I_F = 0 \text{ mA}, I_O = 2.5 \text{ A}$		V _{SS} + 2.5 V	V _{SS} + 6.25 V	V
		$I_{\rm F} = 0$ mA, $I_{\rm O} = 100$ mA		V _{SS} + 0.1 V	V _{SS} + 0.25 V	
IDDH	High Level Supply Current	V_0 = Open, I_F = 7 to 16 mA		2.8	3.8	mA
Iddl	Low Level Supply Current	$V_0 = Open, V_F = 0 \text{ to } 0.8 \text{ V}$		2.8	3.8	mA
IFLH	Threshold Input Current Low to High	$I_0 = 0 \text{ mA}, V_0 > 5 \text{ V}$		2.3	5.0	mA
VFHL	Threshold Input Voltage High to Low	$I_0 = 0 \text{ mA}, V_0 < 5 \text{ V}$	0.8			V
VUVLO+	Under Voltage Lockout Threshold	I _F = 1 0mA, V _O > 5 V	11	12.7	14	V
Vuvlo-		I _F = 10 mA, V _O < 5 V	9.7	11.2	12.7	V
UVLOHYS	Under Voltage Lockout Threshold Hysteresis			1.5		V

Table 7. ELECTRICAL CHARACTERISTICS (continued)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

8. Maximum pulse width = 10 μ s, maximum duty cycle = 1.1 %.

Table 8. SWITCHING CHARACTERISTICS

Apply over all recommended conditions, typical value is measured at V_{DD} = 30 V, V_{SS} = Ground, T_A = 25°C unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
tPHL	Propagation Delay Time to Logic Low Output	$I_F = 7 \text{ mA to } 16 \text{ mA},$	150	275	400	ns
tPLH	Propagation Delay Time to Logic High Output	Rg = 10 Ω, Cg = 10 nF, f = 10 kHz, Duty Cycle = 50 %	150	255	400	ns
PWD	Pulse Width Distortion, tPHL - tPLH			20	100	ns
PDD (Skew)	Propagation Delay Difference Between Any Two Parts or Channels, $(t_{PHL} - t_{PLH})^{(9)}$		-250		250	ns
t _r	Output Rise Time (10% – 90%)			60		ns
t _f	Output Fall Time (90% – 10%)			60		ns
tUVLO ON	UVLO Turn On Delay	I _F = 10 mA , V _O > 5 V		1.6		μS
tUVLO OFF	UVLO Turn Off Delay	$I_F = 10 \text{ mA}$, $V_O < 5 \text{ V}$		0.4		μs
CM _H	Common Mode Transient Immunity at Output High	$T_{A} = 25^{\circ}C, V_{DD} = 30 \text{ V},$ $I_{F} = 7 \text{ to } 16 \text{ mA}, V_{CM} = 2000 \text{ V} \ ^{(10)}$	35	50		kV/μs
CM _L	Common Mode Transient Immunity at Output Low	$ T_A = 25^{\circ}C, \ V_{DD} = 30 \ V, \ V_F = 0 \ V, \\ V_{CM} = 2000 \ V^{(11)} $	35	50		kV/μs

 The difference between t_{PHL} and t_{PLH} between any two FOD3125 parts under same test conditions.
Common mode transient immunity at output high is the maximum tolerable negative dVcm/dt on the trailing edge of the common mode impulse signal, Vcm, to assure that the output will remain high (i.e., V_O > 15.0 V).

11. Common mode transient immunity at output low is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal, Vcm, to assure that the output will remain low (i.e., $V_0 < 1.0$ V).

TYPICAL PERFORMANCE CURVES

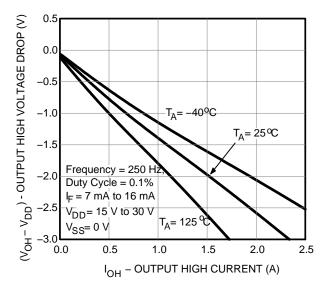


Figure 1. Output High Voltage Drop vs. Output High Current

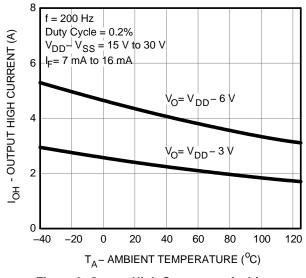


Figure 3. Output High Current vs. Ambient Temperature

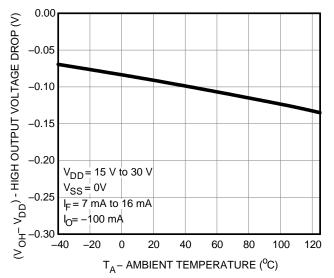


Figure 2. Output High Voltage Drop vs. Ambient Temperature

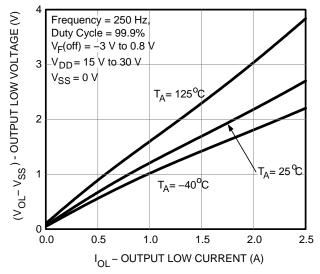


Figure 4. Output Low Voltage vs. Output Low Current

Figure 7. Supply Current vs. Ambient Temperature

Figure 8. Supply Current vs. Supply Voltage

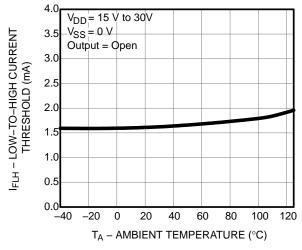


Figure 9. Low to High Input Current Threshold vs. Ambient Temperature

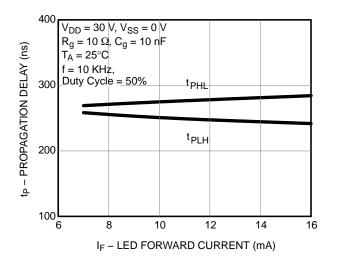


Figure 11. Propagation Delay vs. LED Forward Current

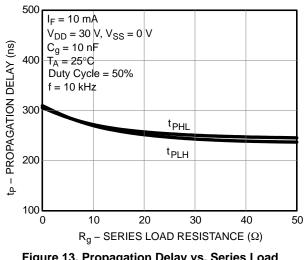


Figure 13. Propagation Delay vs. Series Load Resistance

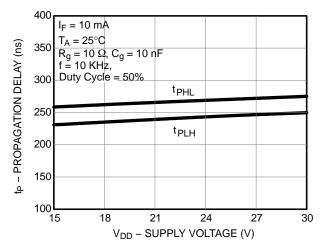


Figure 10. Propagation Delay vs. Supply Voltage

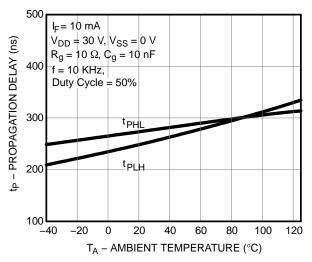


Figure 12. Propagation Delay vs. Ambient Temperature

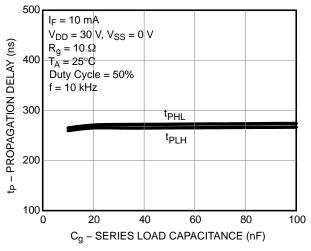
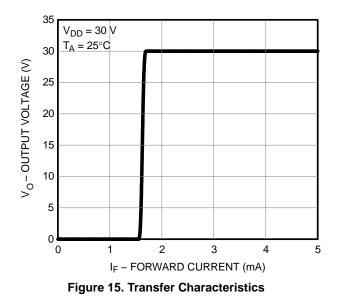



Figure 14. Propagation Delay vs. Load Capacitance

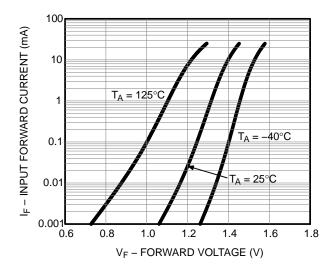
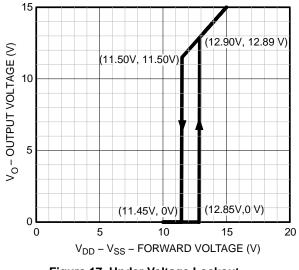
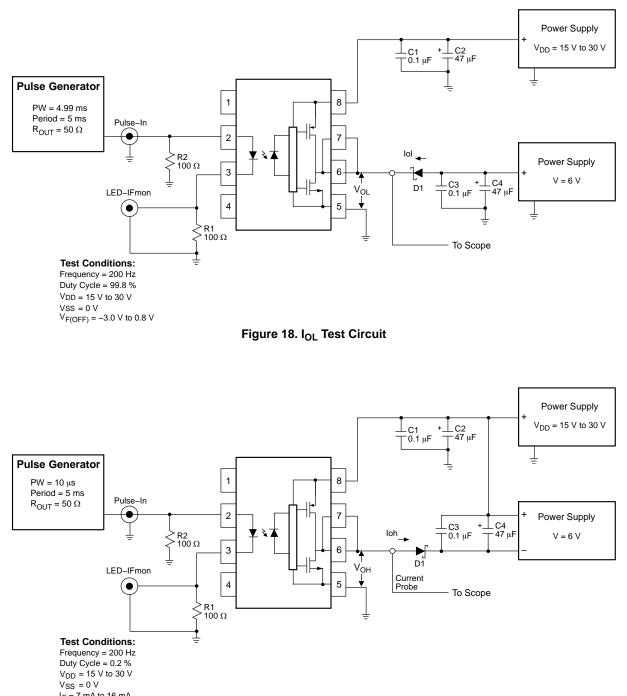
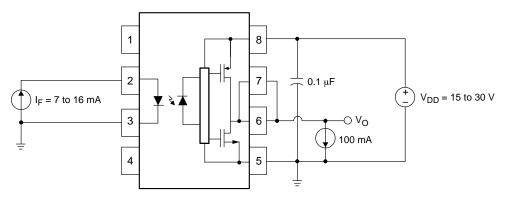
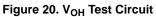
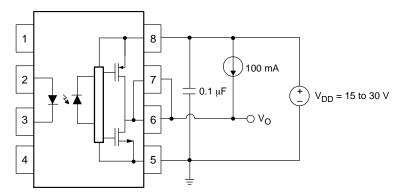


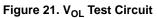
Figure 16. Input Forward Current vs. Forward Voltage

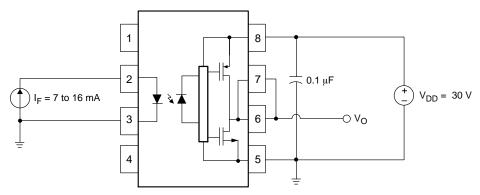




Figure 17. Under Voltage Lockout


TEST CIRCUIT




 $I_F = 7 \text{ mA to } 16 \text{ mA}$



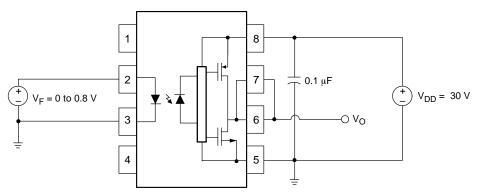
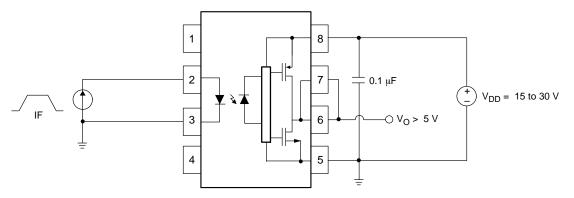



Figure 23. I_{DDL} Test Circuit

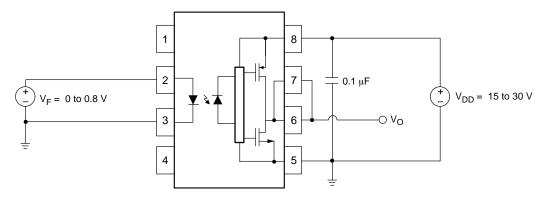
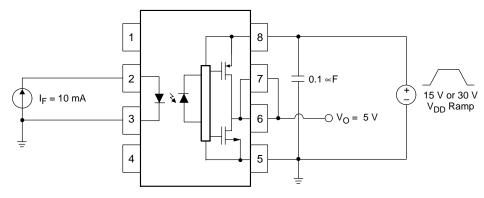



Figure 25. V_{FHL} Test Circuit

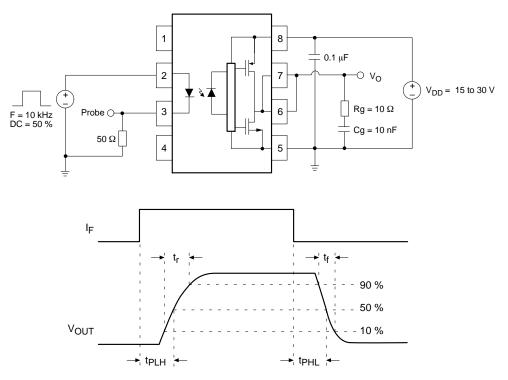
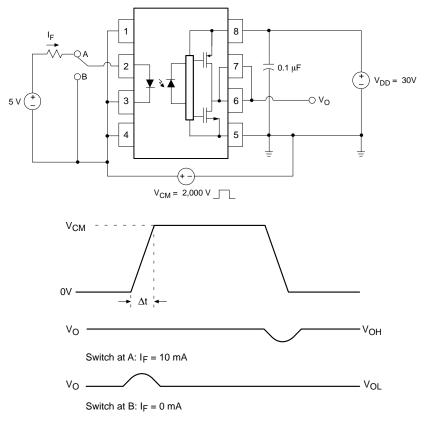
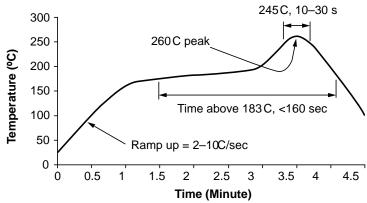




Figure 27. t_{PHL}, t_{PLH}, t_R and t_F Test Circuit and Waveforms

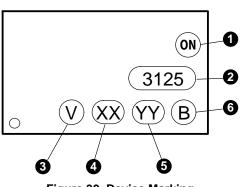
REFLOW PROFILE

Notes:

• Peak reflow temperature: 260 C (package surface temperature)

• Time of temperature higher than 183 C for 160 seconds or less

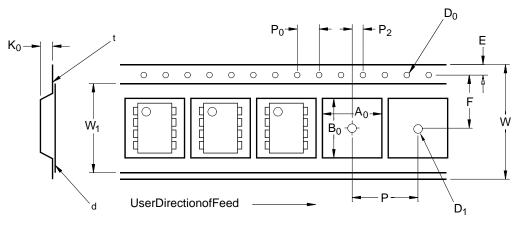
• One time soldering reflow is recommended


Figure 29. Reflow Profile

ORDERING INFORMATION

Part Number	Package	Shipping [†]
FOD3125	DIP 8–Pin	50 / Tube
FOD3125S	SMT 8–Pin (Lead Bend)	50 / Tube
FOD3125SD	SMT 8–Pin (Lead Bend)	1,000 / Tape & Reel
FOD3125V	DIP 8–Pin, DIN EN/IEC 60747–5–5 option (pending approval)	50 / Tube
FOD3125SV	SMT 8-Pin (Lead Bend), DIN EN/IEC 60747-5-5 option (pending approval)	50 / Tube
FOD3125SDV	SMT 8-Pin (Lead Bend), DIN EN/IEC 60747-5-5 option (pending approval)	1,000 / Tape & Reel
FOD3125TV	DIP 8-Pin, 0.4" Lead Spacing, DIN EN/IEC 60747-5-5 option (pending approval)	50 / Tube
FOD3125TSV	SMT 8–Pin, 0.4" Lead Spacing, DIN EN/IEC 60747–5–5 option (pending approval)	50 / Tube
FOD3125TSR2V	SMT 8–Pin, 0.4" Lead Spacing, DIN EN/IEC 60747–5–5 option (pending approval)	1,000 / Tape & Reel

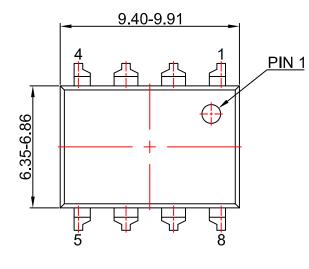
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

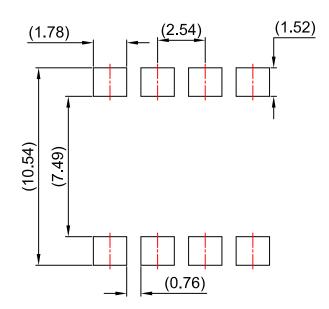

MARKING INFORMATION

	Definitions			
1	Company logo			
2	Device number			
3	DIN EN/IEC60747–5–5 Option (pending approval) (only appears on component ordered with this option)			
4	Two digit year code, e.g., '19'			
5	Two digit work week ranging from '01' to '53'			
6	Assembly package code			

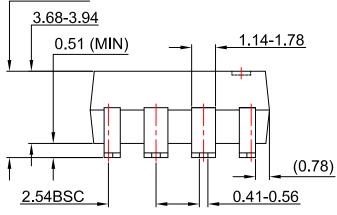
Figure 30. Device Marking

CARRIER TAPE SPECIFICATIONS (OPTION SD)

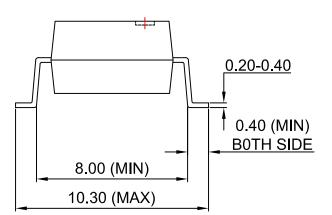



Symbol	Description	Dimension in mm
W	Tape Width	16.0 ± 0.3
t	Tape Thickness	0.30 ± 0.05
P ₀	Sprocket Hole Pitch	4.0 ± 0.1
D ₀	Sprocket Hole Diameter	1.55 ± 0.05
E	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	7.5 ± 0.1
P ₂		2.0 ± 0.1
Р	Pocket Pitch	12.0 ± 0.1
A ₀	Pocket Dimensions	10.30 ± 0.20
B ₀		10.30 ± 0.20
K ₀		4.90 ± 0.20
W ₁	Cover Tape Width	13.2 ± 0.2
d	Cover Tape Thickness	0.1 max
	Max. Component Rotation or Tilt	10°
R	Min. Bending Radius	30

OPTOPLANAR is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.


PACKAGE DIMENSIONS (OPTION S)

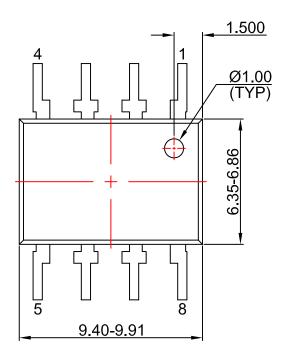
PDIP8 GW CASE 709AC ISSUE O

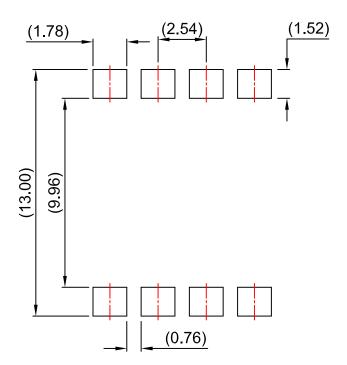


5.08 (MAX)

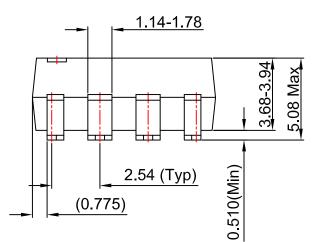
LAND PATTERN RECOMMENDATION

NOTES:

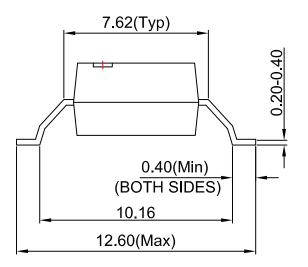

A) NO STANDARD APPLIES TO THIS PACKAGE


B) ALL DIMENSIONS ARE IN MILLIMETERS.

C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

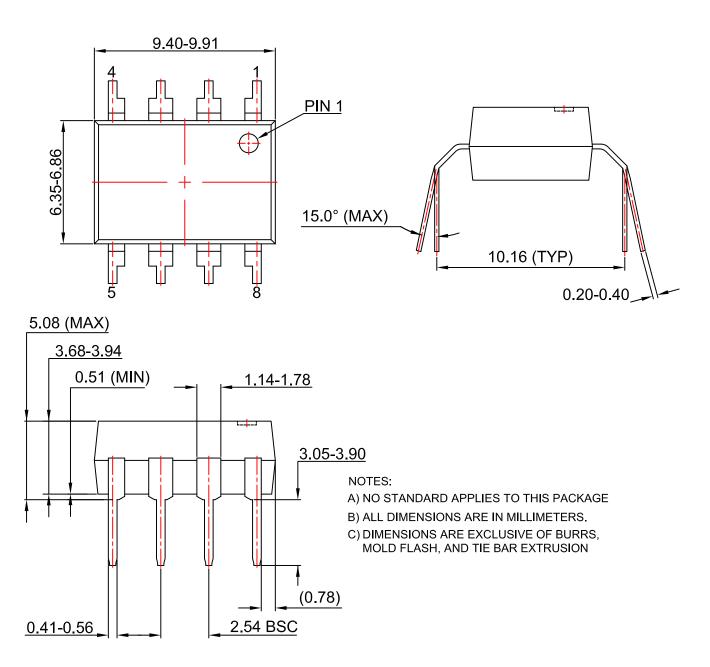

PACKAGE DIMENSIONS (OPTION TS)

LAND PATTERN RECOMMENDATION

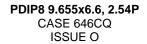


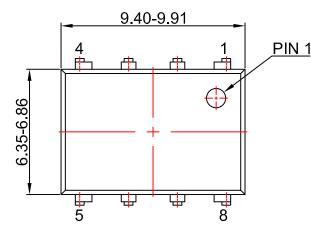
NOTES:

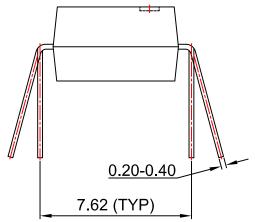
A) NO STANDARD APPLIES TO THIS PACKAGE

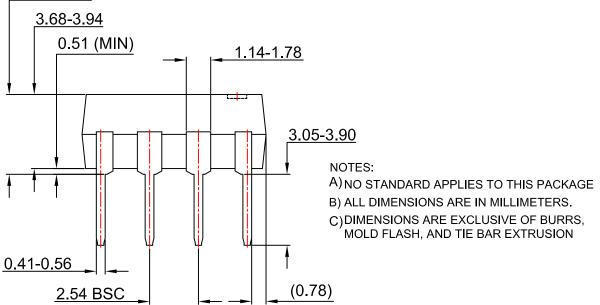

B) ALL DIMENSIONS ARE IN MILLIMETERS.

C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION




PACKAGE DIMENSIONS (OPTION T)


PDIP8 6.6x3.81, 2.54P CASE 646BW ISSUE O


PACKAGE DIMENSIONS

5.08 (MAX)

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and tesigned, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves have any schu unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, an

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative