NGTD17T65F2

IGBT Die

Trench Field Stop II IGBT Die for motor drive and inverter applications.

Features

- Extremely Efficient Trench with Field Stop Technology
- Low V_{CE(sat)} Loss Reduces System Power Dissipation

Typical Applications

- Industrial Motor Drives
- Solar Inverters
- UPS Systems
- Welding

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector–Emitter Voltage, T _J = 25°C	V_{CE}	650	V
DC Collector Current, limited by T _{J(max)}	I _C	(Note 1)	Α
Pulsed Collector Current (Note 2)	I _{C, pulse}	160	Α
Gate-Emitter Voltage	V_{GE}	±20	V
Maximum Junction Temperature	T_J	-55 to +175	°C
Short Circuit Withstand Time, $V_{GE} = 15 \text{ V}, V_{CE} = 500 \text{V}, T_J \le 150^{\circ}\text{C}$	T _{SC}	5.0	μS

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

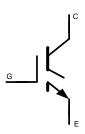
- 1. Depending on thermal properties of assembly.
- 2. T_{pulse} limited by T_{jmax} , 10 μs pulse, V_{GE} = 15 V.

MECHANICAL DATA

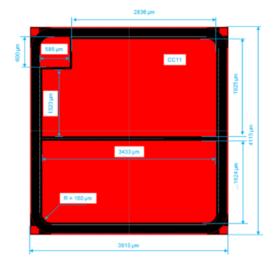
Parameter	Value	Unit	
Die Size	3915 x 4115	μm ²	
Emitter Pad Size	See die layout μm²		
Gate Pad Size	585 x 600	μm ²	
Die Thickness	3	mils	
Wafer Size	150	mm	
Top Metal	4 μm AISI		
Back Metal	2 μm TiNiAg		
Max possible chips per wafer	778		
Passivation frontside	Oxide-Nitride		
Reject ink dot size	25 mils		
Recommended storage environment: In original container, in dry nitrogen, or temperature of 18–28°C, 30–65%RH	Type: Die on tape in ring-pack Storage time: < 3 months		

ORDERING INFORMATION

Device	Inking?	Shipping		
NGTD17T65F2WP	Yes	Bare Wafer on Tape		
NGTD17T65F2SWK	Yes	Sawn Wafer on Tape		



ON Semiconductor®


www.onsemi.com

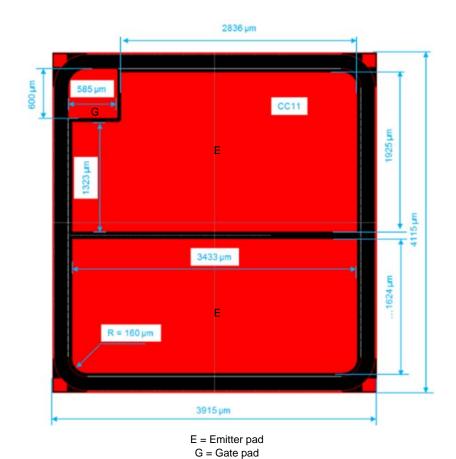
 V_{RCE} = 650 V I_{C} = Limited by $T_{J(max)}$

IGBT DIE

DIE OUTLINE

NGTD17T65F2

ELECTRICAL CHARACTERISTICS (T_J = 25°C, unless otherwise specified)


Parameter	Test Conditions	Symbol	Min	Тур	Max	Units
STATIC CHARACTERISTICS		•				
Collector–Emitter Breakdown Voltage	$V_{GE} = 0 \text{ V}, I_{C} = 500 \mu\text{A}$	V _{(BR)CES}	650			V
Collector–Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 40 A	V _{CE(sat)}		1.7	2.0	V
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}, I_{C} = 350 \mu A$	V _{GE(TH)}	4.5	5.5	6.5	V
Collector–Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}			0.5	mA
Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}			200	nA

DYNAMIC CHARACTERISTICS

Input Capacitance		C _{ies}	4060	pF
Output Capacitance	$V_{CE} = 20 \text{ V}, V_{GE} = 0 \text{ V}, f = 1$ MHz	C _{oes}	179	pF
Reverse Transfer Capacitance		C _{res}	115	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

DIE LAYOUT

Further Electrical Characteristic

Switching characteristics and thermal properties are depending strongly on module design and mounting technology and can therefore not be specified for a bare die.

All dimensions in μm

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative