MBRM110LT1G, NRVBM110LT1G, NRVBM110LT3G

Surface Mount Schottky Power Rectifier

POWERMITE[®] Power Surface Mount Package

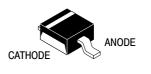
The Schottky POWERMITE[®] employs the Schottky Barrier principle with a barrier metal and epitaxial construction that produces optimal forward voltage drop–reverse current tradeoff. The advanced packaging techniques provide for a highly efficient micro miniature, space saving surface mount Rectifier. With its unique heatsink design, the POWERMITE[®] has the same thermal performance as the SMA while being 50% smaller in footprint area, and delivering one of the lowest height profiles, < 1.1 mm in the industry. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are AC–DC and DC–DC converters, reverse battery protection, and "ORing" of multiple supply voltages and any other application where performance and size are critical.

Features

- Ultra Low V_F
- 1st in Marketplace with a 10 V_R Schottky Rectifier
- Low Profile Maximum Height of 1.1 mm
- Small Footprint Footprint Area of 8.45 mm²
- Low Thermal Resistance with Direct Thermal Path of Die on Exposed Cathode Heat Sink
- ESD Ratings:
 - ♦ Human Body Model > 4000 V (Class 3)
 - ◆ Machine Model > 400 V (Class C)
- AEC-Q101 Qualified and PPAP Capable
- NRVB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- All Packages are Pb-Free*

Mechanical Characteristics:

- POWERMITE[®] is JEDEC Registered as D0-216AA
- Case: Molded Epoxy
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight: 62 mg (Approximately)
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Maximum for 10 Seconds


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES, 10 VOLTS

POWERMITE CASE 457 PLASTIC

MARKING DIAGRAM

= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]		
MBRM110LT1G	POWERMITE (Pb-Free)	3,000 / Tape & Reel		
NRVBM110LT1G	POWERMITE (Pb-Free)	3,000 / Tape & Reel		
MBRM110LT3G	POWERMITE (Pb-Free)	12,000 / Tape & Reel		
NRVBM110LT3G	POWERMITE (Pb-Free)	12,000 / Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

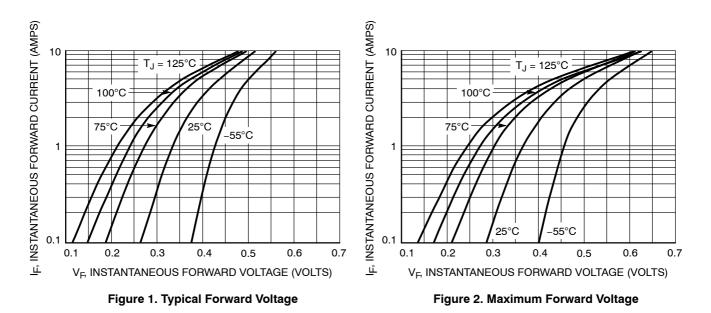
MBRM110LT1G, NRVBM110LT1G, NRVBM110LT3G

MAXIMUM RATINGS

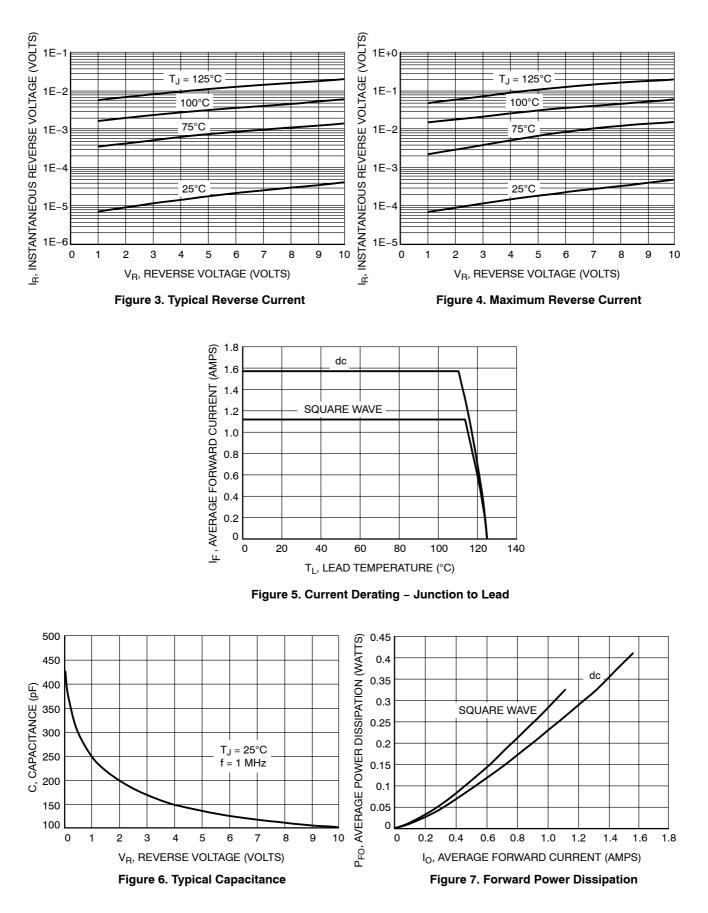
Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	10	V
Average Rectified Forward Current $(T_L = 115^{\circ}C, R_{\theta JL} = 35^{\circ}C/W)$	lo	1.0	A
Non-Repetitive Peak Surge Current (Non-Repetitive peak surge current, halfwave, single phase, 60 Hz)	I _{FSM}	50	A
Storage Temperature	T _{stg}	-55 to 125	°C
Operating Junction Temperature	TJ	–55 to 125	°C
Voltage Rate of Change (Rated V _R , T _J = 25°C)	dv/dt	10,000	V/µs

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

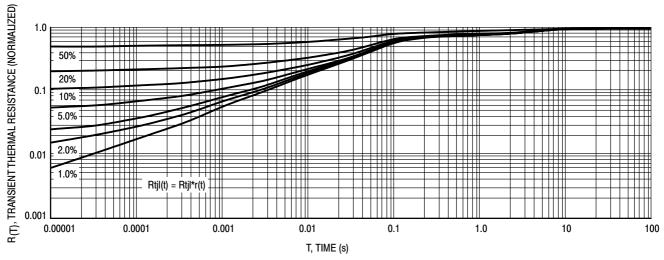
THERMAL CHARACTERISTICS


Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Lead (Anode) (Note 1)	R _{tjl}	35	°C/W
Thermal Resistance, Junction-to-Tab (Cathode) (Note 1)	R _{tjtab}	23	
Thermal Resistance, Junction-to-Ambient (Note 1)	R _{tja}	277	

1. Mounted with minimum recommended pad size, PC Board FR4, See Figures 8 and 9.


ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Va	lue	Unit
Maximum Instantaneous Forward Voltage (Note 2)	V _F	T _J = 25°C	T _J = 100°C	V
$(I_{F} = 0.1 \text{ A})$ $(I_{F} = 1.0 \text{ A})$ $(I_{F} = 2.0 \text{ A})$		0.280 0.365 0.415	0.175 0.275 0.325	
Maximum Instantaneous Reverse Current (Note 2)	I _R	T _J = 25°C	T _J = 100°C	mA
(V _R = 5.0 V) (V _R = 10 V)		0.2 0.5	30 60	


2. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2%.

MBRM110LT1G, NRVBM110LT1G, NRVBM110LT3G

MBRM110LT1G, NRVBM110LT1G, NRVBM110LT3G

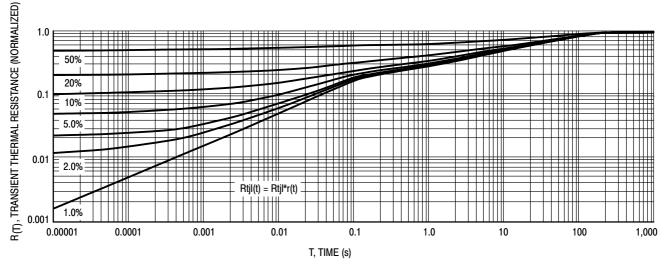
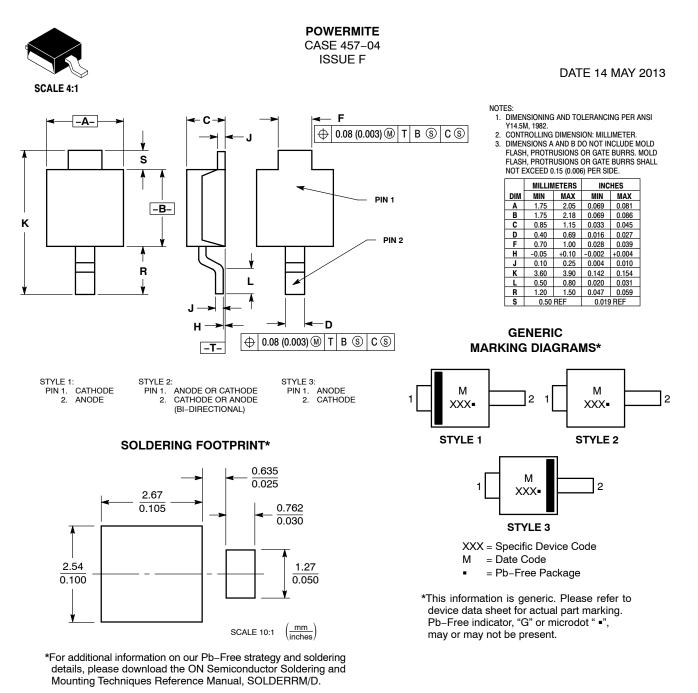



Figure 9. Thermal Response Junction to Ambient

POWERMITE is a registered trademark of and used under a license from Microsemi Corporation.

DOCUMENT NUMBER:	98ASB14853C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	POWERMITE		PAGE 1 OF 1
ON Semiconductor and and and any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights nor the rights nor the rights nor the rights and any and all liability.			

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative