MC14541B

Programmable Timer

The MC14541B programmable timer consists of a 16-stage binary counter, an integrated oscillator for use with an external capacitor and two resistors, an automatic power-on reset circuit, and output control logic.

Timing is initialized by turning on power, whereupon the power-on reset is enabled and initializes the counter, within the specified $V_{D D}$ range. With the power already on, an external reset pulse can be applied. Upon release of the initial reset command, the oscillator will oscillate with a frequency determined by the external RC network. The 16 -stage counter divides the oscillator frequency ($\mathrm{f}_{\text {osc }}$) with the $\mathrm{n}^{\text {th }}$ stage frequency being $\mathrm{f}_{\text {osc }} / 2^{\mathrm{n}}$.

Features

- Available Outputs $2^{8}, 2^{10}, 2^{13}$ or 2^{16}
- Increments on Positive Edge Clock Transitions
- Built-in Low Power RC Oscillator ($\pm 2 \%$ accuracy over temperature range and $\pm 20 \%$ supply and $\pm 3 \%$ over processing at $<10 \mathrm{kHz}$)
- Oscillator May Be Bypassed if External Clock Is Available (Apply external clock to Pin 3)
- External Master Reset Totally Independent of Automatic Reset Operation
- Operates as 2^{n} Frequency Divider or Single Transition Timer
- Q/Q Select Provides Output Logic Level Flexibility
- Reset (auto or master) Disables Oscillator During Resetting to Provide No Active Power Dissipation
- Clock Conditioning Circuit Permits Operation with Very Slow Clock Rise and Fall Times
- Automatic Reset Initializes All Counters On Power Up
- Supply Voltage Range = 3.0 Vdc to 18 Vdc with Auto Reset

$$
\text { Disabled }\left(\operatorname{Pin} 5=V_{\mathrm{DD}}\right)
$$

$=8.5 \mathrm{Vdc}$ to 18 Vdc with Auto Reset Enabled (Pin $5=\mathrm{V}_{\mathrm{SS}}$)

- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

SOIC-14	SOEIAJ-14	TSSOP-14
D SUFFIX	F SUFFIX	DT SUFFIX
CASE 751A	CASE 965	CASE 948G

PIN ASSIGNMENT

MARKING DIAGRAMS

14月HBHBH

A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G or - = Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage Range, (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}$	Input Current (DC or Transient)	± 10 (per Pin)	mA
$\mathrm{I}_{\text {out }}$	Output Current (DC or Transient)	± 45 (per Pin)	mA
P_{D}	Power Dissipation, per Package (Note 1)	500	mW
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC14541BDG	SOIC-14 (Pb-Free)	55 Units / Rail
NLV14541BDG*	SOIC-14 (Pb-Free)	55 Units / Rail
MC14541BDR2G	SOIC-14 (Pb-Free)	$2500 /$ Tape \& Reel
NLV14541BDR2G*	SOIC-14 (Pb-Free)	$2500 /$ Tape \& Reel
MC14541BDTR2G	TSSOP-14 (Pb-Free)	2500 / Tape \& Reel
NLV14541BDTR2G*	TSSOP-14 (Pb-Free)	2500 / Tape \& Reel
MC14541BFELG	SOEIAJ-14 (Pb-Free)	2000 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$V_{D D}$ Vdc	$-55{ }^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$ "1" Level $V_{\text {in }}=0 \text { or } V_{D D}$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
Input Voltage "0" Level $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \end{aligned}$ "1" Level $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	V_{IL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	Vdc
$\begin{array}{\|ll} \hline \text { Output Drive Current } & \\ \left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) & \text { Source } \\ \left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \end{array}$	IOH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -4.19 \\ & -7.96 \\ & -16.3 \end{aligned}$	-	$\begin{aligned} & -3.38 \\ & -6.42 \\ & -13.2 \end{aligned}$	$\begin{gathered} -6.75 \\ -12.83 \\ -26.33 \end{gathered}$	-	$\begin{aligned} & -2.37 \\ & -4.49 \\ & -9.24 \end{aligned}$	-	mAdc
$\begin{array}{ll} (\mathrm{VOL}=0.4 \mathrm{Vdc}) & \text { Sink } \\ \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{VOL}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	l OL	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.93 \\ & 4.96 \\ & 19.3 \end{aligned}$	-	$\begin{gathered} \hline 1.56 \\ 4.0 \\ 15.6 \end{gathered}$	$\begin{gathered} \hline 3.12 \\ 8.0 \\ 31.2 \end{gathered}$	-	$\begin{gathered} \hline 1.09 \\ 2.8 \\ 10.9 \end{gathered}$	-	mAdc
Input Current	$1{ }_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Pin 5 is High) Auto Reset Disabled	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Auto Reset Quiescent Current (Pin 5 is low)	IDDR	$\begin{aligned} & \hline 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	-	$\begin{aligned} & 30 \\ & 82 \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	-	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\mu \mathrm{Adc}$
Supply Current (Notes 3 \& 4) (Dynamic plus Quiescent)	I_{D}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$			$\begin{aligned} & I_{D}=(0.4 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{D}}=(0.8 \mu \mathrm{AHzz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{D}}=(1.2 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$					$\mu \mathrm{Adc}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. When using the on chip oscillator the total supply current (in $\mu \mathrm{Adc}$) becomes: $\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{\mathrm{D}}+2 \mathrm{C}_{\mathrm{tc}} \mathrm{V}_{\mathrm{DD}} f \times 10^{-3}$ where I_{D} is in $\mu \mathrm{A}, \mathrm{C}_{\mathrm{tc}}$ is in pF , $V_{D D}$ in Volts $D C$, and f in kHz . (see Fig. 3) Dissipation during power-on with automatic reset enabled is typically $50 \mu \mathrm{~A} @ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{Vdc}$.

SWITCHING CHARACTERISTICS (Note 5) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	V_{DD}	Min	Typ (Note 6)	Max	Unit
$\begin{aligned} & \text { Output Rise and Fall Time } \\ & \mathrm{t}_{\text {TLH }}, \mathrm{t}_{\text {THL }}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\text {THL }}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Propagation Delay, Clock to Q (2^{8} Output) $t_{\text {PLH }}, t_{\text {PHL }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+3415 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+1217 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+875 \mathrm{~ns}$	$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{gathered} 3.5 \\ 1.25 \\ 0.9 \end{gathered}$	$\begin{gathered} 10.5 \\ 3.8 \\ 2.9 \end{gathered}$	$\mu \mathrm{S}$
Propagation Delay, Clock to Q (2 2^{16} Output) $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+5915 \mathrm{~ns}$ $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\mathrm{PLH}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+3467 \mathrm{~ns}$ $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+2475 \mathrm{~ns}$	$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLLH}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 18 \\ 10 \\ 7.5 \end{gathered}$	$\mu \mathrm{s}$
Clock Pulse Width	${ }^{\text {W }}$ W(cl)	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 900 \\ & 300 \\ & 225 \end{aligned}$	$\begin{gathered} 300 \\ 100 \\ 85 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ns
Clock Pulse Frequency (50\% Duty Cycle)	f_{cl}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 4.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.75 \\ 2.0 \\ 3.0 \end{gathered}$	MHz
MR Pulse Width	${ }^{\text {twh(R) }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 900 \\ & 300 \\ & 225 \end{aligned}$	$\begin{gathered} 300 \\ 100 \\ 85 \end{gathered}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	ns
Master Reset Removal Time	$\mathrm{t}_{\text {rem }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 420 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 210 \\ & 100 \\ & 100 \end{aligned}$		ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

(R_{tc} AND C_{tc} OUTPUTS ARE LEFT OPEN)

Figure 1. Power Dissipation Test Circuit and Waveform

Figure 2. Switching Time Test Circuit and Waveforms

EXPANDED BLOCK DIAGRAM

FREQUENCY SELECTION TABLE

\mathbf{A}	\mathbf{B}	Number of Counter Stages \mathbf{n}	Count $\mathbf{2 n}^{\mathbf{n}}$
0	0	13	8192
0	1	10	1024
1	0	8	256
1	1	16	65536

TRUTH TABLE

Pin	State	
	0	1
Auto Reset, 5	Auto Reset Operating	Auto Reset Disabled
Master Reset, 6	Timer Operational	Master Reset On
Q/ \bar{Q}, 9	Output Initially Low After Reset	Output Initially High After Reset
Mode, 10	Single Cycle Mode	Recycle Mode

Figure 3. Oscillator Circuit Using RC Configuration

TYPICAL RC OSCILLATOR CHARACTERISTICS

Figure 4. RC Oscillator Stability

Figure 5. RC Oscillator Frequency as a Function of R_{tc} and C_{tc}

OPERATING CHARACTERISTICS

With Auto Reset pin set to a " 0 " the counter circuit is initialized by turning on power. Or with power already on, the counter circuit is reset when the Master Reset pin is set to a "1". Both types of reset will result in synchronously resetting all counter stages independent of counter state. Auto Reset pin when set to a " 1 " provides a low power operation.

The RC oscillator as shown in Figure 3 will oscillate with a frequency determined by the external RC network i.e.,

$$
\mathrm{f}=\frac{1}{2.3 \mathrm{R}_{\mathrm{tc}} \mathrm{C}_{\mathrm{tc}}} \quad \text { if }(1 \mathrm{kHz} \leq \mathrm{f} \leq 100 \mathrm{kHz})
$$

and $\quad R_{S} \approx 2 R_{\text {tc }}$
where $\mathrm{R}_{\mathrm{S}} \geq 10 \mathrm{k} \Omega$
The time select inputs (A and B) provide a two-bit address to output any one of four counter stages $\left(2^{8}, 2^{10}, 2^{13}\right.$ and 2^{16}). The 2^{n} counts as shown in the Frequency Selection Table represents the Q output of the $\mathrm{N}^{\text {th }}$ stage of the counter. When A is " 1 ", 2 16 is selected for both states of B. However,
when B is " 0 ", normal counting is interrupted and the 9th counter stage receives its clock directly from the oscillator (i.e., effectively outputting 2^{8}).

The $\mathrm{Q} / \overline{\mathrm{Q}}$ select output control pin provides for a choice of output level. When the counter is in a reset condition and $\mathrm{Q} / \overline{\mathrm{Q}}$ select pin is set to a " 0 " the Q output is a " 0 ", correspondingly when $\mathrm{Q} / \overline{\mathrm{Q}}$ select pin is set to a " 1 " the Q output is a " 1 ".

When the mode control pin is set to a " 1 ", the selected count is continually transmitted to the output. But, with mode pin " 0 " and after a reset condition the R_{S} flip-flop (see Expanded Block Diagram) resets, counting commences, and after $2^{\text {n-1 }}$ counts the R_{S} flip-flop sets which causes the output to change state. Hence, after another 2^{n-1} counts the output will not change. Thus, a Master Reset pulse must be applied or a change in the mode pin level is required to reset the single cycle operation.

DIGITAL TIMER APPLICATION

When Master Reset (MR) receives a positive pulse, the internal counters and latch are reset. The Q output goes high and remains high until the selected (via A and B) number of clock pulses are counted, the Q output then goes low and remains low until another input pulse is received.

This "one shot" is fully retriggerable and as accurate as the input frequency. An external clock can be used (pin 3 is the clock input, pins 1 and 2 are outputs) if additional accuracy is needed.

Notice that a setup time equal to the desired pulse width output is required immediately following initial power up, during which time Q output will be high.

MC14541B

PACKAGE DIMENSIONS

SOIC-14 NB
CASE 751A-03
ISSUE L

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS
2. DIMENSION b DOES NOT INCLUDE DAMBAR
3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSIO
SHALL BE 0.13 TOTAL IN EXCESS OF AT SHALL BE 0.13 TOTAL IN EXCESS OF MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
A	1.35	1.75	0.054	0.068	
A1	0.10	0.25	0.004	0.010	
A3	0.19	0.25	0.008	0.010	
b	0.35	0.49	0.014	0.019	
D	8.55	8.75	0.337	0.344	
E	3.80	4.00	0.150	0.157	
e	1.27		BSC	0.050 BSC	
H	5.80	6.20	0.228		
	0.244				
h	0.25	0.50	0.010	0.019	
L	0.40	1.25	0.016	0.049	
M	0°	7°	0°	7°	

DIMENSIONS: MILLIMETERS
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-14
CASE 948G
ISSUE C

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. FLASH, PROTRUSIONS BR GAS E BURRS. MOLD FLASH OR GATE BURRS 4. DIMENSION B DOES NOT INCLUDE 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL INTERLEAD FLASH OR PROTRUSION
NOT EXCEED 0.25 (0.010) PER SIDE.
3. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION
4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
5. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026	BSC
H	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252	BSC
M	0°		8°	0°

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MC14541B

PACKAGE DIMENSIONS

SOEIAJ-14
CASE 965
ISSUE B

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS D AND E DO NOT INCLUDE

MOLD FLASH OR PROTRUSIONS AND ARE
MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLA
OR PROTRUSIONS SHALL NOT EXCEED 0.15 OR PROTRUSIONS SHALL NOT EXCEED 0.15
(0.006) PER SIDE. (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
\mathbf{A}	---	2.05	---	0.081
\mathbf{A}_{1}	0.05	0.20	0.002	0.008
\mathbf{b}	0.35	0.50	0.014	0.020
\mathbf{c}	0.10	0.20	0.004	0.008
\mathbf{D}	9.90	10.50	0.390	0.413
\mathbf{E}	5.10	5.45	0.201	0.215
\mathbf{e}	1.27	BSC	0.050 BSC	
$\mathbf{H}_{\mathbf{E}}$	7.40	8.20	0.291	0.323
\mathbf{L}	0.50	0.85	0.020	0.033
$\mathrm{~L}_{\mathbf{E}}$	1.10	1.50	0.043	0.059
\mathbf{M}	0°	10°	0	0
\mathbf{Q}_{1}	0.70	0.90	0.028	0.035
\mathbf{Z}	---	1.42	---	0.056

> ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns tne rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

