Tracking Regulator/Line Driver - Micropower, Low Dropout

70 mA

The NCV8184 is a monolithic integrated low dropout tracking voltage regulator designed to provide an adjustable buffered output voltage that closely tracks ($\pm 3.0 \text{ mV}$) the reference input.

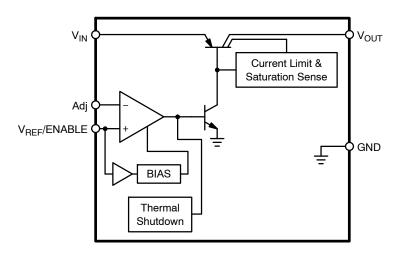
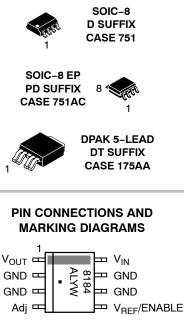
The part can be used in automotive applications with remote sensors, or any situation where it is necessary to isolate the output of your regulator.

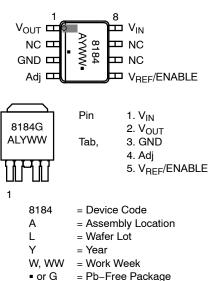
The NCV8184 also enables the user to bestow a quick upgrade to their module when added current is needed, and the existing regulator cannot provide.

The versatility of this part also enables it to be used as a high-side driver.

Features

- 70 mA Source Capability
- Output Tracks within ±3.0 mV
- Low Input Voltage Tracking Performance (Works Down to V_{REF} = 2.1 V)
- Low Dropout (0.35 V Typ. @ 50 mA)
- Low Quiescent Current
- Thermal Shutdown
- Wide Operating Range
- Internally Fused Leads in SOIC-8 Package
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant


Figure 1. Block Diagram

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 17 of this data sheet.

MAXIMUM RATINGS

Ra	Value	Unit	
Storage Temperature		–65 to 150	°C
Supply Voltage Range (Continuous)		–15 to 45	V
Supply Voltage Operating Range	4.0 to 42	V	
Peak Transient Voltage (V _{IN} = 14 V, Load Du	45	V	
Voltage Range (V _{OUT} , Adj)	–3.0 to 45	V	
Voltage Range (V _{REF} /ENABLE)		–0.3 to 45	V
Maximum Junction Temperature		150	°C
ESD Capability	Human Body Model Machine Model Charge Device Model	2.5 200 1000	kV V V
Lead Temperature Soldering:	Reflow: (SMD styles only) (Note 1)	240 peak 260 peak (Pb-Free) (Note 2)	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

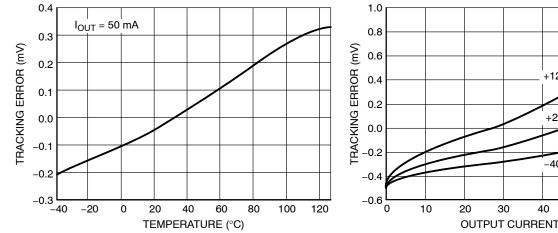
1. 60 second maximum above 183°C.

2. $-5^{\circ}C$ / $+0^{\circ}C$ Allowable Conditions, applies to both Pb and Pb–Free devices.

THERMAL CHARACTERISTICS See Package Thermal Data Section (Page 8)

 $\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \quad (V_{IN} = 14 \ V; \ V_{REF}/ENABLE > 2.1 \ V; \ -40^{\circ}C < T_{J} < +150^{\circ}C; \ C_{OUT} = 1.0 \ \mu\text{F}; \\ I_{OUT} = 1.0 \ \text{mA}; \ \text{Adj} = V_{OUT}; \ C_{OUT-ESR} = 1.0 \ \Omega, \ \text{unless otherwise specified.} \end{array}$

Parameter Test Conditions		Min	Тур	Max	Unit
REGULATOR OUTPUT		•	•	•	
V _{REF} /ENABLE – V _{OUT} V _{OUT} Tracking Error	$\begin{array}{l} 5.7 \ V \leq V_{IN} \leq 26 \ V, \ 100 \ \mu A \leq I_{OUT} \leq 60 \ mA \\ 2.1 \ V \leq V_{REF}/ENABLE \leq (V_{IN} - 600 \ mV) \end{array}$	-3.0	-	3.0	mV
Dropout Voltage (V _{IN} – V _{OUT})	$ I_{OUT} = 100 \ \mu A \\ I_{OUT} = 5.0 \ m A \\ I_{OUT} = 60 \ m A $	- - -	100 250 350	150 500 600	mV mV mV
Line Regulation	5.7 V \leq V _{IN} \leq 26 V, V _{REF} /ENABLE = 5.0 V	-	-	3.0	mV
Load Regulation	100 μ A \leq I _{OUT} \leq 60 mA, V _{REF} /ENABLE = 5.0 V	-	-	3.0	mV
Adj Input Bias Current	V _{REF} /ENABLE = 5.0 V	-	0.2	6.0	μA
Current Limit	V_{IN} = 14 V, V_{REF} = 5.0 V, V_{OUT} = 90% of V_{REF} (Note 3)	70	-	225	mA
Quiescent Current (I _{IN} – I _{OUT})	$ \begin{array}{l} V_{IN} = 12 \; V, \; I_{OUT} = 60 \; mA \\ V_{IN} = 12 \; V, \; I_{OUT} = 100 \; \mu A \\ V_{IN} = 12 \; V, \; V_{REF} / ENABLE = 0 \; V \end{array} $	- - -	5.0 50 -	7.0 70 20	mA μA μA
Ripple Rejection	f = 120 Hz, I_{OUT} = 60 mA, 6.0 V \leq V $_{IN}$ \leq 26 V	60	-	-	dB
Thermal Shutdown	Guaranteed by Design	150	180	210	°C


V_{REF}/ENABLE

5	0.0		2.1	•
Input Bias Current V _{REF} /ENABLE = 5.0 V	-	0.2	3.0	μA

3. $V_{\mbox{OUT}}$ connected to Adj lead.

PACKAGE PIN DESCRIPTION

Package Lead Number				
SOIC-8 EPAD	SOIC-8	DPAK, 5-LEAD	Lead Symbol	Function
8	8	1	V _{IN}	Battery supply input voltage.
1	1	2	V _{OUT}	Regulated output.
3, EPAD	2, 3, 6, 7	Tab, 3	GND	Ground.
4	4	4	Adj	Adjust lead, noninverting input.
5	5	5	V _{REF} /ENABLE	Reference voltage and ENABLE input.
2, 6, 7	-	-	NC	No Connection. PCB traces allowed.

TYPICAL PERFORMANCE CHARACTERISTICS

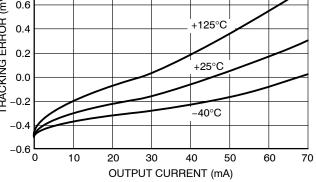


Figure 3. Tracking Error vs. Output Current

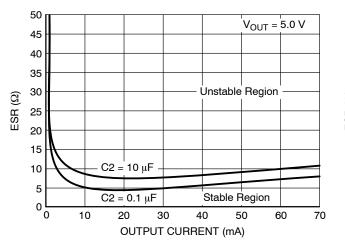


Figure 4. Output Stability with Capacitor Change

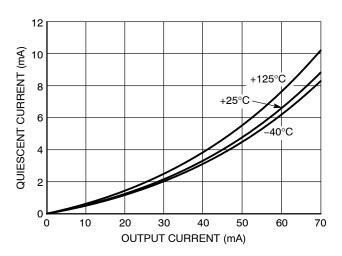


Figure 6. Quiescent Current vs. Output Current

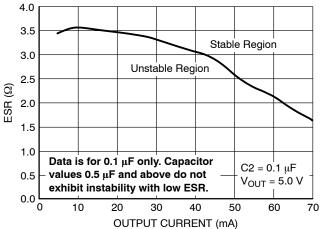


Figure 5. Output Stability with 0.1 μ F at Low ESR

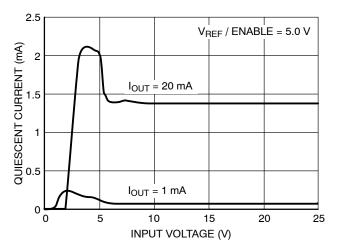
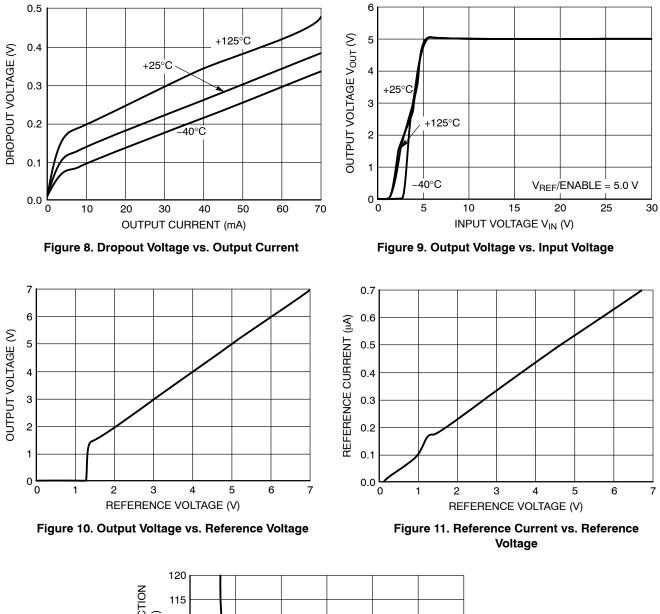
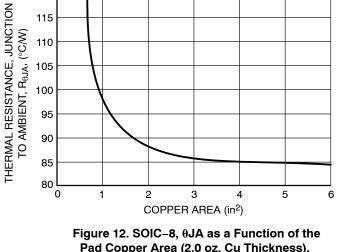
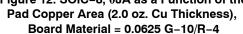
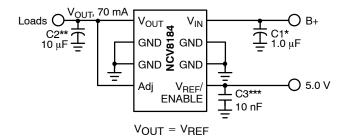
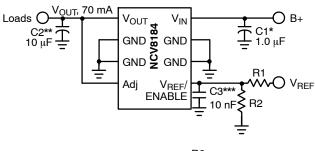





Figure 7. Quiescent Current vs. Input Voltage

TYPICAL PERFORMANCE CHARACTERISTICS

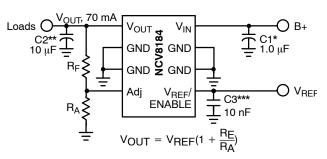


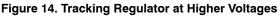
http://onsemi.com 4


CIRCUIT DESCRIPTION

ENABLE Function

By pulling the V_{REF}/ENABLE lead below 0.8 V, (see Figure 16 or Figure 17), the IC is disabled and enters a sleep state where the device draws less than 20 μ A from supply. When the V_{REF}/ENABLE lead is greater than 2.1 V, V_{OUT} tracks the V_{REF}/ENABLE lead normally.


$$V_{OUT} = V_{REF}(\frac{R2}{R1 + R2})$$


Figure 15. Tracking Regulator at Lower Voltages

The output is capable of supplying 70 mA to the load while configured as a similar (Figure 13), lower (Figure 15), or higher (Figure 14) voltage as the reference lead. The Adj lead acts as the inverting terminal of the op amp and the V_{REF} lead as the non-inverting.

The device can also be configured as a high–side driver as displayed in Figure 18.

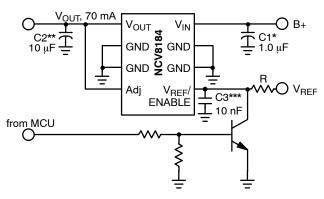
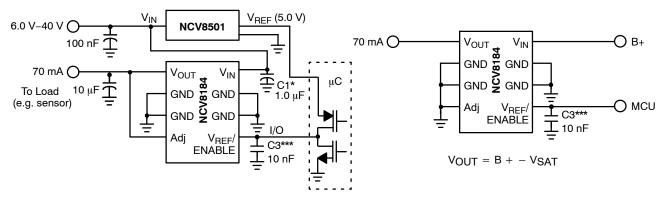
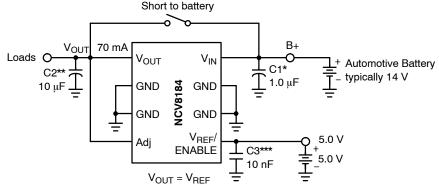



Figure 16. Tracking Regulator with ENABLE Circuit

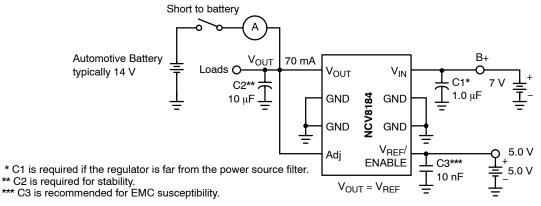
Figure 17. Alternative ENABLE Circuit

Figure 18. High-Side Driver

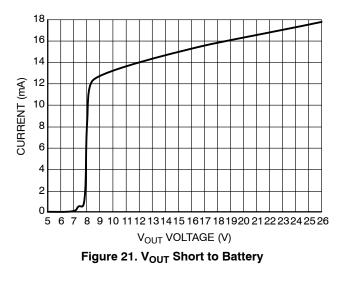
* C1 is required if the regulator is far from the power source filter. In case of power supply generates voltage ripple (e.g. DC-DC converter) a passive low pass filter with C1 value at least 1 μ F is required to suppress the ripple. The filter should be designed according to particular operating conditions and verified in the application.

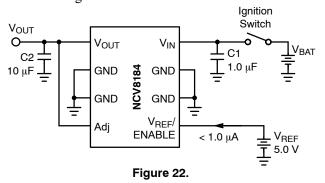

** C2 is required for stability.

*** C3 is recommended for EMC susceptibility


APPLICATION NOTES

V_{OUT} Short to Battery


The NCV8184 will survive a short to battery when hooked up the conventional way as shown in Figure 19. No damage to the part will occur. The part also endures a short to battery when powered by an isolated supply at a lower voltage as in Figure 20. In this case the NCV8184 supply input voltage is set at 7.0 V when a short to battery (14 V typical) occurs on V_{OUT} which normally runs at 5.0 V. The current into the device (ammeter in Figure 20) will draw additional current as displayed in Figure 21.



Switched Application

The NCV8184 has been designed for use in systems where the reference voltage on the V_{REF} /ENABLE pin is continuously on. Typically, the current into the V_{REF} /ENABLE pin will be less than 1.0 μ A when the voltage on the V_{IN} pin (usually the ignition line) has been switched out (V_{IN} can be at high impedance or at ground.) Reference Figure 22.

External Capacitors

The output capacitor for the NCV8184 is required for stability. Without it, the regulator output will oscillate. Actual size and type may vary depending upon the application load and temperature range. Capacitor effective series resistance (ESR) is also a factor in the IC stability. Worst-case is determined at the minimum ambient temperature and maximum load expected.

The output capacitor can be increased in size to any desired value above the minimum. One possible purpose of this would be to maintain the output voltage during brief conditions of negative input transients that might be characteristic of a particular system.

The capacitor must also be rated at all ambient temperatures expected in the system. To maintain regulator stability down to -40° C, a capacitor rated at that temperature must be used.

More information on capacitor selection for SMART REGULATOR®s is available in the SMART REGULATOR application note, "Compensation for Linear Regulators," document number SR003AN/D, available through our website at http://www.onsemi.com.

Calculating Power Dissipation in a Single Output Linear Regulator

The maximum power dissipation for a single output regulator (Figure 23) is:

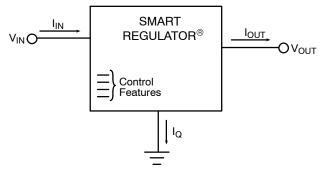
$$\begin{split} \mathsf{PD}(\mathsf{max}) &= \{\mathsf{V}_{\mathsf{IN}}(\mathsf{max}) - \mathsf{V}_{\mathsf{OUT}}(\mathsf{min})\} \: \mathsf{I}_{\mathsf{OUT}}(\mathsf{max}) \\ &+ \: \mathsf{V}_{\mathsf{IN}}(\mathsf{max}) \mathsf{I}_{\mathsf{Q}} \end{split} \eqno(eq. 1)$$

where:

V_{IN(max)} is the maximum input voltage,

V_{OUT(min)} is the minimum output voltage,

 $I_{OUT(max)}$ is the maximum output current, for the application, and


 I_Q is the quiescent current the regulator consumes at $I_{OUT(max)}$.

Once the value of PD(max) is known, the maximum permissible value of $R_{\theta JA}$ can be calculated:

$$R_{\theta JA} = \frac{150^{\circ}C - T_{A}}{P_{D}}$$
 (eq. 2)

The value of $R_{\theta JA}$ can then be compared with those in the Package Thermal Data Section of the data sheet. Those packages with $R_{\theta JA}$'s less than the calculated value in equation 2 will keep the die temperature below 150°C.

In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heat sink will be required.

Figure 23. Single Output Regulator with Key Performance Parameters Labeled

Heatsinks

A heatsink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air.

Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of $R_{\theta JA}$:

$$R_{\theta}JA = R_{\theta}JC + R_{\theta}CS + R_{\theta}SA \qquad (eq. 3)$$

where:

 $R_{\theta JC}$ = the junction-to-case thermal resistance,

 $R_{\theta CS}$ = the case-to-heatsink thermal resistance, and

 $R_{\theta SA}$ = the heatsink-to-ambient thermal resistance.

 $R_{\theta JC}$ appears in the package section of the data sheet. Like $R_{\theta JA}$, it is a function of package type. $R_{\theta CS}$ and $R_{\theta SA}$ are functions of the package type, heatsink and the interface between them. These values appear in heat sink data sheets of heatsink manufacturers.

PACKAGE THERMAL DATA

Parameter	Conditions Typical Value				
	100 mm ² Spreader Board		645 mm ² Spr		
SOIC-8 Package	1 oz	2 oz	1 oz	2 oz	
Junction-to-Pin 6 (Ψ -JL6, Ψ _{JL6})	53	51	50	47	°C/W
Junction–to–Ambient ($R_{\theta JA}$, θ_{JA})	151	135	111	100	°C/W

Package construction Without mold compound

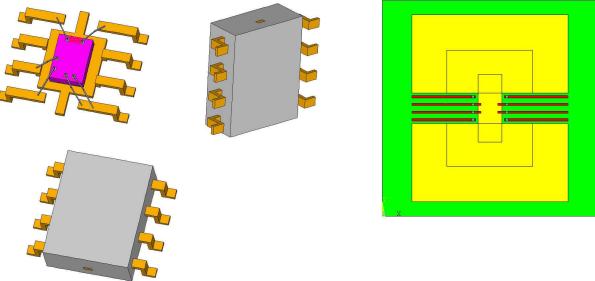
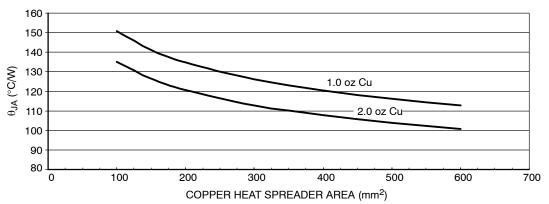
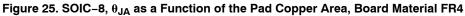


Figure 24. PCB Layout and Package Construction for Simulation


Table 1. SOIC-8 THERMAL RC NETWORK MODELS*


Сор	oper Area (1 oz thi	ick)	100 mm ²	645 mm ²		100 mm ²	645 mm ²	
			Cauer		Foster Network			
			100 mm ²	645 mm ²	Units	Tau	Tau	Units
C_C1	Junction	Gnd	0.0000015	0.0000015	W-s/C	1.00E-06	1.00E-06	sec
C_C2	node1	Gnd	0.0000059	0.0000059	W-s/C	1.00E-05	1.00E-05	sec
C_C3	node2	Gnd	0.0000171	0.0000171	W-s/C	1.00E-04	1.00E-04	sec
C_C4	node3	Gnd	0.0001340	0.0001340	W-s/C	1.76E-04	1.76E-04	sec
C_C5	node4	Gnd	0.0001322	0.0001323	W-s/C	0.0010	0.0010	sec
C_C6	node5	Gnd	0.0010797	0.0010811	W-s/C	0.008	0.008	sec
C_C7	node6	Gnd	0.0087127	0.0087918	W-s/C	0.150	0.150	sec
C_C8	node7	Gnd	0.0863882	0.0950421	W-s/C	3.00	3.00	sec
C_C9	node8	Gnd	0.3109255	1.0127094	W-s/C	8.96	5.15	sec
C_C10	node9	Gnd	0.8359004	1.5167041	W-s/C	52.5	68.4	sec
			100 mm ²	645 mm ²		R's	R's	
R_ R1	Junction	node1	0.8380955	0.8380935	°C/W	0.49519	0.49519	°C/W
R_R2	node1	node2	1.9719907	1.9719679	°C/W	1.070738	1.070738	°C/W
R_R3	node2	node3	5.0213740	5.0211819	°C/W	3.385971	3.385971	°C/W
R_R4	node3	node4	3.1295806	3.1288061	°C/W	1.617537	1.617537	°C/W
R_R5	node4	node5	3.2483544	3.2468794	°C/W	5.10	5.10	°C/W
R_R6	node5	node6	6.5922506	6.5781209	°C/W	7.00	7.00	°C/W
R_R7	node6	node7	16.5499898	16.2818051	°C/W	15.00	15.00	°C/W
	node7	node8	45.3838437	34.7292748	°C/W	20.00	20.00	°C/W
R_R9	node8	node9	32.8928798	7.6862725	°C/W	28.19863	16.67727	°C/W
R_R10	node9	gnd	37.5059686	24.4060143	°C/W	71.26626	33.54171	°C/W

*Bold face items in the tables above represent the package without the external thermal system.

The Cauer networks generally have physical significance and may be divided between nodes to separate thermal behavior due to one portion of the network from another. The Foster networks, though when sorted by time constant (as above) bear a rough correlation with the Cauer networks, are really only convenient mathematical models. Cauer networks can be easily implemented using circuit simulating tools, whereas Foster networks may be more easily implemented using mathematical tools (for instance, in a spreadsheet program), according to the following formula:

$$\mathsf{R}(\mathsf{t}) = \sum_{i = 1}^{n} \mathsf{R}_{i} \left(1 - e^{-t/tau_{i}} \right)$$

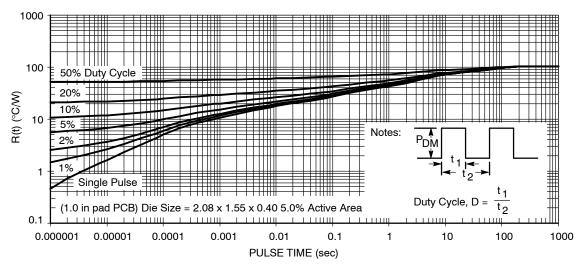
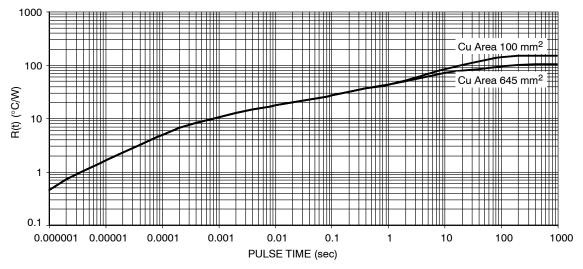
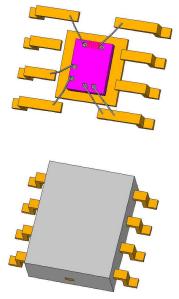
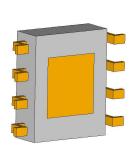


Figure 26. SOIC-8 Thermal Duty Cycle Curves on 1.0 in Spreader Test Board, 1.0 oz Cu


Figure 27. SOIC-8 Single Pulse Heating Curve

PACKAGE THERMAL DATA

Parameter		Conditions Typical Value					
	100 mm ² Spreader Board		645 mm ² Spreader Board				
SOIC-8 EP Package	1 oz	2 oz	1 oz	2 oz	1		
Junction-to-Board (Ψ -JB, Ψ _{JB})	26	26	26	25	°C/W		
Junction-to-Pin 6 (tab) (Ψ -JL6, Ψ _{JL6})	48	45	37	34	°C/W		
Junction-to-Ambient ($R_{\theta JA}$, θ_{JA})	140	123	88	78	°C/W		

Package construction Without mold compound

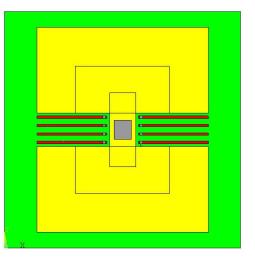
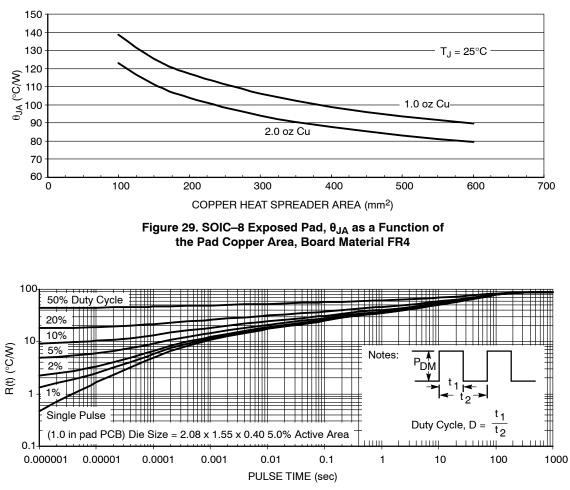
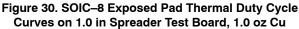
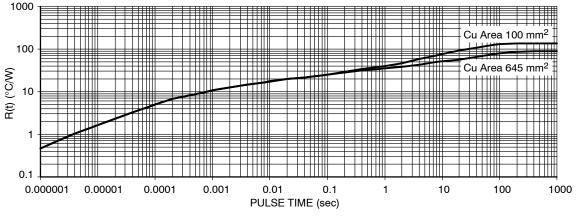


Figure 28. PCB Layout and Package Construction for Simulation


Table 2. SOIC-8 EP THERMAL RC NETWORK MODELS*


Drain C	Copper Area (1 oz	thick)	100 mm ²	645 mm ²		100 mm ²	645 mm ²	
(S	(SPICE Deck Format)		Cauer	Cauer Network Foster Network		Foster Network		
			100 mm ²	645 mm ²	Units	Tau	Tau	Units
C_C1	Junction	Gnd	0.0000015	0.0000015	W-s/C	1.00E-06	1.00E-06	sec
C_C2	node1	Gnd	0.0000059	0.0000059	W-s/C	1.00E-05	1.00E-05	sec
C_C3	node2	Gnd	0.0000171	0.0000172	W-s/C	1.00E-04	1.00E-04	sec
C_C4	node3	Gnd	0.0001359	0.0001360	W-s/C	1.76E-04	1.76E-04	sec
C_C5	node4	Gnd	0.0001349	0.0001352	W-s/C	0.0010	0.0010	sec
C_C6	node5	Gnd	0.0011157	0.0011253	W-s/C	0.008	0.008	sec
C_C7	node6	Gnd	0.0110409	0.0118562	W-s/C	0.150	0.150	sec
C_C8	node7	Gnd	0.0963225	0.2080891	W-s/C	3.00	3.00	sec
C_C9	node8	Gnd	0.3406538	1.1005982	W-s/C	9.11	5.12	sec
C_C10	node9	Gnd	0.9202956	0.8512155	W-s/C	52.1	68.6	sec
-			100 mm ²	645 mm ²		R's	R's	
R_R1	Junction	node1	0.8378620	0.8378491	°C/W	0.49519	0.49519	°C/W
R_R2	node1	node2	1.9693564	1.9692100	°C/W	1.070738	1.070738	°C/W
R_R3	node2	node3	5.0005397	4.9993083	°C/W	3.385971	3.385971	°C/W
R_R4	node3	node4	3.0695514	3.0646169	°C/W	1.617537	1.617537	°C/W
R R5	node4	node5	3.1989711	3.1895109	°C/W	5.030483	5.030483	°C/W
R_R6	node5	node6	6.2274239	6.1397875	°C/W	7.00	7.00	°C/W
R R7	node6	node7	13.5796441	11.9712961	°C/W	12.00	12.00	°C/W
_ R_R8	node7	node8	40.4842477	18.5111622	°C/W	17.676107	7.880592	°C/W
	node8	node9	30.5112160	10.0330297	°C/W	25.169021	8.550583	°C/W
_ R_R10	node9	gnd	33.6034987	27.3017101	°C/W	65.037264	40.98639	°C/W


*Bold face items in the tables above represent the package without the external thermal system.

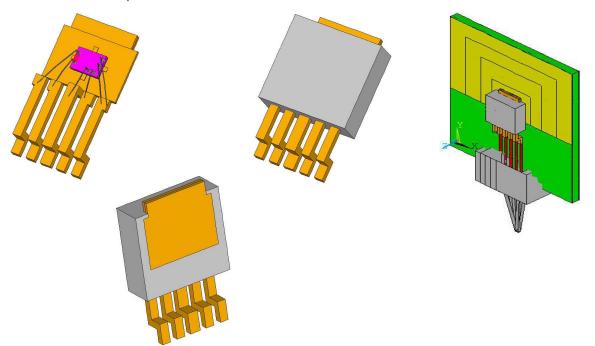
The Cauer networks generally have physical significance and may be divided between nodes to separate thermal behavior due to one portion of the network from another. The Foster networks, though when sorted by time constant (as above) bear a rough correlation with the Cauer networks, are really only convenient mathematical models. Cauer networks can be easily implemented using circuit simulating tools, whereas Foster networks may be more easily implemented using mathematical tools (for instance, in a spreadsheet program), according to the following formula:

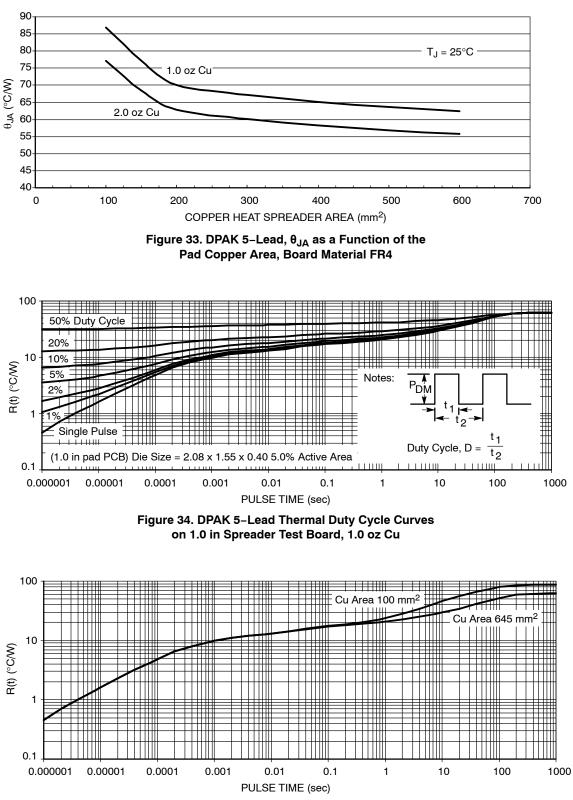
$$\mathsf{R}(\mathsf{t}) = \sum_{i = 1}^{n} \mathsf{R}_{i} \left(1 - e^{-t/tau_{i}} \right)$$

PACKAGE THERMAL DATA

Parameter		Conditions Typical Value					
	100 mm ² Spreader Board		645 mm ² Spreader Board				
DPAK 5-LEAD Package	1 oz	2 oz	1 oz	2 oz			
Junction-to-Board-top (Ψ -JB, Ψ _{JB})	18	18	17	16	°C/W		
Junction–to–Pin 3 (tab) (Ψ –JL3, Ψ _{JL3})	16	16	16	16	°C/W		
Junction–to–Ambient ($R_{\theta JA}, \theta_{JA}$)	87	77	62	55	°C/W		

Package construction Without mold compound




Figure 32. PCB Layout and Package Construction for Simulation

Drain C	Copper Area (1 oz	thick)	100 mm ²	645 mm ²		100 mm ²	645 mm ²		
(S	PICE Deck Forma	ıt)	Cauer I	er Network Foste			er Network		
			100 mm ²	645 mm ²	Units	Tau	Tau	Units	
C_C1	Junction	Gnd	0.0000016	0.0000016	W-s/C	1.00E-06	1.00E-06	sec	
C_C2	node1	Gnd	0.0000060	0.0000060	W-s/C	1.00E-05	1.00E-05	sec	
C_C3	node2	Gnd	0.0000177	0.0000177	W-s/C	1.00E-04	1.00E-04	sec	
C_C4	node3	Gnd	0.0001586	0.0001587	W-s/C	1.76E-04	1.76E-04	sec	
C_C5	node4	Gnd	0.0001927	0.0001931	W-s/C	0.0010	0.0010	sec	
C_C6	node5	Gnd	0.0056684	0.0058019	W-s/C	0.030	0.030	sec	
C_C7	node6	Gnd	0.0832719	0.1225791	W-s/C	0.285	0.299	sec	
C_C8	node7	Gnd	0.1125429	0.3555671	W-s/C	3.00	3.00	sec	
C_C9	node8	Gnd	0.5161495	1.2959188	W-s/C	9.03	11.80	sec	
C_C10	node9	Gnd	1.4600223	1.8396650	W-s/C	55.2	79.0	sec	
-			100 mm ²	645 mm ²		R's	R's		
R_R1	Junction	node1	0.8287213	0.8287120	°C/W	0.490938	0.490938	°C/W	
R_R2	node1	node2	1.9304163	1.9303119	°C/W	1.061544	1.061544	°C/W	
R_R3	node2	node3	4.7751915	4.7743247	°C/W	3.356895	3.356895	°C/W	
R_R4	node3	node4	2.3736457	2.3705112	°C/W	1.606314	1.606314	°C/W	
R_R5	node4	node5	2.0679537	2.0623650	°C/W	5.00	5.00	°C/W	
R_R6	node5	node6	5.3364094	5.1102633	°C/W	5.00	5.00	°C/W	
	node6	node7	6.0331860	3.2428679	°C/W	2.00	2.00	°C/W	
	node7	node8	22.7616126	8.6995800	°C/W	9.147005	5.071663	°C/W	
R_R9	node8	node9	17.9894079	16.1165074	°C/W	17.23178	3.646957	°C/W	
_ R_R10	node9	gnd	22.7199543	16.7871407	°C/W	41.92202	34.68827	°C/W	

*Bold face items in the tables above represent the package without the external thermal system.

The Cauer networks generally have physical significance and may be divided between nodes to separate thermal behavior due to one portion of the network from another. The Foster networks, though when sorted by time constant (as above) bear a rough correlation with the Cauer networks, are really only convenient mathematical models. Cauer networks can be easily implemented using circuit simulating tools, whereas Foster networks may be more easily implemented using mathematical tools (for instance, in a spreadsheet program), according to the following formula:

$$\mathsf{R}(\mathsf{t}) = \sum_{i = 1}^{n} \mathsf{R}_{i} \left(1 - e^{-t/tau_{i}} \right)$$

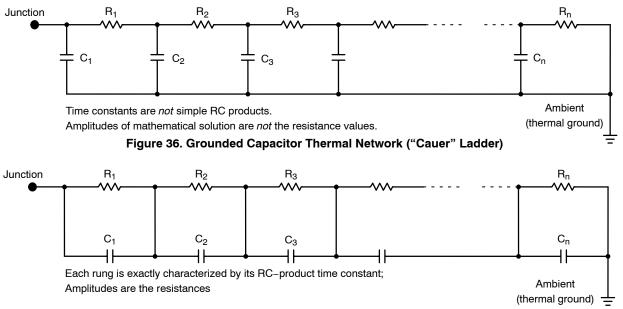
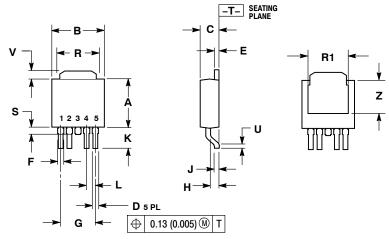


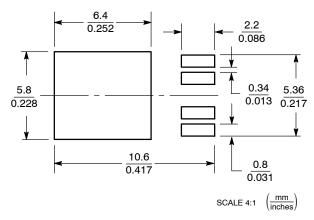
Figure 37. Non-Grounded Capacitor Thermal Ladder ("Foster" Ladder)

ORDERING INFORMATION

Device Order Number	Package Type	Shipping [†]
NCV8184DG	SOIC-8 (Pb-Free)	98 Units / Tube
NCV8184DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
NCV8184DTRKG	DPAK (Pb–Free)	2500 / Tape & Reel
NCV8184PDG	SOIC-8 epad (Pb-Free)	98 Units / Tube
NCV8184PDR2G	SOIC-8 epad (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

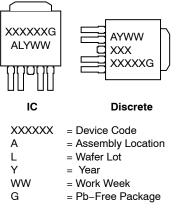



DPAK-5, CENTER LEAD CROP CASE 175AA **ISSUE B**

DATE 15 MAY 2014

SCALE 1:1

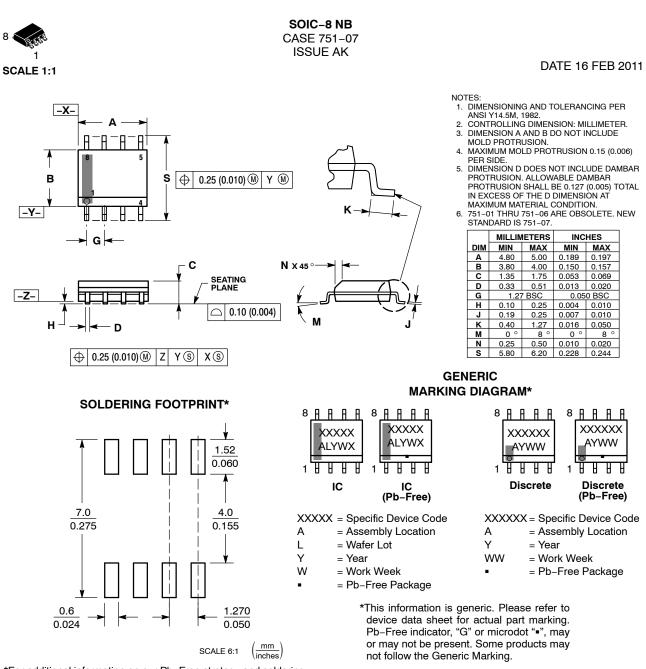
RECOMMENDED SOLDERING FOOTPRINT*



*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
в	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.020	0.028	0.51	0.71
Е	0.018	0.023	0.46	0.58
F	0.024	0.032	0.61	0.81
G	0.180 BSC		4.56 BSC	
н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
К	0.102	0.114	2.60	2.89
L	0.045 BSC		1.14 BSC	
R	0.170	0.190	4.32	4.83
R 1	0.185	0.210	4.70	5.33
S	0.025	0.040	0.63	1.01
U	0.020		0.51	
v	0.035	0.050	0.89	1.27
Z	0.155	0.170	3.93	4.32


GENERIC **MARKING DIAGRAMS***

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " .", may or may not be present.

DOCUMENT NUMBER:	B8AON12855D Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK-5 CENTER LEAD CROP		PAGE 1 OF 1	
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.				

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2	
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the				

SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR 3. 4. EMITTER EMITTER 5. BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: CATHODE 1 PIN 1. 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT 6. IOUT IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: PIN 1. GROUND BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC COMMON CATHODE/VCC 3 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 COMMON ANODE/GND 8. STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. 4. DRAIN, #2 GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 DRAIN 1 7. 8. **MIRROR 1** STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. LINE 1 OUT 8. STYLE 27: PIN 1. ILIMIT 2 OVI 0 UVLO З. 4. INPUT+ 5. SOURCE SOURCE 6. SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: ANODE ANODE PIN 1. 2. ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 3. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. 4. GATE 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE 2. EMITTER 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TION: SOIC-8 NB		PAGE 2 OF 2	
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the				

SOURCE 1/DRAIN 2

7.

8. GATE 1

7.

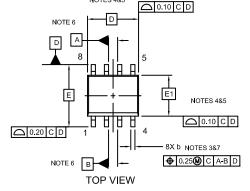
8

rights of others

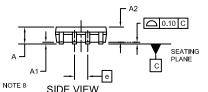
COLLECTOR, #1

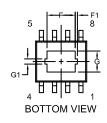
COLLECTOR, #1

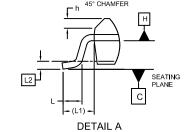
DATE 02 APR 2019



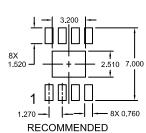
NOTES:


SOIC-8 EP CASE 751AC ISSUE D


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS


- CONTROLLING DIMENSION: MILLIMETERS
 DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION & DOES NOT INCLUDE MANBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.004 IN EXCESS OF MAXIMUM MATERIAL CONDITION.
 DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 PER SIDE. DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.010 mm PER SIDE.
 THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. DIMENSIONS D AND E1 ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
 DATUME A AND BAE TO BE TO DE DETERMINED AT DATUM H.
- 6. DATUMS A AND B ARE TO BE DETERMINED AT DATUM H.
- DIMENSIONS 5 AND C APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 TO 0.25 FROM THE LEAD TIP.
 A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

NOTES 4&5



45° CHAMFER

DETAIL A NOTE 7 · c

END VIEW

	MILLIMETERS			
DIM	MIN.	NOM	MAX.	
А	1.35	1.55	1.75	
A1	1	0.05	0.10	
A2	1.35	1.50	1.65	
b	0.31	0.41	0.51	
с	0.17	0.21	0.23	
D	4.90 BSC			
E	6.00 BSC			
E1	3.90 BSC			
е	1.27 BSC			
F	2.24	2.72	3.20	
F1	0.15	0.20	0.25	
G	1.55	2.03	2.51	
G1	0.41	0.46	0.51	
h	0.25	0.38	0.50	
L	0.40	0.84	1.27	
L1	1.04 REF			
L2	0.25 REF			
Ø	0°	4°	8°	

MOUNTING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D."

GENERIC **MARKING DIAGRAM***

AAB XXXXX AYWW=

XXXXXX	= Specific Device Code
Α	= Assembly Location
Υ	= Year
WW	= Work Week
•	= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " -", may or may not be present and may be in either location. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON14029D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 EP		PAGE 1 OF 1	

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative