

Input/Output full swing high slew rate low voltage CMOS operational amplifiers

FEATURES

- High slew rate: 2.7V/μs
- Input/Output full swing
- Low input bias current:2.5pA
- Low input offset current:2.2pA
- Low Offset Voltage: 0.41mV (Typical)
- Quiescent Current:6.2mA
- Bandwidth:4.1MHz
- Supply Voltage:2.4V to 5.5V
- MicroSize Packages: SOIC-14

APPLICATIONS

- Transducers
- Temperature Measurement
- Electronic Scales
- Medical instrumentation
- Handheld Test Equipment
- Battery equipment

SIMPLIFIED SCHEMATIC

• Consumer electronics

GENERAL DESCRIPTION

MT0294 are low supply voltage quad CMOS operational amplifiers. This amplifier has the characteristics of Input/Output full swing, high slew rate, low supply current and high-speed operation. Input bias current is very low at 2.3pA (Typ) .MT0294 has wide temperature range from -40° C to $+85^{\circ}$ C.

Single or dual supplies as low as $2.4V(\pm 1.2V)$ and up to $5.5V(\pm 2.75V)$ can be used.

The MT0294 is available in the 14-pin SOIC packages.

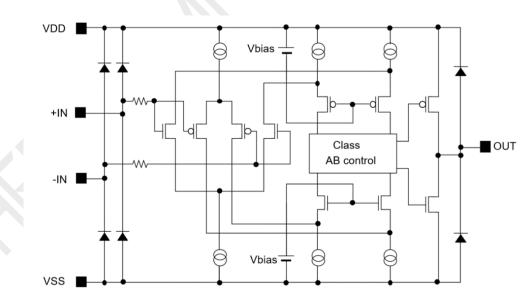


Figure 1. Simplified schematic

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage	+2.4V to +5.5V
Input Offset Voltage	0.41mV(Typical)
Input Offset Current	2.2pA(Typical)
Maximum Operating Junction Temperature	85°C
Operating Temperature Range40°	C to 85°C
Storage Temperature55°C	C to 125°C

PACKAGE/ORDER INFORMATION

	Order Part Number	Package	Top Marking
TOP VIEW	MT0294	14-Pin SOIC	MT0294 <u>CJ</u>

DEVICE INFORMATION

Order Part Number	Top Marking	Package
MT0294	MT0294 <u>CJ</u>	SOIC-14

PIN DESCRIPTION

Pin Name	Pin Number	Description
OUT1	1	Output of channel 1
-IN1	2	Inverting input of channel 1
+ IN1	3	Noninverting input of channel 1
VDD	4	Positive (highest) power supply
+ IN2	5	Noninverting input of channel 2
-IN2	6	Inverting input of channel 2
OUT2	7	Output of channel 2
OUT3	8	Output of channel 3
-IN3	9	Inverting input of channel 3

www.aerosemi.com Aerosemi Proprietary Information.Unauthorized Photocopy and Duplication Prohibited. All Rights Reserved.

MT0294 Input/Output full swing, high slew rate, low voltage CMOS

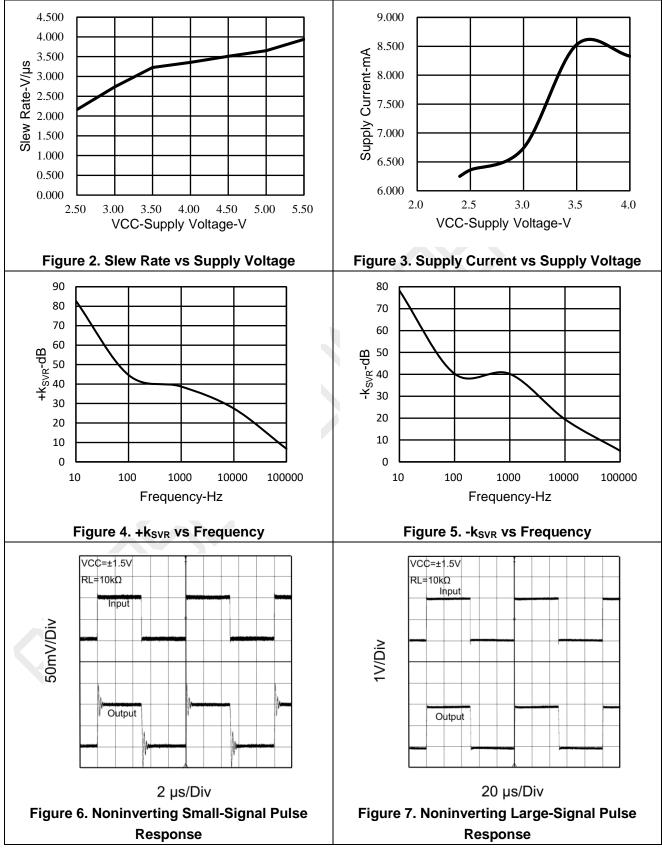
+ IN3	10	Noninverting input of channel 3
VSS	11	Negative(lowest) power supply
+ IN4	12	Noninverting input of channel 4
-IN4	13	Inverting input of channel 4
OUT4	14	Output of channel 4

ELECTRICAL CHARACTERISTICS (Note 3)

(At $T_A = 25^{\circ}$ C, VDD=+3V, VSS=0V, unless otherwise noted.)

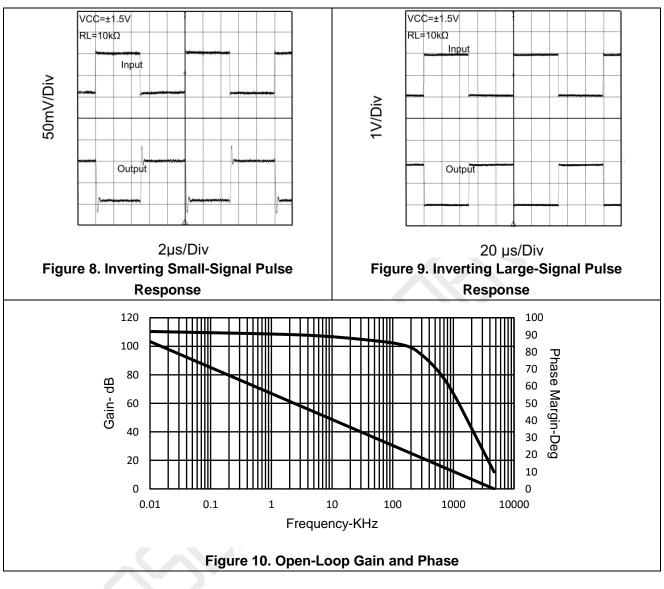
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Input Offset Voltage	V _s =3.0V		0.41	9	mV
Power Supply Rejection Ratio	$V_{s} = 2.4V$ to 5.5V $T_{A} = -40^{\circ}$ C to 125°C		96		dB
Input Bias Current	$T_A = 25^{\circ}C$		2.5		pА
Input Offset Current			2.2		pА
Common-mode Rejection Ratio		40	85		dB
Open Loop Voltage Gain	$R_L=10k\Omega$	70	107		dB
Gain-bandwidth product	$C_L=25pF$, f=100kHz		4.1		MHz
Slew Rate	$G = +1, C_L = 25 pF$		2.7		V/µs
Phase Margin	C _L =25pF		50		deg
Maximum Voltage Output	$R_L=10k\Omega$	VDD-0.1			mV
Minimum Voltage Output	$R_L=10k\Omega$			VSS+0.1	mV
Output Source Current	VDD-0.4V	5	8		mA
Output Sink Current	VSS+0.4V	9	16		mA
Input Common-mode Voltage Range	VSS to VDD	0		3	V
Supply Current	25°C		6.2		mA
Operating Temperature Range		-40		85	°C

MT0294 Input/Output full swing, high slew rate, low voltage CMOS


Storage Temperature	65	150	ംറ
Range	-05	150	0

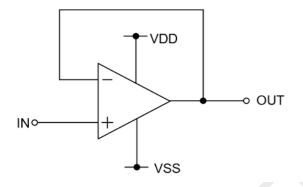
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. **Note 2:** T_J is calculated from the ambient temperature T_A and power dissipation P_D according to the following formula: $T_J = T_A + (P_D) \times (170^{\circ}C/W)$.

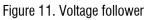
Note 3: 100% production test at $+25^{\circ}$ C. Specifications over the temperature range are guaranteed by design and characterization.


TYPICAL PERFORMANCE CHARACTERISTICS

(At $T_A = 25^{\circ}C$, +VS = +1.5V, -VS = -1.5V, $R_L = 10K \Omega$, CL = 25pF unless otherwise noted.)

www.aerosemi.com Aerosemi Proprietary Information.Unauthorized Photocopy and Duplication Prohibited. All Rights Reserved.


TYPICAL PERFORMANCE CHARACTERISTICS



APPLICATIONS INFORMATION

MT0294 are low supply voltage CMOS operational Amplifiers. This amplifier has the characteristics of Input/Output full swing, high slew rate, low supply current and high speed operation. Input bias current is very low at 2.5pA (Typ). MT0294 has wide temperature range from -40°C to +85°C. Single or dual supplies as low as 2.4V(\pm 1.2V) and up to 5.5V(\pm 2.75V) can be used.

Voltage follower

Voltage gain is OdB. Using this circuit, the output voltage (OUT) is configured to be equal to the input voltage (IN). This circuit also stabilizes the output voltage (OUT) due to high input impedance and low output impedance. Computation for output voltage (OUT) is shown below. OUT=IN.

Inverting amplifier

For inverting amplifier, input voltage (IN) is amplified by a voltage gain and depends on the ratio of R1 and R2. The out-of-phase output voltage is shown in the next expression

 $OUT = -(R2/R1) \cdot IN$

This circuit has input impedance equal to R1.

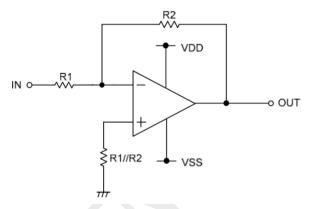


Figure 12. Inverting amplifier circuit

Non-inverting amplifier

For non-inverting amplifier, input voltage (IN) is amplified by a voltage gain, which depends on the ratio of R1 and R2. The output voltage (OUT) is in-phase with the input voltage (IN) and is shown in the next expression.

 $OUT = (1 + R2/R1) \cdot IN$

Effectively, this circuit has high input impedance since its input side is the same as that of the operational amplifier.

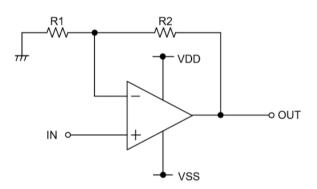
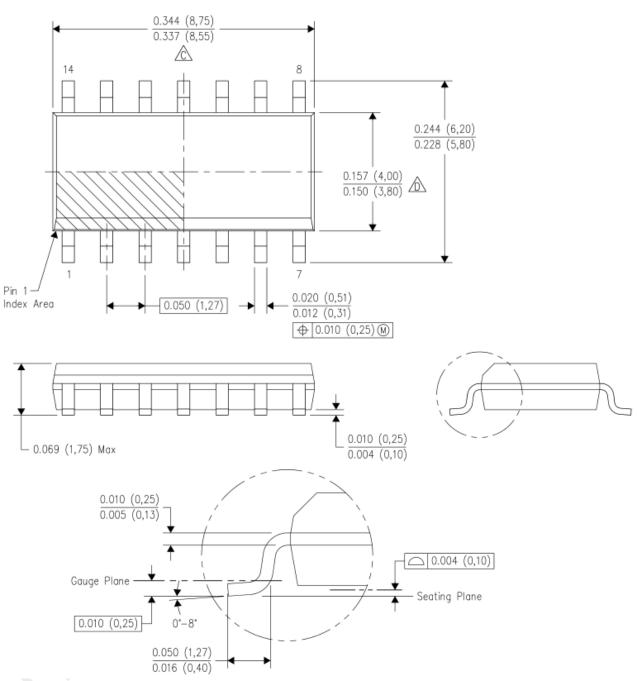



Figure 13. Non-inverting amplifier circuit

PACKAGE DESCRIPTION

SOIC

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. Reference JEDEC MO-178.

4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.

IMPORTANT NOTICE

Xi'an Aerosemi Technology Co.,Ltd reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services.

Xi'an Aerosemi Technology Co.,Ltd is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Xi'an Aerosemi Technology Co.,Ltd does not assume any responsibility for use of any its products for any particular purpose, nor does Xi'an Aerosemi Technology Co.,Ltd assume any liability arising out of the application or use of any its products or circuits.

Copyright © 2011, Xi'an Aerosemi Technology Co.,Ltd Support : 15216397288 Http://www.aerosemi.com