MOSFET - Power, Dual N-Channel, DUAL SO8-FL

60 V, 22.6 mΩ, 24 A

NTMFD024N06C

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

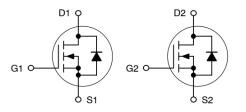
- Power Tools, Battery Operated Vacuums
- UAV/Drones, Material Handling
- BMS/Storage, Home Automation

MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise stated)

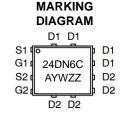
Parameter			Symbol	Value	Units
Drain-to-Source Voltage			V_{DSS}	60	V
Gate-to-Source Voltage			V_{GS}	±20	V
Continuous Drain Current ReJC	Steady T _C = 25°C		I _D	24	Α
(Note 1, 3)	State	T _C = 100°C		17	
Power Dissipation	Steady	T _C = 25°C	P_{D}	28	W
ReJC (Note 1)	State	T _C = 100°C		14	
Continuous Drain Current ReJA	Steady T _A = 25°C		I _D	8	Α
(Note 1, 2, 3)	State	T _A = 100°C		5	
Power Dissipation	Steady $T_A = 25^{\circ}C$ State $T_A = 100^{\circ}C$		P_{D}	3.1	W
RθJA (Note 1, 2)				1.5	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \mu s$		I _{DM}	85	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to 175	Ç
Source Current (Body Diode)			IS	23	Α
Single Pulse Drain-to-Source Avalanche Energy ($I_L = 5.3 A_{pk}$)			E _{AS}	14	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.



ON Semiconductor®


www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
60 V	22.6 mΩ @ 10 V	24 A

Dual N-Channel

24DN6C = Specific Device Code A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFD024N06CT1G	SO8FL Dual (Pb-Free/ Halogen Free)	1500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case - Steady State (Note 2)	$R_{ heta JC}$	5.3	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{ heta JA}$	46.9	C/VV

ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise specified)

Parameter	Symbol	Test Co	ondition	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V$	I _D = 250 μA	60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	$I_D = 250 \mu A$, ref to 25°C			27		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, T_{J} = 25^{\circ}\text{C}$				10	μΑ
	$V_{DS} = 60 \text{ V}$ $T_{J} = 125^{\circ}\text{C}$	T _J = 125°C			250	1	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 20 V				100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, I _D = 20 μA	2.0		4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} / T _J	I _D = 20 μA, ref to 25°C			-7.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 \	V, I _D = 3 A		18.8	22.6	mΩ
Forward Transconductance	9FS	V _{DS} = 5 \	/, I _D = 3 A		10		S
Gate Resistance	R_{G}	T _A = 25°C			0.8		Ω
CHARGES & CAPACITANCES	<u> </u>			•	•	•	•
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz, } V_{DS} = 30 \text{ V}$			333		
Output Capacitance	C _{OSS}				225		pF
Reverse Capacitance	C _{RSS}				5.05		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 30 \text{ V}, I_D = 3 \text{ A}$			5.7		
Threshold Gate Charge	Q _{G(TH)}				1.3		nC
Gate-to-Source Charge	Q _{GS}				2.0		
Gate-to-Drain Charge	Q _{GD}				0.68		
SWITCHING CHARACTERISTICS (No	te 3)			•	•	•	•
Turn-On Delay Time	t _{d(ON)}				6.6		
Rise Time	t _r	Vcs = 10 V.	Vne = 30 V.		1.3		1
Turn-Off Delay Time	t _{d(OFF)}	$V_{GS} = 10 \text{ V}, V_{DS} = 30 \text{ V},$ $I_{D} = 3 \text{ A}, R_{G} = 6 \Omega$			10		ns
Fall Time	t _f				3		
DRAIN-SOURCE DIODE CHARACTE	RISTICS			•	•	•	•
		$V_{GS} = 0 \text{ V},$ $I_S = 3 \text{ A}$	T _J = 25°C		0.8	1.2	V
Forward Voltage	V _{SD}		T _J = 125°C		0.66		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V}, d_{IS}/d_t = 100 \text{ A/}\mu\text{s}, \\ V_{DS} = 30 \text{ V}, I_S = 3 \text{ A}$			23		
Charge Time	ta				11		ns
Discharge Time	tb				12		
Reverse Recovery Charge	Q _{RR}				11		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

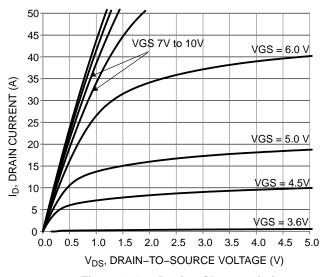


Figure 1. On-Region Characteristics

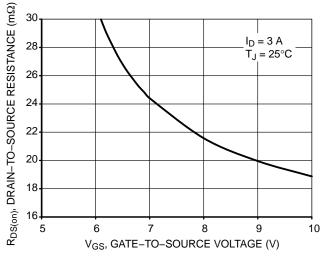


Figure 3. On–Resistance vs. Gate–to–Source Voltage

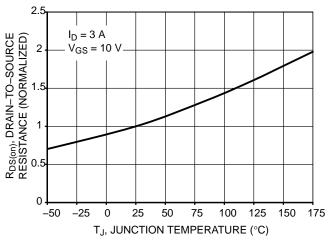


Figure 5. On–Resistance Variation with Temperature

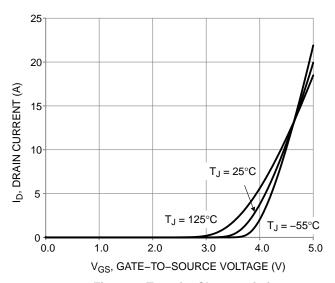


Figure 2. Transfer Characteristics

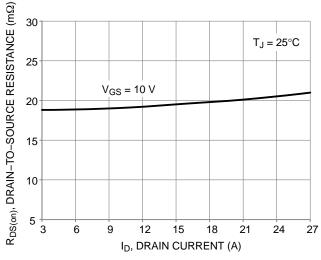


Figure 4. On–Resistance vs. Drain Current and Gate Voltage

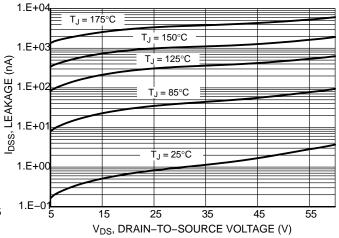


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

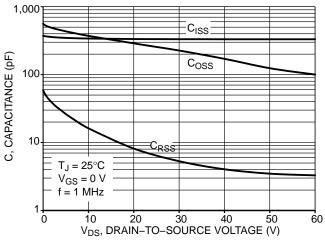


Figure 7. Capacitance Variation

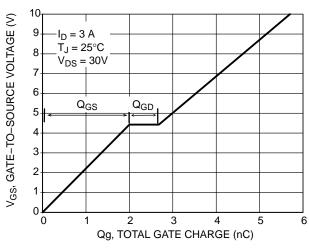


Figure 8. Gate-to-Source vs. Total Charge

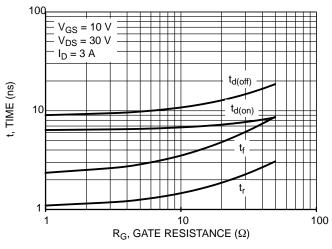


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

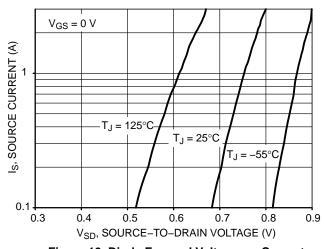


Figure 10. Diode Forward Voltage vs. Current

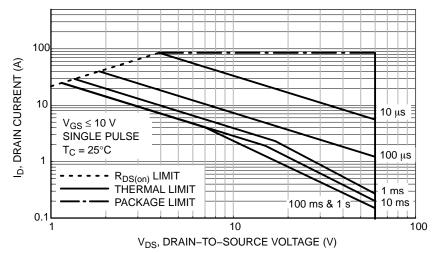


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

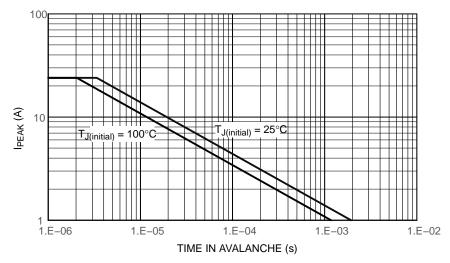


Figure 12. Maximum Drain Current vs. Time in Avalanche

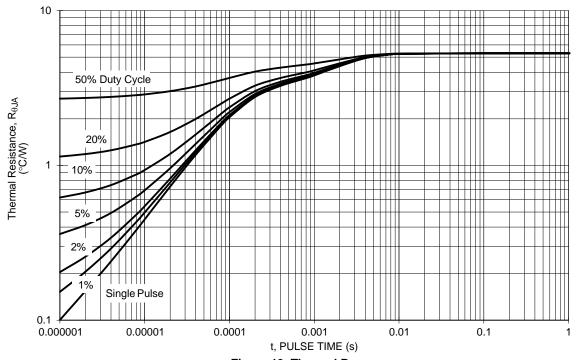
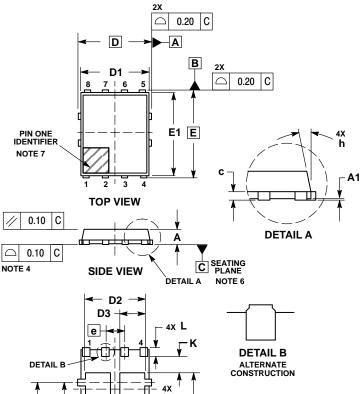



Figure 13. Thermal Response

PACKAGE DIMENSIONS

DFN8 5x6, 1.27P Dual Flag (SO8FL-Dual)

CASE 506BT **ISSUE E**

E2

0.10

CAB

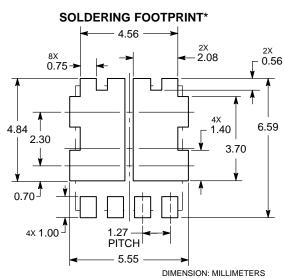
8x **b**

 \oplus 0.05 С NOTE 3

BOTTOM VIEW

М

4X G


- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM THE TERMINAL TIP.
- PROFILE TOLERANCE APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- SEATING PLANE IS DEFINED BY THE TERMINALS. A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.
 A VISUAL INDICATOR FOR PIN 1 MUST BE LOCATED IN THIS AREA.

	MILLIMETERS			
DIM	MIN	MAX	MAX	
Α	0.90	-	1.10	
A1			0.05	
b	0.33	0.42	0.51	
b1	0.33	0.42	0.51	
С	0.20		0.33	
D		5.15 BSC		
D1	4.70	4.90	5.10	
D2	3.90	4.10	4.30	
D3	1.50	1.70	1.90	
Е	6.15 BSC			
E1	5.70	5.90	6.10	
E2	3.90	4.15	4.40	
е		1.27 BSC		
G	0.45	0.55	0.65	
h			12 °	
K	0.51			
K1	0.56			
L	0.48	0.61	0.71	
М	3.25	3.50	3.75	
N	1.80	2.00	2.20	

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

TECHNICAL SUPPORT

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative