<u>MOSFET</u> - Power, Dual N-Channel, DUAL SO8FL

60 V, 16.3 mΩ, 32 A

NVMFD016N06C

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVMFWD016N06C Wettable Flank Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

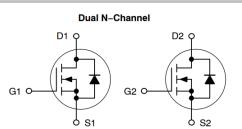
Typical Applications

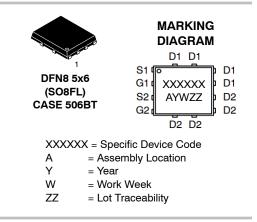
- Power Tools, Battery Operated Vacuums
- UAV/Drones, Material Handling
- BMS/Storage, Home Automation

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Par	ameter		Symbol	Value	Units	
Drain-to-Source Voltage		V _{DSS}	60	V		
Gate-to-Source Volta	age		V _{GS}	±20	V	
Continuous Drain Current R _{0.IC}	Steady State	$T_C = 25^{\circ}C$	I _D	32	А	
(Notes 1, 3)	Sidle	T _C = 100°C		23		
Power Dissipation	Steady	T _C = 25°C	PD	36	W	
R _{θJC} (Note 1)	State	T _C = 100°C		18		
Continuous Drain Current R _{0.IA}	Steady State	$T_A = 25^{\circ}C$	۱ _D	9	А	
(Notes 1, 2, 3)	Siale	T _A = 100°C		6		
Power Dissipation	Steady	$T_A = 25^{\circ}C$	PD	3.1	W	
R _{θJA} (Notes 1, 2)	State	T _A = 100°C		1.5		
Pulsed Drain Current	T _A = 25°0	C, t _p = 10 μs	I _{DM}	128	A	
Operating Junction ar Range	nd Storage	Temperature	T _J , T _{stg}	–55 to +175	°C	
Source Current (Body	Diode)		۱ _S	30	А	
Single Pulse Drain-to Energy (I _L = 6.4 A _{pk})	-Source Av	valanche	E _{AS}	21	mJ	
Lead Temperature So Soldering Purposes (*			ΤL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 $\rm mm^2,$ 2 oz Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.



ON Semiconductor®

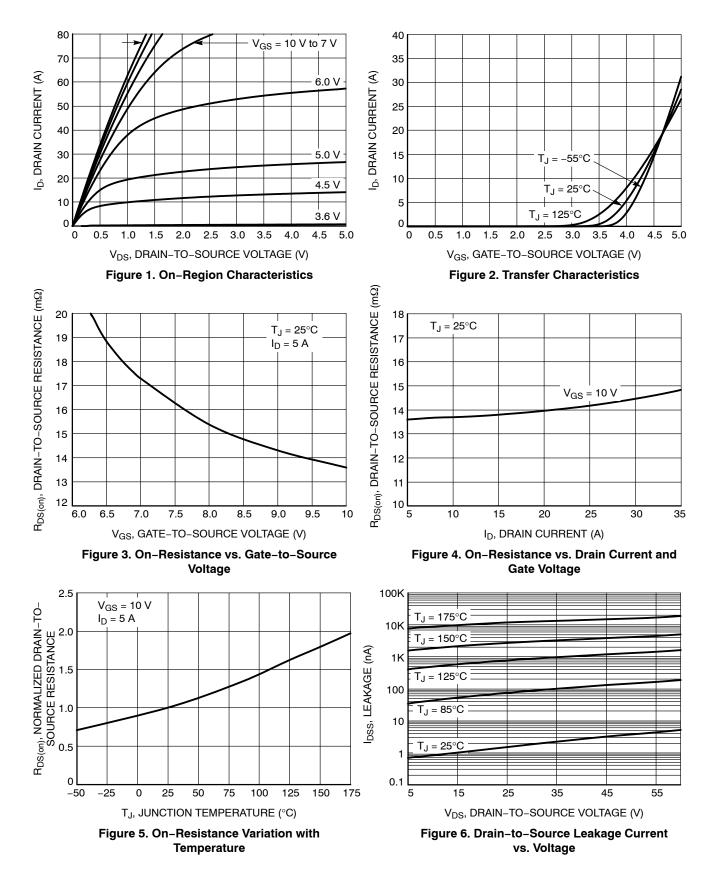
www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
60 V	16.3 m Ω @ 10 V	32 A

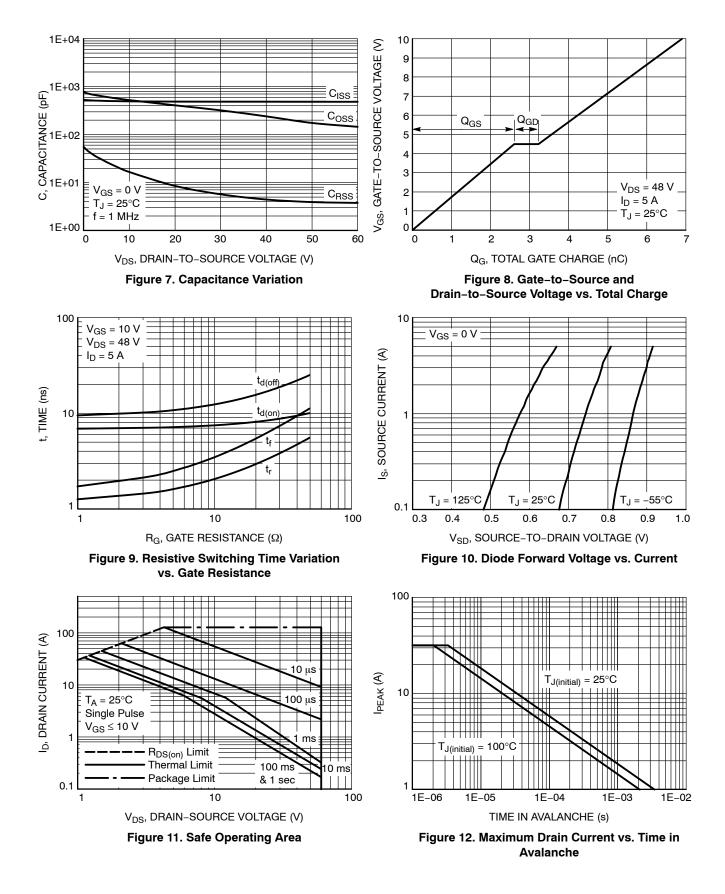
ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL RESISTANCE RATINGS


Parameter	Symbol	Мах	Unit	
Junction-to-Case - Steady State (Note 2)	$R_{\theta JC}$	4.1	°C AA/	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	47.3	°C/W	

ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS				•	•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 250 μA,	ref to 25°C		29		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$T_{\rm J} = 25^{\circ}C$			10	μA
		$V_{DS} = 60 V$	T _J = 125°C			250	-
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	V _{GS} = 20 V			100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS},$	I _D = 25 μA	2.0		4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} / T _J	$I_D = 25 \ \mu A,$	ref to 25°C		-8.2		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	√, I _D = 5 A		13.6	16.3	mΩ
Forward Transconductance	9FS	V _{DS} = 5 V	′, I _D = 5 A		15		S
Gate Resistance	R _G	$T_A = 25^{\circ}C$			1.4		Ω
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}	_			489		pF
Output Capacitance	C _{OSS}			319			
Reverse Transfer Capacitance	C _{RSS}				5.7		
Total Gate Charge	Q _{G(TOT)}				6.9		nC
Threshold Gate Charge	Q _{G(TH)}	V_{GS} = 10 V, V_{DS} = 48 V, I_{D} = 5 A			1.6		-
Gate-to-Source Charge	Q _{GS}				2.6		
Gate-to-Drain Charge	Q _{GD}				0.62		
SWITCHING CHARACTERISTICS, V_{G}	is = 10 V (Note	5)					
Turn-On Delay Time	t _{d(ON)}				7.2		ns
Rise Time	t _r	V _{GS} = 10 V,	V _{DS} = 48 V,		1.7		
Turn-Off Delay Time	t _{d(OFF)}	$I_{\rm D} = 5 \rm A, I_{\rm D}$	$R_{G} = 6 \Omega$		11.1		
Fall Time	t _f				2.7		-
DRAIN-SOURCE DIODE CHARACTE	RISTICS			•			•
Forward Diode Voltage	age V_{SD} $V_{GS} = 0 V$, $T_J = 25^{\circ}C$		0.81	1.2	V		
		V _{GS} = 0 V, I _S = 5 A	T _J = 125°C		0.67		
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, d_{IS}/d_t = 100 A/µs, V_{DS} = 30 V, I_S = 5 A			27		ns
Charge Time	ta				13		1
Discharge Time	tb				14		1
Reverse Recovery Charge	Q _{RR}				15		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%. 5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

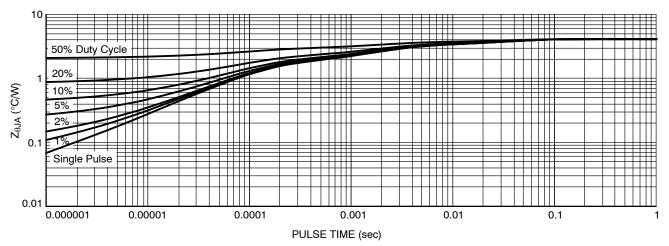
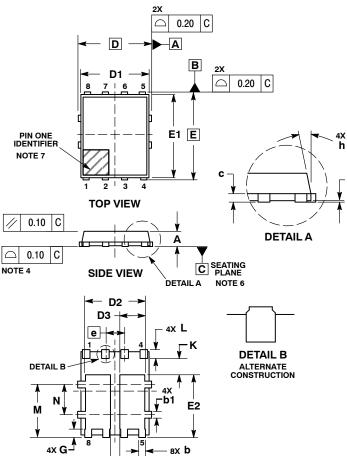


Figure 13. Thermal Characteristics

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFD016N06CT1G	16DN6C	SO8FL Dual (Pb-Free)	1500 / Tape & Reel
NVMFWD016N06CT1G	16DN6W	SO8FL Dual (Pb-Free, Wettable Flanks)	1500 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

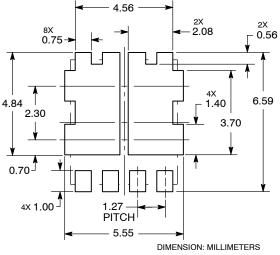
DFN8 5x6, 1.27P Dual Flag (SO8FL-Dual) CASE 506BT

ISSUE E

A1

0.10 С AB

 \oplus 0.05 С NOTE 3


K1 ->

BOTTOM VIEW

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM THE TERMINAL TIP. 4. DRDR'ILE TOLERANDE ADMIG TO THE TERMINAL TIP.
- PROFILE TOLERANCE APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. 4.
- DIMENSIONS DI AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. 5.
- SEATING PLANE IS DEFINED BY THE TERMINALS. A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST 6.
- A VISUAL INDICATOR FOR PIN 1 MUST BE LOCATED IN THIS AREA. 7.

	MILLIMETERS		
DIM	MIN	MAX	MAX
Α	0.90		1.10
A1			0.05
b	0.33	0.42	0.51
b1	0.33	0.42	0.51
С	0.20		0.33
D		5.15 BSC	
D1	4.70	4.90	5.10
D2	3.90	4.10	4.30
D3	1.50	1.70	1.90
Е		6.15 BSC	
E1	5.70	5.90	6.10
E2	3.90	4.15	4.40
е		1.27 BSC	
G	0.45	0.55	0.65
h			12 °
К	0.51		
K1	0.56		
L	0.48	0.61	0.71
М	3.25	3.50	3.75
Ν	1.80	2.00	2.20

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hy such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: <u>NVMFD016N06CT1G</u> <u>NVMFWD016N06CT1G</u>