IGBT - Field Stop, Trench

75 A, 950 V

Product Preview FGY75T95SQDT

Trench Field Stop 4th generation High Speed IGBT co-packaged with full current rated diode.

Features

- Maximum Junction Temperature : $T_J = 175^{\circ}C$
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
 Low Saturation Voltage: V_{CE(Sat)} = 1.69 V (Typ.) @ I_C = 75 A
- Fast Switching
- Tighten Parameter Distribution
- These Devices are Pb-Free and are RoHS Compliant

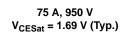
Applications

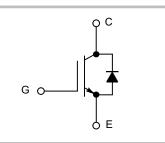
- Solar Inverter
- PFC
- DC/DC Converter

MAXIMUM RATINGS

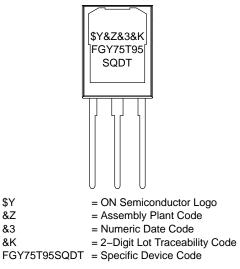
Rating		Symbol	Value	Unit
Collector to Emitter Voltage		V _{CES}	950	V
Gate to Emitter Voltage Transient Gate to Emitter Voltage		V _{GES}	±20 ±30	V
Collector Current	$@T_{C} = 25^{\circ}C$ $@T_{C} = 100^{\circ}C$	IC	150 75	A
Pulsed Collector Current (N	ote 1)	I _{LM}	300	А
Pulsed Collector Current (Note 2)		I _{CM}	300	А
Diode Forward Current	@T _C = 25°C @T _C = 100°C	lF	150 75	A
Pulsed Diode Forward Curre	ent (Note 2)	I _{FM}	300	А
Maximum Power Dissipation $@T_C = 25^{\circ}C$ $@T_C = 100^{\circ}C$		PD	434 217	W
Operating Junction / Storage Temperature Rang	ge	TJ, TSTG	–55 to +175	°C
Maximum Lead Temp. for Soldering Purposes, 1/8" from case for 5 seconds		ΤL	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. VCC = 700 V, VGE = 15 V, IC = 300 A, RG = 26 Ω, Inductive Load, 100% Tested


2. Pulse width limited by max Junction temperature. Defined by design. Not subject to production test

ON Semiconductor®


www.onsemi.com

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ORDERING INFORMATION

Part Number	Top Marking	Package	Shipping
FGY75T95SQDT	FGY75T95SQDT	TO-247-3LD (Pb-Free)	30 Units / Rail

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ extsf{ heta}JC}$	0.35	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ extsf{ heta}JC}$	0.23	°C/W
Thermal resistance junction-to-ambient	$R_{ hetaJA}$	40	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Мах	Unit
OFF CHARACTERISTICS	·					•
Collector–emitter breakdown voltage, gate–emitter short–circuited	V _{GE} = 0 V, I _C = 1 mA	BVCES	950			V
Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	Δ <u>BVCES</u> ΔTJ		0.96		V/°C
Collector–emitter cut–off current, gate– emitter short–circuited	V _{GE} = 0 V, V _{CE} = 950 V	ICES			250	μΑ
Gate leakage current, collector-emitter short-circuited	$V_{GE} = 20 \text{ V}$, $V_{CE} = 0 \text{ V}$	IGES			±400	nA
ON CHARACTERISTICS		•	•			•
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_C = 75 \text{ mA}$	VGE(th)	3.4	4.84	6.4	V
Collector-emitter saturation voltage	$V_{GE} = 15 \text{ V}, \text{ I}_{C} = 75 \text{ A}$ $V_{GE} = 15 \text{ V}, \text{ I}_{C} = 75 \text{ A}, \text{ T}_{J} = 175^{\circ}\text{C}$	VCE(sat)		1.69 2.25	2.11	V
DYNAMIC CHARACTERISTICS	·					•
Input capacitance	$V_{CE} = 30 \text{ V}, \text{ V}_{GE} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$	Cies		4770		pF
Output capacitance		Coes		241		
Reverse transfer capacitance		Cres		19.7		
Gate charge total	$V_{CE} = 600 \text{ V}, I_C = 75 \text{ V}, V_{GE} = 15 \text{ V}$	Qg		137		nC
Gate to emitter charge		Qge		33.2		
Gate to collector charge		Qgc		38.6		
SWITCHING CHARACTERISTICS, INDU	CTIVE LOAD		-			
Turn–on delay time	$T_J = 25^{\circ}C$	td(on)		28.8		ns
Rise time	$V_{CC} = 600 \text{ V}, I_C = 37.5 \text{ A}$ Rg = 4.7 Ω	t _r		16.0		
Turn–off delay time	V _{GE} = 15 V Inductive Load	td(off)		104.0		
Fall time		t _f		30.4		
Turn-on switching loss		Eon		2.1		mJ
Turn-off switching loss		Eoff		1.0		
Total switching loss]	Ets		3.2		

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Turn-on delay time	$T_J = 25^{\circ}C$	td(on)		31.2		ns
Rise time	$V_{CC} = 600 \text{ V}, \text{ I}_{C} = 75 \text{ A}$ Rg = 4.7 Ω	t _r		58.4		
Turn-off delay time	V _{GE} = 15 V Inductive Load	td(off)		96.0		
Fall time		t _f		65.6		
Turn-on switching loss		Eon		5.4		mJ
Turn-off switching loss		Eoff		2.1		
Total switching loss		Ets		7.6		
Turn-on delay time	T _J = 175°C	td(on)		28.8		ns
Rise time	V_{CC} = 600 V, I _C = 37.5 A Rg = 4.7 Ω	tr		17.6		
Turn-off delay time	V _{GE} = 15 V Inductive Load	td(off)		117.0		
Fall time		t _f		60.8		
Turn-on switching loss		Eon		4.1		mJ
Turn-off switching loss		Eoff		1.7		1
Total switching loss		Ets		5.8		
Turn-on delay time	T _J = 175°C	td(on)		28.8		ns
Rise time	V _{CC} = 600 V, I _C = 75 A Rg = 4.7 Ω	t _r		60.8		
Turn-off delay time	V _{GE} = 15 V Inductive Load	td(off)		106.0		
Fall time		t _f		92.8		
Turn-on switching loss		Eon		8.8		mJ
Turn-off switching loss		Eoff		3.2		
Total switching loss		Ets		12.0		
DIODE CHARACTERISTICS				1		
Forward voltage	I _F = 75 A I _F = 75 A, Τ _J = 175°C	V _F		2.03 1.76	2.51	V
Reverse Recovery Energy	T _J = 25°C	E _{rec}		314		uJ
Reverse Recovery Time	V _R = 600 V, I _F = 37.5 A dI _F /dt = 1000 A/μs	t _{rr}		105		ns
Reverse Recovery Charge	μ	Q _{rr}		1635		nC
Reverse Recovery Energy	T _J = 25°C	E _{rec}		2390		uJ
Reverse Recovery Time	V _R = 600 V, I _F = 75 A dI _F /dt = 1000 A/μs	t _{rr}		259		ns
Reverse Recovery Charge	αιμαί = 1000 Αγμο	Q _{rr}		7515		nC
Reverse Recovery Energy	T _J = 175°C	E _{rec}		454		uJ
Reverse Recovery Time	$V_{R} = 600 \text{ V}, I_{F} = 37.5 \text{ A}$ $dI_{F}/dt = 1000 \text{ A}/\mu\text{s}$	t _{rr}		148		ns
Reverse Recovery Charge		Q _{rr}		2436		nC

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Reverse Recovery Energy	T _J = 175°C	E _{rec}		2790		uJ
Reverse Recovery Time	V _R = 600 V, I _F = 75 A dI _F /dt = 1000 A/μs	t _{rr}		294		ns
Reverse Recovery Charge		Q _{rr}		9175		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

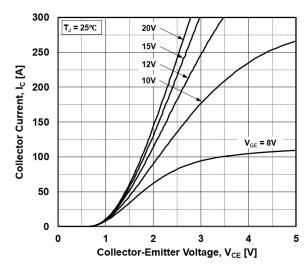
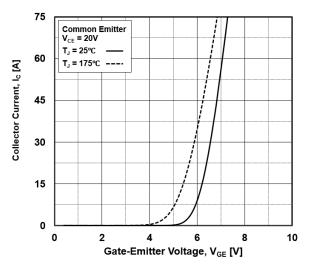
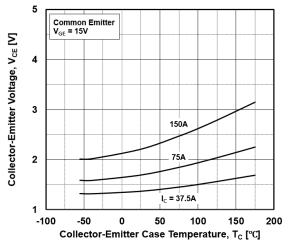
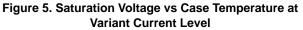





Figure 1. Typical Output Characteristics ($T_J = 25^{\circ}C$)

Figure 3. Transfer Characteristics

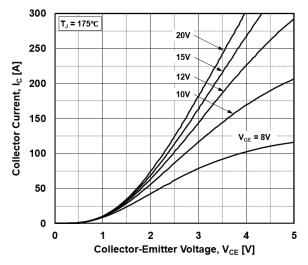


Figure 2. Typical Output Characteristics (T_J = 175°C)

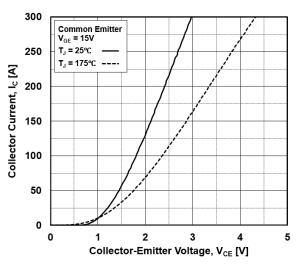
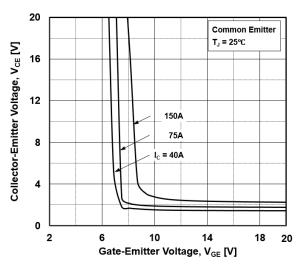



Figure 4. Typical Saturation Voltage Characteristics

TYPICAL CHARACTERISTICS

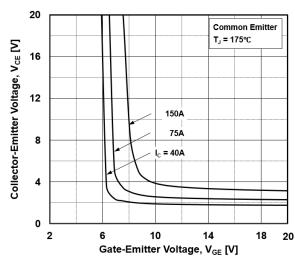


Figure 7. Saturation Voltage vs. V_{GE} (T_J = 175°C)

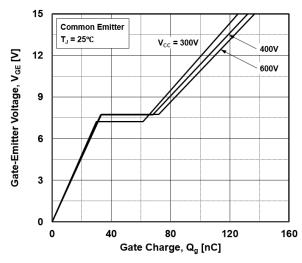
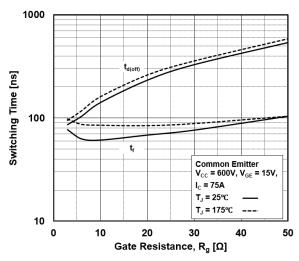
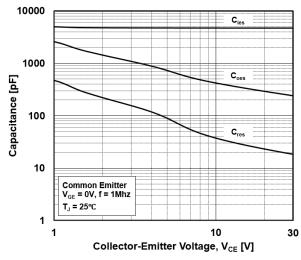




Figure 9. Gate Charge Characteristics ($T_J = 25^{\circ}C$)

Figure 8. Capacitance Characteristics

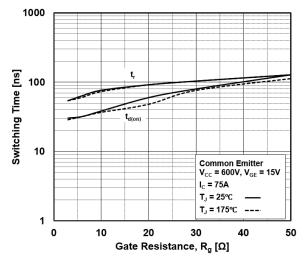
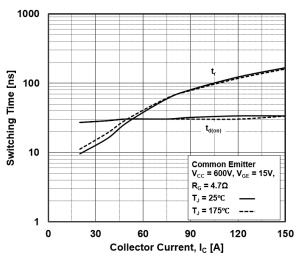
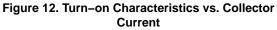




Figure 10. Turn-on Characteristics vs. Gate Resistance

TYPICAL CHARACTERISTICS

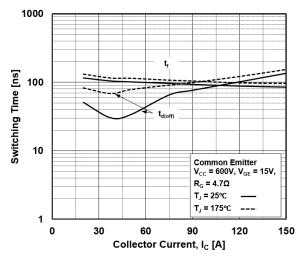
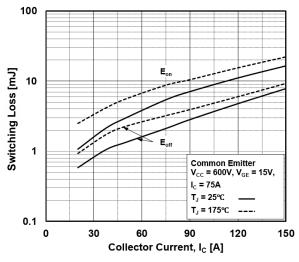



Figure 13. Turn-off Characteristics vs. Collector Current

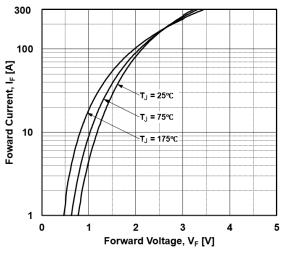


Figure 17. (Diode) Forward Characteristics vs (Normal I–V)

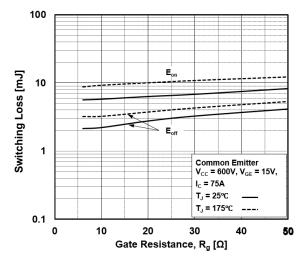


Figure 14. Switching Loss vs. Gate Resistance

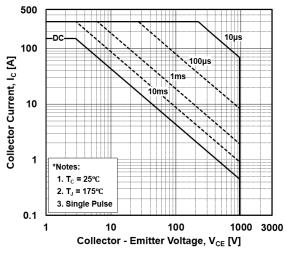


Figure 16. SOA Characteristics (FBSOA)

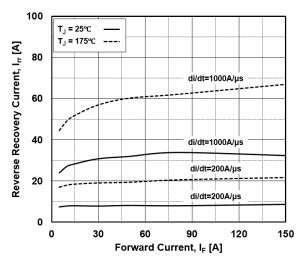


Figure 18. (Diode) Reverse Recovery Current

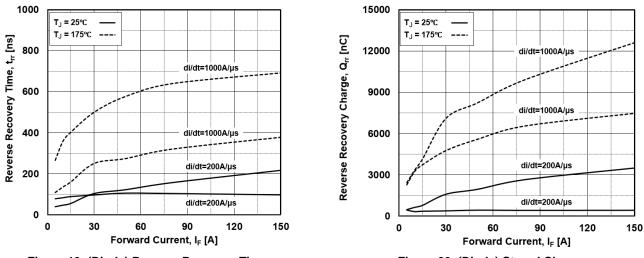
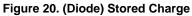



Figure 19. (Diode) Reverse Recovery Time

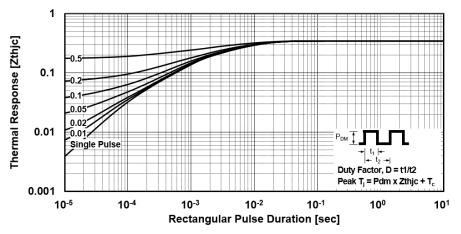


Figure 21. Transient Thermal Impedance of IGBT

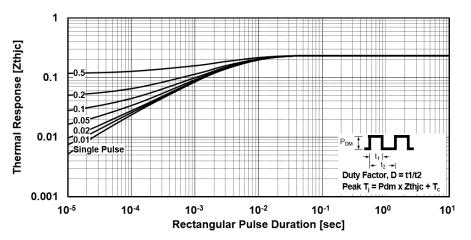
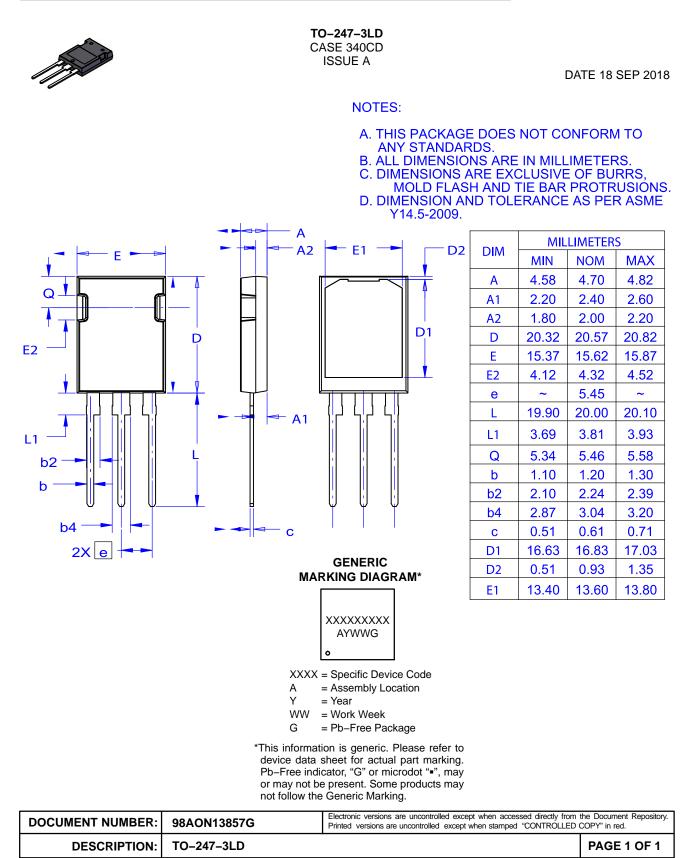



Figure 22. Transient Thermal Impedance of Diode

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>