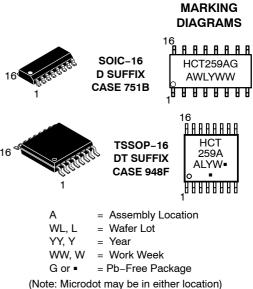
8-Bit Addressable Latch 1-of-8 Decoder with LSTTL Inputs

High-Performance Silicon-Gate CMOS


The MC74HCT259A is identical in pinout to the LS259. The device inputs are compatible with standard CMOS and LSTTL outputs.

The HCT259A has four modes of operation as shown in the mode selection table. In the addressable latch mode, the data on Data In is written into the addressed latch. The addressed latch follows the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the Data or Address inputs. In the one-of-eight decoding or demultiplexing mode, the addressed output follows the state of Data In with all other outputs in the LOW state. In the Reset mode all outputs are LOW and unaffected by the address and data inputs. When operating the HCT259A as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 4.5 to 5.5 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- These are Pb–Free Devices

PIN	PIN ASSIGNMENT					
A0	ď	1•	16	v _{cc}		
A1	d.	2	15] RESET		
A2	d	3	14] ENABLE		
Q0	d.	4	13	DATA IN		
Q1	d.	5	12] Q7		
Q2	þ	6	11] Q6		
Q3	þ	7	10] Q5		
GND	þ	8	9] Q4		
	-					

MODE SELECTION TABLE

Enable	Reset	Mode
L	Н	Addressable Latch
н	Н	Memory
L	L	8-Line Demultiplexer
н	L	Reset

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

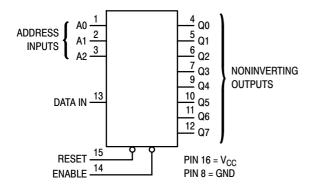


Figure 1. Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	±20	mA
I _{out}	DC Output Current, per Pin	±25	mA
I _{CC}	DC Supply Current, V_{CC} and GND Pins	±50	mA
P _D	Power Dissipation in Still Air, SOIC Package TSSOP Package	500 450	mW
T _{stg}	Storage Temperature	-65 to + 150	°C
V _{ESD}	ESD Withstand Voltage Human Body Model (Note 1) Machine Model (Note 2)	>2000 >200	V
I _{Latchup}	Latchup Performance Above V_{DD} and Below GND at 125°C (Note 3)	±100	mA

LATCH SELECTION TABLE

Ad	dress Inp	uts	
С	В	Α	Latch Addressed
			Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Tested to EIA / JESD22-A114-A.

2. Tested to EIA / JESD22-A115-A.

3. Tested to EIA / JESD78.

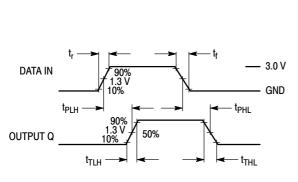
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	4.5	5.5	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	-55	+125	°C
t _r , t _f	Input Rise and Fall Time (Figure 2)	0	500	ns

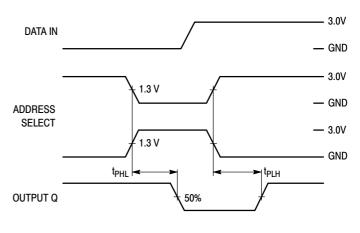
				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	v _{cc} v	- 55 to 25°C	≤ 85°C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$\begin{array}{l} V_{out} = 0.1 \ V \ or \ V_{CC} - 0.1 \ V \\ \left I_{out}\right \ \leq \ 20 \ \mu A \end{array} \label{eq:V_cc}$	4.5 5.5	2.0 2.0	2.0 2.0	2.0 2.0	V
V _{IL}	Maximum Low-Level Input Voltage	$\begin{array}{l} V_{out} = 0.1 \ V \ or \ V_{CC} - 0.1 \ V \\ \left I_{out}\right \ \leq \ 20 \ \mu A \end{array} \label{eq:V_cc}$	4.5 5.5	0.8 0.8	0.8 0.8	0.8 0.8	V
V _{OH}	Minimum High-Level Output Voltage	$ \begin{aligned} V_{in} &= V_{IH} \text{ or } V_{IL} \\ I_{out} &\leq 20 \; \mu A \end{aligned} $	4.5 5.5	4.4 5.4	4.4 5.4	4.4 5.4	V
		$V_{in} = V_{IH} \text{ or } V_{IL} $ $ I_{out} \le 5.2 \text{ mA}$	4.5	3.98	3.84	3.70	
V _{OL}	Maximum Low-Level Output Voltage	$ \begin{aligned} V_{in} &= V_{IH} \text{ or } V_{IL} \\ I_{out} &\leq 20 \ \mu A \end{aligned} $	4.5 5.5	0.1 0.1	0.1 0.1	0.1 0.1	V
		$V_{in} = V_{IH} \text{ or } V_{IL} $ $ I_{out} \le 5.2 \text{ mA}$	4.5	0.26	0.33	0.40	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	5.5	±0.1	± 1.0	± 1.0	μA
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC} \text{ or GND}$ $I_{out} = 0 \ \mu A$	5.5	4	40	160	μA
ΔI_{CC}	Additional Quiescent Supply Current	V_{in} = 2.4V, Any One Input V_{in} = V _{CC} or GND, Other Inputs		≥ -55°C	25 to	125°C	
	ounon	$I_{out} = 0\mu A$	5.5	2.9	2	.4	mA

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

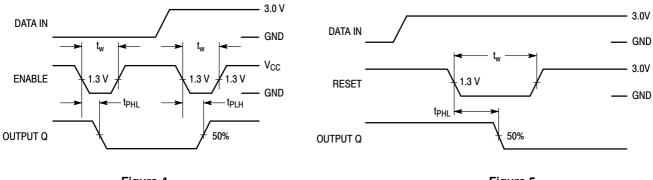
AC ELECTRICAL CHARACTERISTICS (V_{CC} = 4.5 to 5.5 V, C_L = 50 pF, Input t_f = t_f = 6 ns)

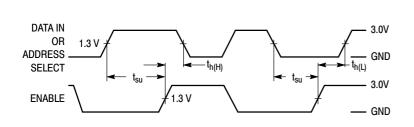

		Gu	Guaranteed Limit		
Symbol	Parameter	–55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Data to Output (Figures 2 and 7)	32	32	42	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Address Select to Output (Figures 3 and 7)	32	40	45	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Enable to Output (Figures 4 and 7)	32	40	45	ns
t _{PHL}	Maximum Propagation Delay, Reset to Output (Figures 5 and 7)	22	26	32	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 2 and 7)	15	19	22	ns
C _{in}	Maximum Input Capacitance	10	10	10	pF

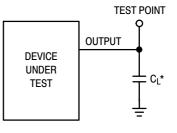
		Typical @ 25°C, V_{CC} = 5.0 V	
C _{PD}	Power Dissipation Capacitance (Per Package)	30	pF

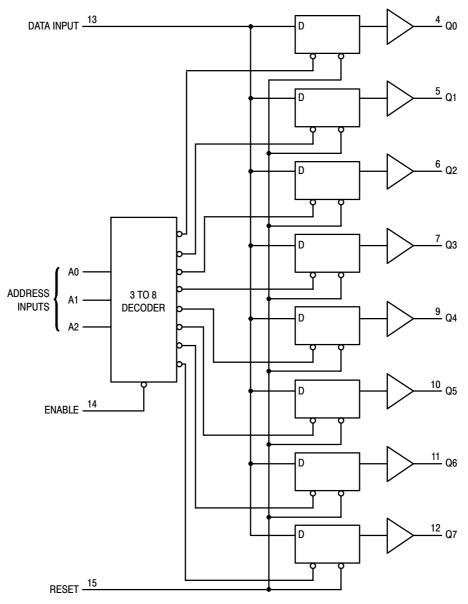

TIMING REQUIREMENTS (V_{CC} = 4.5 to 5.5 V, Input t_{r} = t_{f} = 6 ns)

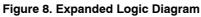
		Guaranteed Limit			
Symbol	Parameter	–55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{su}	Minimum Setup Time, Address or Data to Enable (Figure 6)	15	19	22	ns
t _h	Minimum Hold Time, Enable to Address or Data (Figure 6)	1	1	1	ns
t _w	Minimum Pulse Width, Reset or Enable (Figure 4 or 5)	15	19	22	ns


SWITCHING WAVEFORMS





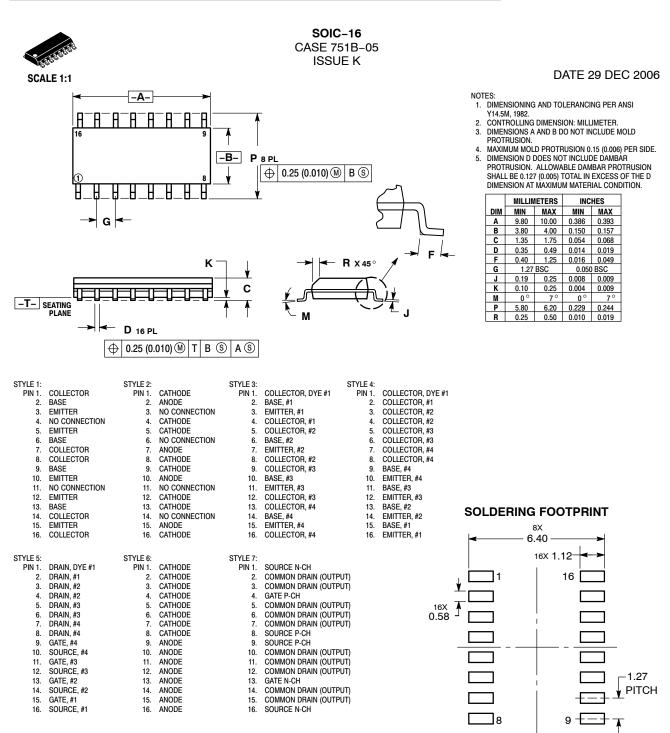




*Includes all probe and jig capacitance

Figure 7. Test Circuit

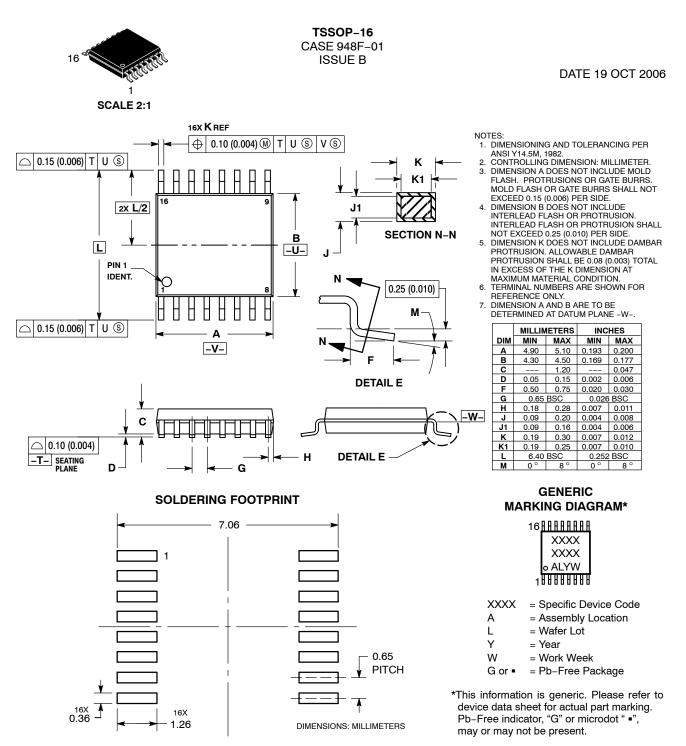
Figure 6.



ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HCT259ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HCT259ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74HCT259ADTR2G	TSSOP-16*	2500 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb-Free.



DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16		PAGE 1 OF 1	
ON Semiconductor and ON semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding				

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1		
ON Semiconductor and up are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.					

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative