ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
MC74HC4067A

Quad Analog Switch/ Multiplexer/Demultiplexer

High-Performance Silicon-Gate CMOS

The MC74HC4067A utilizes silicon-gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF-channel leakage current. This bilateral switch/ multiplexer/demultiplexer controls analog and digital voltages that may vary across the full power-supply range (from V_{CC} to GND).

The ON/OFF control inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. For analog switches with voltage-level translators, see the HC4316A.

Features

- Fast Switching and Propagation Speeds
- High ON/OFF Output Voltage Ratio
- Low Crosstalk Between Switches
- Diode Protection on All Inputs/Outputs
- Wide Power-Supply Voltage Range $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}\right)=2.0$ to 6.0 V
- Analog Input Voltage Range $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}\right)=0$ to 6.0 V
- Improved Linearity and Lower ON Resistance over Input Voltage
- Low Noise
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These are $\mathrm{Pb}-$ Free Devices

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

Figure 1. Pin Assignment

TRUTH TABLE

$\mathbf{S 0}$	$\mathbf{S} 1$	$\mathbf{S 2}$	$\mathbf{S 3}$	$\overline{\mathbf{E}}$	SELECTED CHANNEL
X	X	X	X	1	None
0	0	0	0	0	0
1	0	0	0	0	1
0	1	0	0	0	2
1	1	0	0	0	3
0	0	1	0	0	4
1	0	1	0	0	5
0	1	1	0	0	6
1	1	1	0	0	7
0	0	0	1	0	8
1	0	0	1	0	9
0	1	0	1	0	10
1	1	0	1	0	11
0	0	1	1	0	12
1	0	1	1	0	13
0	1	1	1	0	14
1	1	1	1	0	15

H= High Level
L= Low Level
X = Don't Care

MC74HC4067A

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
IIK	Input Clamping Current $\quad \mathrm{V}_{\text {IN }}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	± 20	mA
$\mathrm{I}_{\text {SK }}$	Switch Input Clamping Current $\quad \mathrm{V}_{\text {IS }}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\text {IS }}>\mathrm{V}_{\mathrm{CC}+}+0.5 \mathrm{~V}$	± 20	mA
IS	DC Switch Current	± 25	mA
10	DC Output Source / Sink Current	± 25	mA
I_{CC}	DC Supply Current per Supply Pin	± 100	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature under Bias	+150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance r SOIC	$\begin{gathered} \hline 97 \\ 148 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$ SOIC	$\begin{aligned} & 500 \\ & 450 \end{aligned}$	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 30\% - 35\%	UL-94-VO (0.125 in)	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand VoltageHuman Body Model (Note 1) Machine Model (Note 2)	$\begin{gathered} \hline>3000 \\ >200 \end{gathered}$	V
ILatchup	Latchup Performance Above V_{Cc} and Below GND at $85^{\circ} \mathrm{C}$ (Note 3)	± 100	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Tested to EIA/JESD22-A114-A.
2. Tested to EIA/JESD22-A115-A.
3. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	Positive DC Supply Voltage (Referenced to GND)		2.0	6.0	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage (Referenced to GND)		GND	V_{CC}	V
$\mathrm{V}_{\text {in }}$	Digital Input Voltage (Referenced to GND)		GND	V_{CC}	V
$\mathrm{V}_{10}{ }^{*}$	Static or Dynamic Voltage Across Switch		-	1.2	V
T_{A}	Operating Temperature, All Package Types		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Rate (Digital Inputs)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1000 \\ & 600 \\ & 500 \\ & 400 \\ & \hline \end{aligned}$	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
*For voltage drops across the switch greater than 1.2 V (switch on), excessive V_{Cc} current may be drawn; i.e., the current out of the switch may contain both V_{CC} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

DC ELECTRICAL CHARACTERISTIC Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Conditions	V_{cc} (V)	Guaranteed Limit							Unit
				$25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage, Channel-Select or Enable Inputs		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$			$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$			$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage, Channel-Select or Enable Inputs		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$			$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$		$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$		$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	V
I_{N}	Input Leakage Current, Control Inputs	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	6.0			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Supply Current per Package	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D, I_{\mathrm{O}}=0 \\ & V_{I S}=G N D \text { or } V_{C C}, \\ & V_{O S}=V_{C C} \text { or } G N D \end{aligned}$	6.0			4.0		40		80	$\mu \mathrm{A}$
RON	ON Resistance	$\begin{array}{\|l} \hline \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{array}$	$\begin{aligned} & \hline 4.5 \\ & 6.0 \end{aligned}$		$\begin{aligned} & \hline 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 160 \\ & 140 \end{aligned}$		$\begin{aligned} & 200 \\ & 175 \end{aligned}$		$\begin{aligned} & \hline 240 \\ & 210 \end{aligned}$	Ω
$\mathrm{R}_{\text {ON(peak }}$	ON Resistance (peak)	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 90 \\ & 80 \end{aligned}$	$\begin{aligned} & 180 \\ & 160 \end{aligned}$		$\begin{aligned} & 225 \\ & 200 \end{aligned}$		$\begin{aligned} & 270 \\ & 240 \end{aligned}$	Ω
$\Delta \mathrm{R}_{\text {on }}$	ON Resistance Mismatch Between Any 2 Switches		$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 10 \\ & 8.5 \end{aligned}$						Ω
loff	OFF-State Leakage Current, All Channels	SW OFF, $\mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0			± 0.8		± 8		± 8	$\mu \mathrm{A}$
IoN	ON-State Leakage Current	SW OFF, $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0			± 0.8		± 8		± 8	$\mu \mathrm{A}$

MC74HC4067A

AC CHARACTERISTICS (INPUT $\left.\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Symbol	Parameter	Conditions	$\begin{aligned} & V_{c c} \\ & \text { (V) } \end{aligned}$	Guaranteed Limits							Unit
				$25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PH}}, \end{aligned}$	Propagation Delay Switch In to Out	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$			$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \end{aligned}$		$\begin{aligned} & \hline 95 \\ & 19 \\ & 16 \end{aligned}$		$\begin{gathered} \hline 110 \\ 22 \\ 19 \end{gathered}$	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5.0		6.0						
${ }_{\text {ton }}$	Switch Turn-ON Time										ns
	E to Out	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$			$\begin{gathered} 275 \\ 55 \\ 47 \end{gathered}$		$\begin{gathered} \hline 345 \\ 69 \\ 59 \end{gathered}$		$\begin{gathered} \hline 415 \\ 83 \\ 71 \end{gathered}$	
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5.0		23						
	SN to Out	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$			$\begin{gathered} \hline 300 \\ 60 \\ 51 \end{gathered}$		$\begin{gathered} \hline 375 \\ 75 \\ 64 \end{gathered}$		$\begin{gathered} \hline 450 \\ 90 \\ 76 \end{gathered}$	
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5.0		25						
toff	Switch Turn-OFF Time										ns
	E to Out	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$			$\begin{gathered} 275 \\ 55 \\ 47 \end{gathered}$		$\begin{gathered} 345 \\ 69 \\ 59 \end{gathered}$		$\begin{gathered} \hline 415 \\ 83 \\ 71 \end{gathered}$	
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5.0		23						
	SN to Out	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$			$\begin{gathered} 290 \\ 58 \\ 49 \\ \hline \end{gathered}$		$\begin{gathered} 365 \\ 73 \\ 62 \end{gathered}$		$\begin{gathered} \hline 435 \\ 87 \\ 74 \end{gathered}$	
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5.0		21						
$\mathrm{C}_{\text {in }}$	Input Capacitance, Control Pins				3.5	10		10		10	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 4)	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5.0			29					pF

4. C_{PD} is used to determine the dynamic power consumption, per multivibrator.

MC74HC4067A

ANALOG SWITCH CHANNEL CHARACTERISTICS

Symbol	Parameter	Conditions	v_{cc} (V)	$\begin{gathered} \text { Limit }^{\star} \\ 25^{\circ} \mathrm{C} \end{gathered}$	Unit
BW	Maximum On-Channel Bandwidth or Minimum Frequency Response	$\mathrm{f}_{\text {in }}=1 \mathrm{MHz}$ Sine Wave Adjust $\mathrm{f}_{\text {in }}$ Voltage to Obtain 0 dBm at $\mathrm{V}_{\text {OS }}$ Increase $\mathrm{f}_{\text {in }}$ Frequency Until dB Meter Reads -3 dB $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	4.5	90	MHz
-	Off-Channel Feedthrough Isolation	$\begin{aligned} & \mathrm{f}_{\text {in }} \equiv \text { Sine Wave } \\ & \text { Adjust } \mathrm{f}_{\text {in }} \text { Voltage to Obtain } 0 \mathrm{dBm} \text { at } \mathrm{V}_{\mathrm{IS}} \\ & \mathrm{f}_{\text {in }}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & -65 \\ & -75 \end{aligned}$	dB
-	Feedthrough Noise E, Sn to Switch	$\begin{aligned} & V_{\text {in }} \leq 1 \mathrm{MHz} \text { Square Wave }\left(t_{r}=t_{f}=6 \mathrm{~ns}\right) \\ & \text { Adjust } R_{L} \text { at Setup so that } I_{S}=0 \mathrm{~A} \\ & R_{L}=600 \Omega, C_{L}=50 \mathrm{pF} \\ & R_{L}=10 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 60 \\ & 30 \end{aligned}$	mV PP
-	Crosstalk Between Any Two Switches	$\begin{aligned} & \mathrm{f}_{\text {in }} \equiv \text { Sine Wave } \\ & \text { Adjust } \mathrm{f}_{\mathrm{in}} \text { Voltage to Obtain } 0 \mathrm{dBm} \text { at } \mathrm{V}_{\mathrm{IS}} \\ & \mathrm{f}_{\text {in }}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & -70 \\ & -80 \end{aligned}$	dB
THD	Total Harmonic Distortion	$\begin{array}{r} f_{\text {in }}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{THD}=\mathrm{THD}_{\text {Measured }}-\mathrm{THD}_{\text {Source }} \\ \qquad V_{I S}=4.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \end{array}$	4.5	0.04	\%
$\mathrm{C}_{\text {S }}$	Switch Input Capacitance			5	pF
$\mathrm{C}_{\text {com }}$	Switch Common Capacitance			45	pF

*Limits not tested. Determined by design and verified by qualification.

Figure 3. Typical On Resistance, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

Figure 5. Typical Switch Frequency Response

Figure 4. Typical On Resistance, $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$

Figure 6. Typical Switch OFF Signal Feedthrough vs Frequency

Figure 7. On Resistance Test Setup

Figure 8. OFF Channel Leakage Current Test Setup, Any One Channel

Figure 9. ON Channel Leakage Current Test Setup

*Includes all probe and jig capacitance.
Figure 11. Propagation Delay Test Setup

Figure 10. Propagation Delay, Analog In to Analog Out

Figure 12. Turn-ON / Turn-OFF Times

Figure 14. Power Dissipation Capacitance Test Setup
 Test Setup

Figure 13. Turn-ON / Turn-OFF Time Test Setup

*Includes all probe and jig capacitance.
Figure 15. ON Channel Bandwidth Test Setup

Figure 17. Feedthrough Noise Test Setup

Figure 16. OFF Channel Feedthrough Isolation Test Setup

*Includes all probe and jig capacitance.
Figure 18. Crosstalk Between Any Two Switches Test Setup

*Includes all probe and jig capacitance.
Figure 19. Total Harmonic Distortion Test Setup

ORDERING INFORMATION

Device	Package	Shipping †
MC74HC4067ADWG	SOIC-24 (Pb-Free)	30 Units / Tube
MC74HC4067ADWR2G	SOIC-24 (Pb-Free)	$1000 /$ Tape \& Reel
MC74HC4067ADTG	TSSOP-24 (Pb-Free)	62 Units / Tube
MC74HC4067ADTR2G	TSSOP-24 (Pb-Free)	$2500 /$ Tape \& Reel
NLV74HC4067ADTR2G*	TSSOP-24 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

SOIC-24 WB
CASE 751E-04
ISSUE F

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP24 7.8x4.4, 0.65P
CASE 948H
ISSUE B

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL BE 0.08 MAX AT MMC. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.
4. DIMENSION D DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION D IS DETERMINED AT DATUM PLANE H.
5. DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE. DIMENSION E1 IS DETERMINED AT DATUM PLANE H.
6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
7. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE
SEATING PLANE TOU THE LOWEST POINT ON THE PACKAGE
BOD. MILLIMETERS

DIM	MIN	MAX
A	---	1.20
A1	0.05	0.15
b	0.19	0.30
C	0.09	0.20
D	7.70	
E	6.40	
BSC		
E1	4.30	
e	0.65 BSC	
L	0.50	
L2	0.25	

RECOMMENDED SOLDERING FOOTPRINT

ON Semiconductor and the (11) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

