

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
KA1M0565R/KA1H0565R
 Fairchild Power Switch(FPS)

Features

- Precision fixed operating frequency
- KA1M0565R (67KHz),KA1H0565R (100KHz)
- Pulse by pulse over current limiting
- Over load protection
- Over voltage protection (Min. 23V)
- Internal thermal shutdown function
- Under voltage lockout
- Internal high voltage sense FET
- Auto restart

Description

The Fairchild Power Switch(FPS) product family is specially designed for an off-line SMPS with minimal external components. The Fairchild Power Switch(FPS) consist of high voltage power SenseFET and current mode PWM controller IC. PWM controller features integrated fixed oscillator, under voltage lock out, leading edge blanking, optimized gate turn-on/turn-off driver, thermal shut down protection, over voltage protection, temperature compensated precision current sources for loop compensation and fault protection circuit. compared to discrete MOSFET and controller or RCC switching converter solution, a Fairchild Power Switch(FPS) can reduce total component count, design size, weight and at the same time increase \& efficiency, productivity, and system reliability. It has a basic platform well suited for cost effective design in either a flyback converter or a forward converter.

TO-220F-4L

1. GND 2. DRAIN 3. VCC 4. FB

Internal Block Diagram

Rev.1.0.2

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Maximum Drain voltage ${ }^{(1)}$	VD,MAX	650	V
Drain Gate voltage (RGS $=1 \mathrm{M} \Omega)$	VDGR	650	V
Gate-source (GND) voltage	VGS	± 30	V
Drain current pulsed ${ }^{(2)}$	IDM	20	ADC
Single pulsed avalanche energy ${ }^{(3)}$	EAS	230	mJ
${\text { Continuous drain current }\left(\mathrm{TC}=25^{\circ} \mathrm{C}\right)}^{\text {Continuous drain current }\left(\mathrm{TC}=100^{\circ} \mathrm{C}\right)}$ ID	5.0	ADC	
Maximum Supply voltage	ID	3.5	ADC
Input voltage range	VCC,MAX	30	V
Total power dissipation	VFB	-0.3 to VSD	V
	PD	140	W
Storage temperature	Derating	1.11	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$

Notes:

1. $\mathrm{Tj}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
2. Repetitive rating: Pulse width limited by maximum junction temperature
3. $\mathrm{L}=30 \mathrm{mH}, \mathrm{V} D \mathrm{D}=50 \mathrm{~V}, \mathrm{RG}=27 \Omega$, starting $\mathrm{Tj}=25^{\circ} \mathrm{C}$

Electrical Characteristics (SFET part)

($\mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Drain source breakdown voltage	BVDSS	VGS=0V, ID=50 $\mu \mathrm{A}$	650	-	-	V
Zero gate voltage drain current	IDSS	VDS=Max., Rating, VGS=0V	-	-	50	$\mu \mathrm{A}$
		VDS $=0.8 \mathrm{Max} .$, Rating, VGS $=0 \mathrm{~V}, \mathrm{TC}=125^{\circ} \mathrm{C}$	-	-	200	$\mu \mathrm{A}$
Static drain source on resistance ${ }^{\text {(note) }}$	RDS(ON)	VGS $=10 \mathrm{~V}, \mathrm{ID}=2.5 \mathrm{~A}$	-	1.76	2.2	Ω
Forward transconductance ${ }^{\text {(note) }}$	gfs	VDS $=50 \mathrm{~V}, \mathrm{ID}=2.5 \mathrm{~A}$	2.5	-	-	S
Input capacitance	Ciss	$\begin{aligned} & \text { VGS=0V, VDS=25V, } \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	1457	-	pF
Output capacitance	Coss		-	130	-	
Reverse transfer capacitance	Crss		-	38.8	-	
Turn on delay time	td(on)	VDD=0.5BVDSS, ID=5.0A (MOSFET switching time are essentially independent of operating temperature)	-	-	60	nS
Rise time	tr		-	-	150	
Turn off delay time	td(off)		-	-	300	
Fall time	tf		-	-	130	
Total gate charge (gate-source+gate-drain)	Qg	$\text { VGS }=10 \mathrm{~V}, \mathrm{ID}=5.0 \mathrm{~A},$ VDS=0.5BVDSS (MOSFET switching time are essentially independent of operating temperature)	-	-	56	nC
Gate source charge	Qgs		-	10.3	-	
Gate drain (Miller) charge	Qgd		-	22.3	-	

Note:

Pulse test: Pulse width $\leq 300 \mu \mathrm{~S}$, duty cycle $\leq 2 \%$ $S=\frac{1}{R}$

Electrical Characteristics (CONTROL part)

($\mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
UVLO SECTION						
Start threshold voltage	VSTART	-	14	15	16	V
Stop threshold voltage	VSTOP	After turn on	9	10	11	V
OSCILLATOR SECTION						
Initial accuracy	Fosc	KA1M0565R	61	67	73	kHz
		KA1H0565R	90	100	110	
Frequency change with temperature ${ }^{(2)}$	$\Delta \mathrm{F} / \Delta \mathrm{T}$	$-25^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq+85^{\circ} \mathrm{C}$	-	± 5	± 10	\%
Maximum duty cycle	Dmax	KA1M0565R	74	77	80	\%
		KA1H0565R	64	67	70	
FEEDBACK SECTION						
Feedback source current	IFB	$\mathrm{Ta}=25^{\circ} \mathrm{C}, 0 \mathrm{~V} \leq \mathrm{Vfb} \leq 3 \mathrm{~V}$	0.7	0.9	1.1	mA
Shutdown Feedback voltage	VSD	-	6.9	7.5	8.1	V
Shutdown delay current	Idelay	$\mathrm{Ta}=25^{\circ} \mathrm{C}, 5 \mathrm{~V} \leq \mathrm{Vfb} \leq \mathrm{V}$ SD	4.0	5.0	6.0	$\mu \mathrm{A}$
REFERENCE SECTION						
Output voltage ${ }^{(1)}$	Vref	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	4.80	5.00	5.20	V
Temperature Stability ${ }^{(1)(2)}$	Vref/ Δ T	$-25^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq+85^{\circ} \mathrm{C}$	-	0.3	0.6	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
CURRENT LIMIT (SELF-PROTECTION) SECTION						
Peak Current Limit	IOVER	Max. inductor current	3.08	3.5	3.92	A
PROTECTION SECTION						
Thermal shutdown temperature (Tj) ${ }^{(1)}$	TSD	-	140	160	-	${ }^{\circ} \mathrm{C}$
Over voltage protection voltage	VovP	-	23	25	28	V
TOTAL DEVICE SECTION						
Start Up current	ISTART	VCC=14V	0.1	0.3	0.4	mA
Operating supply current (control part only)	IOP	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	6	12	18	mA
VCC zener voltage	VZ	$\mathrm{ICC}=20 \mathrm{~mA}$	30	32.5	35	V

Note:

1. These parameters, although guaranteed, are not 100% tested in production
2. These parameters, although guaranteed, are tested in EDS (wafer test) process

Typical Performance Characteristics

(These characteristic graphs are normalized at $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Figure 1. Operating Frequency

Figure 3. Operating Supply Current

Figure 5. Start up Current

Figure 2. Feedback Source Current

Figure 4. Peak Current Limit

Figure 6. Start Threshold Voltage

Typical Performance Characteristics (Continued)

(These characteristic graphs are normalized at $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Figure 7. Stop Threshold Voltage

Figure 9. Vcc Zener Voltage

Figure 11. Shutdown Delay Current

Figure 8. Maximum Duty Cycle

Figure 10. Shutdown Feedback Voltage

Figure 12. Over Voltage Protection

Typical Performance Characteristics (Continued)

(These characteristic grahps are normalized at $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Figure 13. Static Drain-Source on Resistance

Package Dimensions

TO-220F-4L

Package Dimensions (Continued)

TO-220F-4L(Forming)

Ordering Information

Product Number	Package	Rating	Fosc
KA1M0565R-TU	TO-220F-4L	$650 \mathrm{~V}, 5 \mathrm{~A}$	67 kHz
KA1M0565R-YDTU	TO-220F-4L(Forming)		
KA1H0565R-TU	TO-220F-4L	$650 \mathrm{~V}, 5 \mathrm{~A}$	100 kHz
KA1H0565R-YDTU	TO-220F-4L(Forming)		

TU : Non Forming Type
YDTU : Forming Type

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

