MC74LCX16374

Low-Voltage CMOS 16-Bit D-Type Flip-Flop

With 5 V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX16374 is a high performance, non-inverting 16-bit D-type flip-flop operating from a 2.3 V to 3.6 V supply. The device is byte controlled. Each byte has separate Output Enable and Clock Pulse inputs. These control pins can be tied together for full 16-bit operation. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_{I} specification of 5.5 V allows MC74LCX16374 inputs to be safely driven from 5.0 V devices.

The MC74LCX16374 consists of 16 edge-triggered flip-flops with individual D-type inputs and 5.0 V-tolerant 3-state true outputs. The buffered clocks (CPn) and buffered Output Enables $(\overline{\mathrm{OEn}})$ are common to all flip-flops within the respective byte. The flip-flops will store the state of individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the $\overline{\mathrm{OE}}$ LOW, the contents of the flip-flops are available at the outputs. When the $\overline{\mathrm{OE}}$ is HIGH, the outputs go to the high impedance state. The $\overline{\mathrm{OE}}$ input level does not affect the operation of the flip-flops.

Features

- Designed for 2.3 to 3.6 V VCC Operation
- 6.2 ns Maximum t_{pd}
- 5.0 V Tolerant - Interface Capability With 5.0 V TTL Logic
- Supports Live Insertion and Withdrawal
- $\mathrm{I}_{\mathrm{OFF}}$ Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (20 $\mu \mathrm{A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance:
- Human Body Model > 2000 V
- Machine Model >200 V
- These Devices are $\mathrm{Pb}-\mathrm{Fr} e \mathrm{e}$, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

TSSOP-48 DT SUFFIX CASE 1201

MARKING DIAGRAM

48

LCX16374G AWLYYWW

1

A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

Figure 1. Pinout: 48-Lead (Top View)

Figure 2. Logic Diagram

Table 1. PIN NAMES

Pins	Function
OEn	Output Enable Inputs
CPn	Clock Pulse Inputs
D0-D15	Inputs
O0-O15	Outputs

TRUTH TABLE

Inputs			Outputs		Inputs		Outputs
CP1	OE1	D0:7	O0:7	CP2	OE2	D8:15	O8:15
\uparrow	L	H	H	\uparrow	L	H	H
\uparrow	L	L	L	\uparrow	L	L	L
L	L	X	O0	L	L	X	O0
X	H	X	Z	X	H	X	Z

[^0]ORDERING INFORMATION

Device	Package	Shipping †
MC74LCX16374DTG	TSSOP-48 (Pb-Free)	39 Units / Rail
M74LCX16374DTR2G	TSSOP-48 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Units
V_{CC}	DC Supply Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	Output in HIGH or LOW State. (Note 1$)$	V
I_{IK}	DC Input Diode Current	-50	$\mathrm{~V}_{1}<\mathrm{GND}$	mA
I_{OK}	DC Output Diode Current	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA	
		-50	$\mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
I_{O}	DC Output Source/Sink Current	+50	mA	
I_{CC}	DC Supply Current Per Supply Pin	± 50	mA	
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current Per Ground Pin	± 100	mA	
$\mathrm{~T}_{\text {STG }}$	Storage Temperature Range	± 100		${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity	-65 to +150		

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. I_{O} absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Units
V_{CC}	Supply Voltage				
	Operating				
Data Retention Only					

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Units
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 2)	$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$	1.7		V
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		
V_{IL}	LOW Level Input Voltage (Note 2)	$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$		0.7	V
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	
V_{OH}	HIGH Level Output Voltage	$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{IOL}=100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	1.8		
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.2		
VOL	LOW Level Output Voltage	$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{IOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.6	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{IOL}=24 \mathrm{~mA}$		0.55	
Ioz	3-State Output Current	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}, \\ \mathrm{~V}_{\mathrm{OUT}}=0 \text { to } 5.5 \mathrm{~V} \end{gathered}$		± 5	$\mu \mathrm{A}$
IOFF	Power Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$ or $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
1 IN	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND		± 5	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND		10	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	Increase in ICC per Input	$2.3 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

2. These values of V_{I} are used to test DC electrical characteristics only.

AC CHARACTERISTICS ($\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						Units
			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{gathered}$		
			Min	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Clock Pulse Frequency	1	170						MHz
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay CP to O_{n}	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.4 \\ & 7.4 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & t_{\text {pZLL }} \end{aligned}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 7.9 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable Time From High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 7.2 \end{aligned}$	ns
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW D ${ }^{n}$ to CP	1	2.5		2.5		3.0		ns
$t_{\text {h }}$	Hold Time, HIGH or LOW Dn to CP	1	1.5		1.5		2.0		ns
t_{w}	CP Pulse Width, HIGH	3	3.0		3.0		3.5		ns
toshl tosth	Output-to-Output Skew (Note 3)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$					ns

3. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$			Units
			Min	Typ	Max	
$\mathrm{V}_{\text {OLP }}$	Dynamic LOW Peak Voltage (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$		V
$\mathrm{V}_{\text {OLV }}$	Dynamic LOW Valley Voltage (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline-0.8 \\ & -0.6 \end{aligned}$		V

4. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	20	pF

WAVEFORM 1 - PROPAGATION DELAYS, SETUP AND HOLD TIMES $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

WAVEFORM 3 - PULSE WIDTH
$t_{R}=t_{F}=2.5 \mathrm{~ns}$ (or fast as required) from 10% to 90%; Output requirements: $\mathrm{V}_{\mathrm{OL}} \leq 0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}} \geq 2.0 \mathrm{~V}$

Figure 3. AC Waveforms
Table 2. AC WAVEFORMS

Symbol	V_{Cc}		
	$\mathbf{3 . 3} \mathbf{V} \pm \mathbf{0 . 3} \mathbf{V}$	$\mathbf{2 . 7} \mathbf{V}$	$\mathbf{2 . 5} \mathbf{V} \pm \mathbf{0 . 2} \mathbf{V}$
	1.5 V	$\mathbf{1 . 5} \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}} / 2$
Vmo^{2}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{HZ}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{LZ}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

MC74LCX16374

Figure 4. Test Circuit

Table 3. TEST CIRCUIT

Test	Switch
$t_{\text {PLH, }}$, ${ }_{\text {PHL }}$	Open
tpzL, $^{\text {t PLZ }}$	$\begin{aligned} & 6 \mathrm{~V} \text { at } \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \\ & 6 \mathrm{~V} \text { at } \mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V} \end{aligned}$
Open Collector/Drain $t_{\text {PLH }}$ and $t_{\text {PHL }}$	6 V
$t_{\text {PZH, }} \mathrm{t}_{\text {PHz }}$	GND

[^1]TSSOP-48
CASE 1201-01
ISSUE B
DATE 06 JUL 2010
SCALE 1:1

| DOCUMENT NUMBER: | 98ASH70297A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-48 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]: $\mathrm{H}=$ High Voltage Level
 L = Low Voltage Level
 Z = High Impedance State
 $\uparrow=$ Low-to-High Transition
 $\mathrm{X}=$ High or Low Voltage Level and Transitions Are Acceptable; for I I_{CC} reasons, DO NOT FLOAT Inputs

[^1]: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$ or equivalent (includes jig and probe capacitance)
 $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$ or equivalent (includes jig and probe capacitance)
 $R_{L}=R_{1}=500 \Omega$ or equivalent
 $\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)

