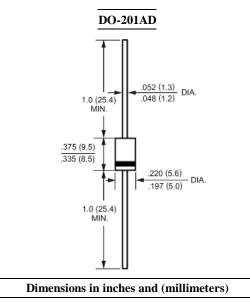
1N5820 THRU 1N5822

SCHOTTKY BARRIER RECTIFIERREVERSE VOLTAGE:20 to

FORWARD CURRENT:


20 to 40 VOLTS 3.0 AMPERE

- \cdot High current capability
- \cdot 3.0 ampere operation at TL=95 °C with no thermal runaway.
- Exceeds environmental standards of MIL-S-19500/228
- · For use in low voltage, high frequency inverters
- free wheeling, and porlarlity protection applications

MECHANICAL DATA

Case: Molded plastic, DO-201AD Epoxy: UL 94V-O rate flame retardant Lead: Axial leads, solderable per MIL-STD-202, method 208 guaranteed Polarity: Color band denotes cathode end Mounting position: Any Weight: 0.04ounce, 1.1gram

比

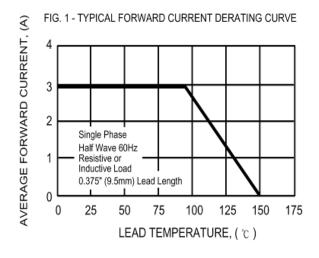
HORNBY ELECTRONIC

雷

3

Maximum Ratings and Electrical Characteristics

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, $60H_Z$, resistive or inductive load. For capacitive load, derate current by 20%.


	Symbols	1N5820	1N5821	1N5822	Units
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	20	30	40	Volts
Maximum RMS Voltage	V _{RMS}	14	21	28	Volts
Maximum DC Blocking Voltage	V _{DC}	20	30	40	Volts
Maximum Average Forward Rectified Current .375''(9.5mm) Lead Length at T _L =95°C	I _(AV)	3.0			Amp
Peak Forward Surge Current, 8.3ms single half-sine-wave superimposed on rated load (JEDEC method)	I _{FSM}	80			Атр
Maximum Forward Voltage at 3.0A DC	V _F	0.475	0.50	0.525	Volts
Maximum Forward Voltage at 9.4A DC		0.850	0.90	0.950	
Maximum Reverse Currentat $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=100^{\circ}C$	I _R	1.0 20			mAmp
Typical Junction Capacitance (Note 1)	CJ	250			pF
Typical Thermal Resistance (Note 2)	$R_{\theta JA}$	28			°C/W
Operating and Storage Temperature Range	T _J , Tstg	-55 to +150			C

NOTES:

1- Measured at 1 $\ensuremath{\text{MH}_{Z}}$ and applied reverse voltage of 4.0 VDC.

2- Thermal Resistance From Junction to Ambient 0.5"(12.7mm) lead length P.C.B. Mounted.

RATINGS AND CHARACTERISTIC CURVES

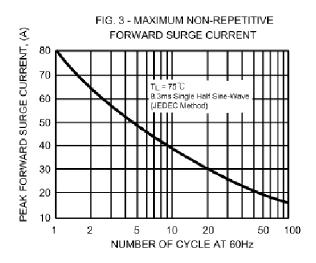
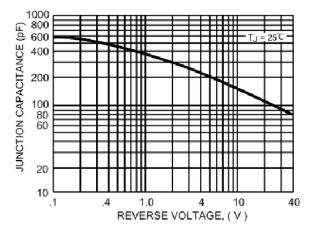



FIG. 4 - TYPICAL JUNCTION CAPACITANCE

10 INSTANTANEOUS REVERSE CURRENT, (mA) 125°C 1.0 .1 .01 IN5820 1N5821~1N5822 .001 0 20 100 120 40 60 80 140 PERCENT OF RATED PEAK **REVERSE VOLTAGE**, (%)

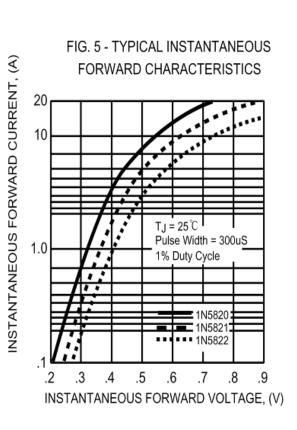


FIG. 2 - TYPICAL REVERSE CHARACTERISTICS

