3.3 V Zero Delay Clock Buffer

NB2309A

The NB2309A is a versatile, 3.3 V zero delay buffer designed to distribute high-speed clocks. It accepts one reference input and drives out nine low-skew clocks. It is available in a 16 pin package.

The -1 H version of the NB2309A operates at up to 133 MHz , and has higher drive than the -1 devices. All parts have on-chip PLL's that lock to an input clock on the REF pin. The PLL feedback is on-chip and is obtained from the CLKOUT pad.

The NB2309A has two banks of four outputs each, which can be controlled by the Select inputs as shown in the Select Input Decoding Table. If all the output clocks are not required, Bank B can be three-stated. The select inputs also allow the input clock to be directly applied to the outputs for chip and system testing purposes.

Multiple NB2309A devices can accept the same input clock and distribute it. In this case the skew between the outputs of the two devices is guaranteed to be less than 700 ps .

All outputs have less than 200 ps of cycle-to-cycle jitter. The input and output propagation delay is guaranteed to be less than 350 ps , and the output to output skew is guaranteed to be less than 250 ps .

The NB2309A is available in two different configurations, as shown in the ordering information table. The NB2309A1 is the base part. The NB2309AI1H is the high drive version of the -1 and its rise and fall times are much faster than -1 part.

Features

- 15 MHz to 133 MHz Operating Range, Compatible with CPU and PCI Bus Frequencies
- Zero Input - Output Propagation Delay
- Multiple Low-Skew Outputs
- Output-Output Skew Less than 250 ps
- Device-Device Skew Less than 700 ps
- One Input Drives 9 Outputs, Grouped as $4+4+1$
- Less than 200 ps Cycle-to-Cycle Jitter is Compatible with Pentium ${ }^{\circledR}$ Based Systems
- Test Mode to Bypass PLL
- Accepts Spread Spectrum Clock at the Input
- Available in 16 Pin, 150 mil SOIC and 4.4 mm TSSOP
- 3.3 V Operation, Advanced 0.35μ CMOS Technology
- Guaranteed Across Commercial and Industrial Temperature Ranges
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

ORDERING INFORMATION
See detailed ordering, marking and shipping information in the package dimensions section on page 7 of this data sheet.

NB2309A

Figure 1. Block Diagram

Table 1. SELECT INPUT DECODING

S2	S1	Clock A1-A4	Clock B1- B4	CLKOUT (Note 1)	Output Source	PLL ShutDown
0	0	Three-state	Three-state	Driven	PLL	N
0	1	Driven	Three-state	Driven	PLL	N
1	0	Driven	Driven	Driven	Reference	Y
1	1	Driven	Driven	Driven	PLL	N

1. This output is driven and has an internal feedback for the PLL. The load on this output can be adjusted to change the skew between the reference and the output.

NB2309A

Figure 2. Pin Configuration

Table 2. PIN DESCRIPTION

Pin \#	Pin Name	
1	REF (Note 2)	Input reference frequency, 5 V tolerant input.
2	CLKA1 (Note 3)	Buffered clock output, Bank A.
3	CLKA2 (Note 3)	Buffered clock output, Bank A.
4	V DD $^{\text {GND }}$	3.3 V supply.
5	GND	Ground.
6	CLKB1 (Note 3)	Buffered clock output, Bank B.
7	CLKB2 (Note 3)	Buffered clock output, Bank B.
8	S2 (Note 4)	Select input, bit 2.
9	S1 (Note 4)	Select input, bit 1.
10	CLKB3 (Note 3)	Buffered clock output, Bank B.
12	CLKB4 (Note 3)	Buffered clock output, Bank B.
13	GND	Ground.
14	VDD	3.3 V supply.
15	CLKA4 (Note 3)	Buffered clock output, Bank A.
16	CLKOUT (Note 3)	Buffered output, internal feedback on this pin.

[^0]Table 3. MAXIMUM RATINGS

Parameter	Min	Max	Unit
Supply Voltage to Ground Potential	-0.5	+7.0	V
DC Input Voltage (Except REF)	-0.5	$\mathrm{V}_{\mathrm{DD}}+$ 0.5	V
DC Input Voltage (REF)	-0.5	7	V
Storage Temperature	-65	+150	${ }^{\circ} \mathrm{C}$
Maximum Soldering Temperature (10 sec)		260	${ }^{\circ} \mathrm{C}$
Junction Temperature		150	${ }^{\circ} \mathrm{C}$
Static Discharge Voltage (per MIL-STD-883, Method 3015)		>2000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. RECOMMENDED OPERATING CONDITIONS

Parameter	Description	Min	Max	Unit
V_{DD}	Supply Voltage	3.0	3.6	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature (Ambient Temperature)	Industrial Commercial	-40	85
		${ }^{\circ} \mathrm{C}$		
C_{L}	Load Capacitance, below 100 MHz		30	pF
C_{L}	Load Capacitance, from 100 MHz to 133 MHz		10	pF
C_{IN}	Input Capacitance		7	pF

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 5. ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Parameter	Description	Test Conditions	Min	Max	Unit
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Note 5)			0.8	V
V_{IH}	Input HIGH Voltage (Note 5)		2.0		V
IIL	Input LOW Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		50.0	$\mu \mathrm{A}$
IIH	Input HIGH Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$		100.0	$\mu \mathrm{A}$
VOL	Output LOW Voltage	$\begin{aligned} & \mathrm{I} \mathrm{OL}=8 \mathrm{~mA}(-1) \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}(-1 \mathrm{H}) \end{aligned}$		0.4	V
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}(-1) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}(-1 \mathrm{H}) \end{aligned}$	2.4		V
I_{DD}	Supply Current (Commercial Temp)	Unloaded outputs at 66.67 MHz , Select inputs at $V_{D D}$		34	mA
I_{DD}	Supply Current (Industrial Temp)			$\begin{aligned} & 50 \\ & 34 \\ & 19 \end{aligned}$	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
5. REF input has a threshold voltage of $\mathrm{V}_{\mathrm{DD}} / 2$.

NB2309A

Table 6. SWITCHING CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 6)

Parameter	Description	Test Conditions	Min	Typ	Max	Unit
$1 / \mathrm{t}_{1}$	Output Frequency	30 pF load 10 pF load	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & 100 \\ & 133 \end{aligned}$	MHz
$1 / \mathrm{t}_{1}$	$\begin{array}{ll} \hline \text { Duty Cycle }=\left(\mathrm{t}_{2} / \mathrm{t}_{1}\right) * 100 \\ -1 \mathrm{H}) & (-1, \\ & (-1 \mathrm{H}) \end{array}$	$\begin{aligned} \text { Measured at } 1.4 \mathrm{~V} \text {, FOUT } & =66.67 \\ \mathrm{MHz} & <50 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	\%
t_{3}	$\begin{array}{ll}\text { Output Rise Time } & (-1) \\ & (-1 \mathrm{H})\end{array}$	Measured between 0.8 V and 2.0 V			$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	ns
t_{4}	Output Fall Time	Measured between 2.0 V and 0.8 V			1.5	ns
t_{5}	Output-to-Output Skew	All outputs equally loaded			250	ps
t_{6}	Delay, REF Rising Edge to CLKOUT Rising Edge	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$		0	± 350	ps
t_{7}	Device-to-Device Skew	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$ on the CLKOUT pins of the device		0	700	ps
t_{8}	Output Slew Rate	Measured between 0.8 V and 2.0 V using Test Circuit \#2	1			V / ns
t_{J}	Cycle-to-Cycle Jitter	Measured at 66.67 MHz , loaded outputs			200	ps
tıock	PLL Lock Time	Stable power supply, valid clock presented on REF pin			1.0	ms

6. All parameters specified with loaded outputs in PLL-Mode.

Zero Delay and Skew Control

All outputs should be uniformly loaded to achieve Zero Delay between input and output. Since the CLKOUT pin is the internal feedback to the PLL, its relative loading can adjust the input-output delay.

For applications requiring zero input-output delay, all outputs, including CLKOUT, must be equally loaded. Even if CLKOUT is not used, it must have a capacitive load equal to that on other outputs, for obtaining zero-input-output delay.

SWITCHING WAVEFORMS

Figure 3. Duty Cycle Timing

Figure 4. All Outputs Rise/Fall Time

Figure 5. Output - Output Skew

Figure 6. Input - Output Propagation Delay

Figure 7. Device - Device Skew

TEST CIRCUITS

Figure 8. Test Circuit \#1

Figure 9. Test Circuit \#2 For parameter $\mathrm{t}_{\mathbf{8}}$ (output slew rate) on $\mathbf{- 1} \mathrm{H}$ devices

ORDERING INFORMATION

Device	Marking	Operating Range	Package	Shipping †
NB2309Al1DR2G	2309 Al1G	Industrial \& Commercial	SOIC-16 (Pb-Free)	2500 Tape \& Reel
NB2309Al1DTR2G	2309 Al1	Industrial \& Commercial	TSSOP-16 (Pb-Free)	2500 Tape \& Reel
NB2309Al1HDTR2G	2309 Al1H	Industrial \& Commercial	TSSOP-16 (Pb-Free)	2500 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]: 2. Weak pulldown.
 3. Weak pulldown on all outputs.
 4. Weak pullup on these inputs.
