Is Now Part of ### ON Semiconductor® ### To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u> Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com. ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer September 1983 Revised May 2005 # MM74HC540 • MM74HC541 Inverting Octal 3-STATE Buffer • Octal 3-STATE Buffer ### **General Description** The MM74HC540 and MM74HC541 3-STATE buffers utilize advanced silicon-gate CMOS technology. They possess high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits achieve speeds comparable to low power Schottky devices, while retaining the advantage of CMOS circuitry, i.e., high noise immunity, and low power consumption. Both devices have a fanout of 15 LS-TTL equivalent inputs. The MM74HC540 is an inverting buffer and the MM74HC541 is a non-inverting buffer. The 3-STATE control gate operates as a two-input NOR such that if either $\overline{\text{G1}}$ or $\overline{\text{G2}}$ are HIGH, all eight outputs are in the high-impedance state. In order to enhance PC board layout, the MM74HC540 and MM74HC541 offers a pinout having inputs and outputs on opposite sides of the package. All inputs are protected from damage due to static discharge by diodes to $V_{\mbox{\footnotesize{CC}}}$ and ground. #### **Features** - Typical propagation delay: 12 ns - 3-STATE outputs for connection to system buses - Wide power supply range: 2-6V - Low quiescent current: 80 µA maximum (74HC Series) - Output current: 6 mA ### Ordering Code: | Order Number | Package Number | Package Description | |--------------|----------------|---| | MM74HC540WM | M20B | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide | | MM74HC540SJ | M20D | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide | | MM74HC540MTC | MTC20 | 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide | | MM74HC540N | N20A | 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide | | MM74HC541WM | M20B | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide | | MM74HC541SJ | M20D | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide | | MM74HC541MTC | MTC20 | 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide | | MM74HC541N | N20A | 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide | Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code ### **Connection Diagrams** Pin Assignments for DIP, SOIC, SOP and TSSOP ### Absolute Maximum Ratings(Note 1) (Note 2) | Note 2) | | |--|-----------------------------| | Supply Voltage (V _{CC}) | -0.5 to +7.0V | | DC Input Voltage (V _{IN}) | -1.5 to $V_{CC} + 1.5V$ | | DC Output Voltage (V _{OUT}) | -0.5 to V_{CC} +0.5 V | | Clamp Diode Current (I _{CD}) | ±20 mA | | DC Output Current, per pin (I _{OUT}) | ±35 mA | | DC V _{CC} or GND Current, | | | per pin (I _{CC}) | ±70 mA | | Storage Temperature Range (T _{STG}) | -65°C to +150°C | | Power Dissipation (PD) | | | (Note 3) | 600 mW | | S.O. Package only | 500 mW | | Lead Temperature (T _L) | | | | | # Recommended Operating Conditions | | Min | Max | Units | |---------------------------------------|-----|----------|-------| | Supply Voltage (V _{CC}) | 2 | 6 | V | | DC Input or Output Voltage | | | | | (V _{IN} , V _{OUT}) | 0 | V_{CC} | V | | Operating Temperature Range (T_A) | -40 | +85 | °C | | Input Rise or Fall Times | | | | | $(t_{f}, t_{f}) V_{CC} = 2.0V$ | | 1000 | ns | | $V_{CC} = 4.5V$ | | 500 | ns | | $V_{CC} = 6.0V$ | | 400 | ns | Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/PC from 65°C to 85°C. ### DC Electrical Characteristics (Note 4) (Soldering 10 seconds) | Symbol | Parameter | Conditions | v _{cc} | T _A = 25°C | | $T_A = -40$ to 85° C | $T_A = -55 \text{ to } 125^{\circ}\text{C}$ | Units | | |-----------------|--------------------|---|-----------------|-----------------------|------|-------------------------------|---|---------|--| | Symbol | | | | Тур | | Guaranteed L | imits | _ Gills | | | V _{IH} | Minimum HIGH Level | | 2.0V | | 1.5 | 1.5 | 1.5 | V | | | | Input Voltage | | 4.5V | | 3.15 | 3.15 | 3.15 | V | | | | | | 6.0V | | 4.2 | 4.2 | 4.2 | V | | | V _{IL} | Maximum LOW Level | | 2.0V | | 0.5 | 0.5 | 0.5 | V | | | | Input Voltage | | 4.5V | | 1.35 | 1.35 | 1.35 | V | | | | | | 6.0V | | 1.8 | 1.8 | 1.8 | V | | | V _{OH} | Minimum HIGH Level | $V_{IN} = V_{IH}$ or V_{IL} | | | | | | | | | | Output Voltage | I _{OUT} ≤ 20 μA | 2.0V | 2.0 | 1.9 | 1.9 | 1.9 | V | | | | | | 4.5V | 4.5 | 4.4 | 4.4 | 4.4 | V | | | | | | 6.0V | 6.0 | 5.9 | 5.9 | 5.9 | V | | | | | $V_{IN} = V_{IH}$ or V_{IL} | | | | | | | | | | | I _{OUT} ≤ 6.0 mA | 4.5V | 4.2 | 3.98 | 3.84 | 3.7 | V | | | | | I _{OUT} ≤ 7.8 mA | 6.0V | 5.7 | 5.48 | 5.34 | 5.2 | V | | | V _{OL} | Maximum LOW Level | V _{IN} = V _{IH} or V _{IL} | | | | | | | | | | Output Voltage | I _{OUT} ≤ 20 μA | 2.0V | 0 | 0.1 | 0.1 | 0.1 | V | | | | | | 4.5V | 0 | 0.1 | 0.1 | 0.1 | V | | | | | | 6.0V | 0 | 0.1 | 0.1 | 0.1 | V | | | | | $V_{IN} = V_{IH}$ or V_{IL} | | | | | | | | | | | I _{OUT} ≤ 6.0 mA | 4.5V | 0.2 | 0.26 | 0.33 | 0.4 | V | | | | | I _{OUT} ≤ 7.8 mA | 6.0V | 0.2 | 0.26 | 0.33 | 0.4 | V | | | I _{IN} | Maximum Input | V _{IN} = V _{CC} or GND | 6.0V | | ±0.1 | ±1.0 | ±1.0 | μА | | | | Current | | | | | | | | | | loz | Maximum 3-STATE | $V_{IN} = V_{IH}$ or V_{IL} , $\overline{G} = V_{IH}$ | 6.0V | | ±0.5 | ±5 | ±10 | μА | | | | Output Leakage | V _{OUT} = V _{CC} or GND | | | | | | | | | | Current | | | | | | | | | | Icc | Maximum Quiescent | V _{IN} = V _{CC} or GND | 6.0V | | 8.0 | 80 | 160 | μА | | | | Supply Current | $I_{OUT} = 0 \mu A$ | | | | | | | | 260°C Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5V$ and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used. ### **AC Electrical Characteristics** $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $t_f = t_f = 6$ ns | Symbol | Parameter | Conditions | Тур | Guaranteed
Limit | Units | |-------------------------------------|------------------------|--|-----|---------------------|-------| | t _{PHL} , t _{PLH} | Maximum Propagation | C _L = 45 pF | 12 | 18 | ns | | | Delay (540) | | | | | | t _{PHL} , t _{PLH} | Maximum Propagation | C _L = 45 pF | 14 | 20 | ns | | | Delay (541) | | | | | | t _{PZH} , t _{PZL} | Maximum Output Enable | $R_L = 1 \text{ k}\Omega$
$C_L = 45 \text{ pF}$ | 17 | 28 | ns | | | Time | C _L = 45 pF | | | | | t _{PHZ} , t _{PLZ} | Maximum Output Disable | $R_L = 1 \text{ k}\Omega$
$C_L = 5 \text{ pF}$ | 15 | 25 | ns | | | Time | C _L = 5 pF | | | | ### **AC Electrical Characteristics** V_{CC} = 2.0V to 6.0V, C_L = 50 pF, $t_{\rm f}$ = $t_{\rm f}$ = 6 ns (unless otherwise specified) | Symbol | Parameter | Conditions | V _{CC} | $T_A = 25^{\circ}C$ | | $T_A = -40 \text{ to } 85^{\circ}\text{C}$ $T_A = -55 \text{ to } 125^{\circ}$ | | Units | |-------------------------------------|----------------------------|-------------------------|-----------------|---------------------|-----|--|-------|-------| | Зупівої | | | V CC | Тур | | Guaranteed L | imits | Units | | t _{PHL} , t _{PLH} | Maximum Propagation | C _L = 50 pF | 2.0V | 55 | 100 | 126 | 149 | ns | | | Delay (540) | C _L = 150 pF | 2.0V | 83 | 150 | 190 | 224 | ns | | | | C _L = 50 pF | 4.5V | 12 | 20 | 25 | 30 | ns | | | | C _L = 150 pF | 4.5V | 22 | 30 | 38 | 45 | ns | | | | C _L = 50 pF | 6.0V | 11 | 17 | 21 | 25 | ns | | | | C _L = 150 pF | 6.0V | 18 | 26 | 32 | 38 | ns | | t _{PHL} , t _{PLH} | Maximum Propagation | C _L = 50 pF | 2.0V | 58 | 115 | 145 | 171 | ns | | | Delay (541) | C _L = 150 pF | 2.0V | 83 | 165 | 208 | 246 | ns | | | | C _L = 50 pF | 4.5V | 14 | 23 | 29 | 34 | ns | | | | C _L = 150 pF | 4.5V | 17 | 33 | 42 | 49 | ns | | | | C _L = 50 pF | 6.0V | 11 | 20 | 25 | 29 | ns | | | | C _L = 150 pF | 6.0V | 14 | 28 | 35 | 42 | ns | | t _{PZH} , t _{PZL} | Maximum Output Enable | $R_L = 1 k\Omega$ | | | | | | | | | Time | C _L = 50 pF | 2.0V | 75 | 150 | 189 | 224 | ns | | | | C _L = 150 pF | 2.0V | 100 | 200 | 252 | 298 | ns | | | | C _L = 50 pF | 4.5V | 15 | 30 | 38 | 45 | ns | | | | C _L = 150 pF | 4.5V | 30 | 40 | 50 | 60 | ns | | | | C _L = 50 pF | 6.0V | 13 | 26 | 32 | 38 | ns | | | | C _L = 150 pF | 6.0V | 17 | 34 | 43 | 51 | ns | | t _{PHZ} , t _{PLZ} | Maximum Output Disable | $R_L = 1 k\Omega$ | 2.0V | 75 | 150 | 189 | 224 | ns | | | Time | C _L = 50 pF | 4.5V | 15 | 30 | 38 | 45 | ns | | | | | 6.0V | 13 | 26 | 32 | 38 | ns | | t _{THL} , t _{TLH} | Maximum Output Rise | C _L = 50 pF | 2.0V | 25 | 60 | 75 | 90 | ns | | | and Fall Time | | 4.5V | 7 | 12 | 15 | 18 | ns | | | | | 6.0V | 6 | 10 | 13 | 15 | ns | | C _{PD} | Power Dissipation | $\overline{G} = V_{IH}$ | | 10 | | | | pF | | | Capacitance (Note 5) | $\overline{G} = V_{IL}$ | | 50 | | | | pF | | C _{IN} | Maximum Input | | | 5 | 10 | 10 | 10 | pF | | | Capacitance | | | | | | | | | C _{OUT} | Maximum Output Capacitance | | | 15 | 20 | 20 | 20 | pF | Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$. ## Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 4.4±0.1 -B-0.65 PIN #1 IDENT. LAND PATTERN RECOMMENDATION SEE DETAIL A 0.09-0.20 0.65 0.19-0.30 [\$[0.10**0**]A[**S**]0S] H2.00° DIMENSIONS ARE IN MILLIMETERS NOTES: A. CONFORMS TO JEDEC REGISTI REF NOTE 6, DATE 7/93. -0.6±0.1-R0.09min B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND THE BAR EXTRUSIONS. DETAIL A D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982. MTC20REVD1 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. ### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent=Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in liffs support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and ho ### PUBLICATION ORDERING INFORMATION #### LITERATURE FULFILLMENT Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Furno Middle East and Africa Technical Support: Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative