3-to-8 Line Decoder

With 5V-Tolerant Inputs

The MC74LVX138 is an advanced high speed CMOS 3–to–8 line decoder. The inputs tolerate voltages up to 7.0~V, allowing the interface of 5.0~V systems to 3.0~V systems.

When the device is enabled, three Binary Select inputs (A0 - A2) determine which one of the outputs $(\overline{O0} - \overline{O7})$ will go Low. When enable input E3 is held Low or either $\overline{E2}$ or $\overline{E1}$ is held High, decoding function is inhibited and all outputs go high. E3, $\overline{E2}$, and $\overline{E1}$ inputs are provided to ease cascade connection and for use as an address decoder for memory systems.

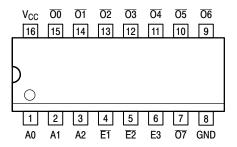
Features

- High Speed: $t_{PD} = 5.5 \text{ ns (Typ)}$ at $V_{CC} = 3.3 \text{ V}$
- Low Power Dissipation: $I_{CC} = 4 \mu A$ (Max) at $T_A = 25 \, ^{\circ}C$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Low Noise: $V_{OLP} = 0.5 \text{ V (Max)}$
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance:

Human Body Model > 2000 V; Machine Model > 200 V

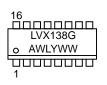
• These Devices are Pb-Free and are RoHS Compliant

ON Semiconductor®


http://onsemi.com

SOIC-16 D SUFFIX CASE 751B TSSOP-16 DT SUFFIX CASE 948F

PIN ASSIGNMENT



16-Lead (Top View)

PIN NAMES

Pins	Function
A0-A2	Address Inputs
E1-E2	Enable Inputs
E3	Enable Input
O0-O7	Outputs

MARKING DIAGRAMS

SOIC-16

TSSOP-16

LVX138 = Specific Device Code
A = Assembly Location
WL, L = Wafer Lot
Y = Year
WW, W = Work Week
G or = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

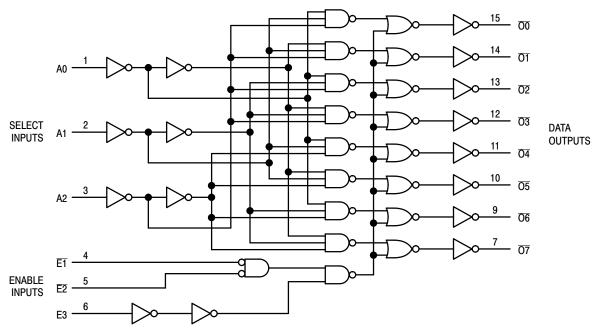


Figure 1. Logic Diagram

		INPU	JTS						OUT	PUTS			
E1	E2	E3	A0	A1	A2	00	01	<u>O2</u>	0 3	04	05	06	07
H X X	X H X	X X L	X X X	X X X	X X X	ннн	ннн	ннн	ттт	ттт	III	ттт	H H H
L L L		IIII	コエコエ	¬¬ т т		コエエエ	ΙΙΙ	HHLH	エエエ니	IIII	тттт	IIII	H H H
L L L	L L L	HHHH		L H H	HHH	דדדד	H H H H	H H H	IIII	LHHH	I L I I	IILI	H H L

H = High Voltage Level; L = Low Voltage Level; X = High or Low Voltage Level and Transitions Are Acceptable; For I_{CC} reasons, DO NOT FLOAT Inputs

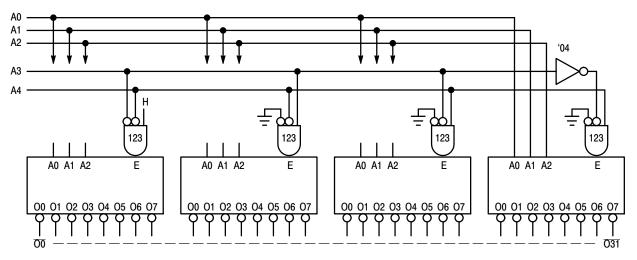


Figure 2. Expansion to 1-of-32 Decoding

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V
V _{in}	DC Input Voltage	-0.5 to +7.0	V
V _{out}	DC Output Voltage	-0.5 to V _{CC} +0.5	V
I _{IK}	Input Diode Current	-20	mA
I _{OK}	Output Diode Current	±20	mA
l _{out}	DC Output Current, per Pin	±25	mA
Icc	DC Supply Current, V _{CC} and GND Pins	±75	mA
P _D	Power Dissipation	180	mW
T _{stg}	Storage Temperature	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage	2.0	3.6	V
V _{in}	DC Input Voltage	0	5.5	V
V _{out}	DC Output Voltage	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	-40	+85	°C
Δt/ΔV	Input Rise and Fall Time	0	100	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

			v _{cc}	T _A = 25°C			$T_A = -40$) to 85°C	
Symbol	Parameter	Test Conditions	V	Min	Тур	Max	Min	Max	Unit
V _{IH}	High-Level Input Voltage		2.0 3.0 3.6	1.5 2.0 2.4	- - -	- - -	1.5 2.0 2.4	- - -	V
V _{IL}	Low-Level Input Voltage		2.0 3.0 3.6		- - -	0.5 0.8 0.8		0.5 0.8 0.8	V
V _{OH}	High-Level Output Voltage (V _{in} = V _{IH} or V _{IL})	$I_{OH} = -50\mu A$ $I_{OH} = -50\mu A$ $I_{OH} = -4mA$	2.0 3.0 3.0	1.9 2.9 2.58	2.0 3.0 –	- - -	1.9 2.9 2.48	- - -	V
V _{OL}	Low-Level Output Voltage (V _{in} = V _{IH} or V _{IL})	$I_{OL} = 50\mu A$ $I_{OL} = 50\mu A$ $I_{OL} = 4mA$	2.0 3.0 3.0	- - -	0.0 0.0 -	0.1 0.1 0.36	- - -	0.1 0.1 0.44	V
l _{in}	Input Leakage Current	V _{in} = 5.5V or GND	3.6	-	-	±0.1	-	±1.0	μΑ
I _{CC}	Quiescent Supply Current	$V_{in} = V_{CC}$ or GND	3.6	_	-	4.0	-	40.0	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ns}$)

					T _A = 25°C		$T_A = -40$		
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay Input to Output	V _{CC} = 2.7V	$C_L = 15pF$ $C_L = 50pF$	-	7.1 9.6	13.8 17.3	1.0 1.0	16.5 20.0	ns
		$V_{CC} = 3.3 \pm 0.3 V$	$C_L = 15pF$ $C_L = 50pF$	-	5.5 8.0	8.8 12.3	1.0 1.0	10.5 14.0	
t _{PLH} , t _{PHL}	Propagation Delay E3 to O	V _{CC} = 2.7V	$C_L = 15pF$ $C_L = 50pF$	-	8.7 11.2	16.3 19.8	1.0 1.0	19.5 23.0	ns
		$V_{CC} = 3.3 \pm 0.3 V$	$C_L = 15pF$ $C_L = 50pF$	-	6.8 9.3	10.6 14.1	1.0 1.0	12.5 16.0	
t _{PLH} , t _{PHL}	Propagation Delay E1 or E2 to O	V _{CC} = 2.7V	$C_L = 15pF$ $C_L = 50pF$	-	8.8 11.3	16.0 19.5	1.0 1.0	18.5 22.0	ns
		$V_{CC} = 3.3 \pm 0.3 V$	$C_L = 15pF$ $C_L = 50pF$	-	6.9 9.4	10.4 13.9	1.0 1.0	11.5 15.0	
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 1)	$V_{CC} = 2.7V$ $V_{CC} = 3.3 \pm 0.3V$	$C_L = 50pF$ $C_L = 50pF$	-	- -	2.5 2.5	- -	2.5 2.5	ns

Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
 The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

CAPACITIVE CHARACTERISTICS

		T _A = 25°C		$T_A = -40$			
Symbol	Parameter	Min	Тур	Max	Min	Max	Unit
Cin	Input Capacitance	-	4	10	_	10	pF
C _{PD}	Power Dissipation Capacitance (Note 2)	_	34	_	_	-	pF

^{2.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

NOISE CHARACTERISTICS (Input $t_r = t_f = 3.0$ ns, $C_L = 50$ pF, $V_{CC} = 3.3$ V, Measured in SOIC Package)

		T _A = 25°C		
Symbol	Characteristic	Тур	Max	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	-	0.5	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-	-0.5	V
V _{IHD}	Minimum High Level Dynamic Input Voltage	-	2.0	V
V_{ILD}	Maximum Low Level Dynamic Input Voltage	ı	0.8	V

SWITCHING WAVEFORMS

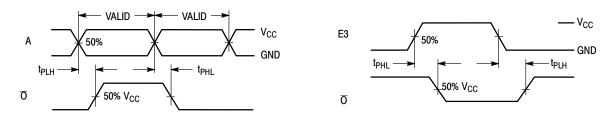
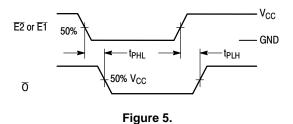
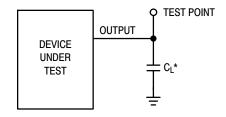
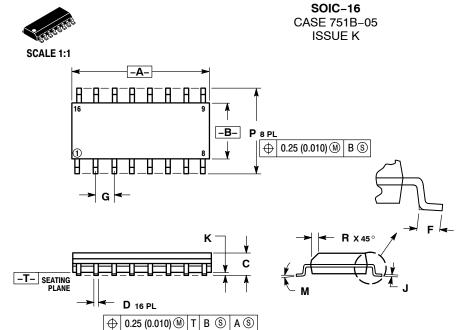




Figure 3. .

Figure 4..

TEST CIRCUIT

*Includes all probe and jig capacitance


Figure 6.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LVX138DR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74LVX138DTR2G	TSSOP-16 (Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MECHANICAL CASE OUTLINE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

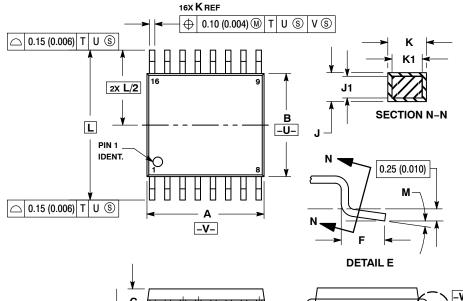
	MILLIN	IETERS	INC	INCHES		
DIM	MIN MAX		MIN	MAX		
Α	9.80	10.00	0.386	0.393		
В	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27	BSC	0.050	BSC		
7	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	0°	7°	0°	7°		
Р	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

STYLE 1: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR EMITTER COLLECTOR COLLECTOR COLLECTOR	2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	CATHODE NO CONNECTION ANODE CATHODE CATHODE ANODE NO CONNECTION CATHODE CATHODE NO CONNECTION	STYLE 3: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	COLLECTOR, DYE #1 BASE, #1 EMITTER, #1 COLLECTOR, #1 COLLECTOR, #2 BASE, #2 EMITTER, #2 COLLECTOR, #2 COLLECTOR, #3 BASE, #3 EMITTER, #3 COLLECTOR, #3 COLLECTOR, #4 BASE, #4 EMITTER, #4 COLLECTOR, #4	STYLE 4: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	COLLECTOR, DYE COLLECTOR, #1 COLLECTOR, #2 COLLECTOR, #3 COLLECTOR, #3 COLLECTOR, #4 COLLECTOR, #4 EMITTER, #4 BASE, #3 EMITTER, #3 BASE, #2 EMITTER, #2 BASE, #1 EMITTER, #1	SOLDERING FOOTPRINT SX 6.40 6.40	
STYLE 5: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	DRAIN, DYE #1 DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #2 SOURCE, #3 GATE, #2 SOURCE, #1 SOURCE, #1	3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE	STYLE 7: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	SOURCE N-CH COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT GATE P-CH COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT GATE N-CH COMMON DRAIN (OUTPUT GATE N-CH COMMON DRAIN (OUTPUT SOURCE N-CH		16 0.£	16X 1.12	1.27 PITCH

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-16		PAGE 1 OF 1			

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

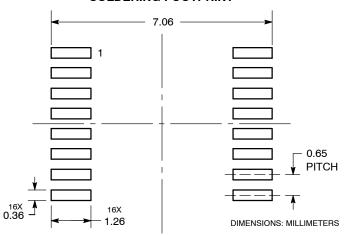
☐ 0.10 (0.004)


D

-T- SEATING PLANE

TSSOP-16 CASE 948F-01 ISSUE B

DATE 19 OCT 2006


NOTES

- JIES:
 DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD
 FLASH. PROTRUSIONS OR GATE BURRS.
 MOLD EL ROLL OF GATE BURDS SUAL NO.
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
- 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
C		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.18	0.28	0.007	0.011
7	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
М	0 °	8°	0 °	8 °

SOLDERING FOOTPRINT

G

GENERIC MARKING DIAGRAM*

168888888 XXXX XXXX **ALYW** 188888888

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L Υ = Year W = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1	

DETAIL E

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative