Dual NPN Bias Resistor Transistors R1 = 22 k\Omega, R2 = 22 k\Omega

NPN Transistors with Monolithic Bias Resistor Network

This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable*
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

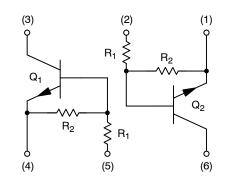
(T_A = 25°C, common for Q_1 and $Q_2,$ unless otherwise noted)

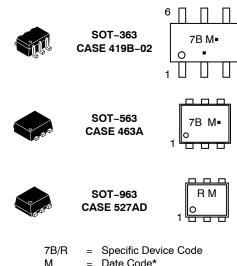
Rating	Symbol	Max	Unit
Collector-Base Voltage	V _{CBO}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector Current – Continuous	Ι _C	100	mAdc
Input Forward Voltage	V _{IN(fwd)}	40	Vdc
Input Reverse Voltage	V _{IN(rev)}	10	Vdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ORDERING INFORMATION

Device	Package	Shipping [†]
MUN5212DW1T1G, NSVMUN5212DW1T1G*	SOT-363	3,000/Tape & Reel
NSBC124EDXV6T1G	SOT-563	4,000/Tape & Reel
NSBC124EDXV6T5G	SOT-563	8,000/Tape & Reel
NSBC124EDP6T5G	SOT-963	8,000/Tape & Reel


⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


ON Semiconductor®

www.onsemi.com

PIN CONNECTIONS

MARKING DIAGRAMS

Date Code*Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

THERMAL CHARACTERISTICS

	Characteristic	Symbol	Max	Unit
MUN5212DW1 (SOT-363) ONE JI	JNCTION HEATED			
$\begin{array}{l} \mbox{Total Device Dissipation} \\ T_A = 25^\circ C & (Note 49) \\ & (Note 50) \\ \mbox{Derate above } 25^\circ C & (Note 50) \\ \end{array}$	te 49)	PD	187 256 1.5 2.0	mW mW/°C
	te 49) te 50)	R _{θJA}	670 490	°C/W
MUN5212DW1 (SOT-363) BOTH	JUNCTION HEATED (Note 51)			
$\begin{array}{l} \mbox{Total Device Dissipation} \\ T_A = 25^\circ C & (Note 49) \\ & (Note 50) \\ \mbox{Derate above } 25^\circ C & (Note 50) \\ \end{array}$	te 49)	PD	250 385 2.0 3.0	mW mW/°C
Thermal Resistance, Junction to Ambient (No (Note 50)	te 49)	R _{θJA}	493 325	°C/W
Thermal Resistance, Junction to Lead (Note 49) (Note 50)		R _{θJL}	188 208	°C/W
Junction and Storage Temperature	e Range	T _J , T _{stg}	–55 to +150	°C
NSBC124EDXV6 (SOT-563) ONE	JUNCTION HEATED			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 49) Derate above $25^{\circ}C$ (No	te 49)	PD	357 2.9	mW mW/°C
Thermal Resistance, Junction to Ambient (No	te 49)	R _{0JA}	350	°C/W
NSBC124EDXV6 (SOT-563) BOT	H JUNCTION HEATED (Note 51)	<u>.</u>	· · ·	
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 49)Derate above $25^{\circ}C$ (Note 49)	te 49)	PD	500 4.0	mW mW/°C
Thermal Resistance, Junction to Ambient (No	ite 49)	R _{θJA}	250	°C/W
Junction and Storage Temperature	Range	T _J , T _{stg}	–55 to +150	°C
NSBC124EDP6 (SOT-963) ONE J	UNCTION HEATED			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 52) (Note 53) Derate above 25^{C} (Note (Note 53)	te 52)	PD	231 269 1.9 2.2	MW mW/°C
Thermal Resistance,	te 52)	R _{θJA}	540 464	°C/W
NSBC124EDP6 (SOT-963) BOTH	JUNCTION HEATED (Note 51)	<u>.</u>		
Total Device Dissipation T _A = 25°C (Note 52) (Note 53) Derate above 25°C (Note 53) (Note 53)	te 52)	PD	339 408 2.7 3.3	MW mW/°C
Thermal Resistance, Junction to Ambient (Nor (Note 53)	te 52)	R _{θJA}	369 306	°C/W
Junction and Storage Temperature		T _J , T _{stg}	-55 to +150	°C

49.1 R-4 @ Minimum Fau.
50. FR-4 @ 1.0 × 1.0 Inch Pad.
51. Both junction heated values assume total power is sum of two equally powered channels.
52. FR-4 @ 100 mm², 1 oz. copper traces, still air.
53. FR-4 @ 500 mm², 1 oz. copper traces, still air.

Characteristic	Symbol	Min	Тур	Мах	Unit
OFF CHARACTERISTICS					
Collector-Base Cutoff Current $(V_{CB} = 50 \text{ V}, I_E = 0)$	I _{CBO}	-	-	100	nAdc
Collector-Emitter Cutoff Current $(V_{CE} = 50 \text{ V}, I_B = 0)$	I _{CEO}	-	-	500	nAdc
Emitter-Base Cutoff Current $(V_{EB} = 6.0 \text{ V}, I_C = 0)$	I _{EBO}	_	-	0.2	mAdc
Collector-Base Breakdown Voltage $(I_C = 10 \ \mu A, I_E = 0)$	V _{(BR)CBO}	50	-	_	Vdc
Collector-Emitter Breakdown Voltage (Note 54) $(I_{C} = 2.0 \text{ mA}, I_{B} = 0)$	V _{(BR)CEO}	50	-	-	Vdc
ON CHARACTERISTICS					
DC Current Gain (Note 54) (I _C = 5.0 mA, V _{CE} = 10 V)	h _{FE}	60	100	-	
Collector-Emitter Saturation Voltage (Note 54) $(I_{C} = 10 \text{ mA}, I_{B} = 0.3 \text{ mA})$	V _{CE(sat)}	-	-	0.25	V
Input Voltage (Off) (V _{CE} = 5.0 V, I _C = 100 μA)	V _{i(off)}	-	1.2	-	Vdc
Input Voltage (On) $(V_{CE} = 0.2 \text{ V}, I_C = 5.0 \text{ mA})$	V _{i(on)}	-	1.9	-	Vdc
Output Voltage (On) (V_{CC} = 5.0 V, V_B = 2.5 V, R_L = 1.0 k Ω)	V _{OL}	-	-	0.2	Vdc
Output Voltage (Off) (V_{CC} = 5.0 V, V_B = 0.5 V, R_L = 1.0 k Ω)	V _{OH}	4.9	_	_	Vdc
Input Resistor	R1	15.4	22	28.6	kΩ
Resistor Ratio	R ₁ /R ₂	0.8	1.0	1.2	

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, common for Q_1 and Q_2 , unless otherwise noted)

54. Pulsed Condition: Pulse Width = 300 ms, Duty Cycle \leq 2%.

(1) SOT–363; 1.0 × 1.0 Inch Pad (2) SOT–563; Minimum Pad

(3) SOT-963; 100 mm², 1 oz. Copper Trace

Figure 130. Derating Curve

V_{CE(sat)}, COLLECTOR-EMITTER VOLTAGE (V) 1 1000 V_{CE} = 10 $I_{\rm C}/I_{\rm B} = 10$ 25°C 25°C h_{FE}, DC CURRENT GAIN = 75° T₄ T_A = −25°C 0.1 -25°C 75°C 100 0.01 10 0.001 10 100 0 1 20 40 50 I_C, COLLECTOR CURRENT (mA) I_C, COLLECTOR CURRENT (mA) Figure 132. DC Current Gain Figure 131. V_{CE(sat)} vs. I_C 3.2 100 25°C 75°C Cob, OUTPUT CAPACITANCE (pF) Ic, COLLECTOR CURRENT (mA) 2.8 f = 10 kHz $T_A = -25^{\circ}C$ $I_E = 0 A$ 10 2.4 T_A = 25°C 2.0 1 1.6 0.1 1.2 0.8 0.01 $V_0 = 5 V$ 0.4 0.001 L 0 0 0 20 30 40 50 6 8 10 10 2 4 V_R, REVERSE VOLTAGE (V) Vin, INPUT VOLTAGE (V)

TYPICAL CHARACTERISTICS MUN5212DW1, NSBC124EDXV6

Figure 133. Output Capacitance

Figure 134. Output Current vs. Input Voltage

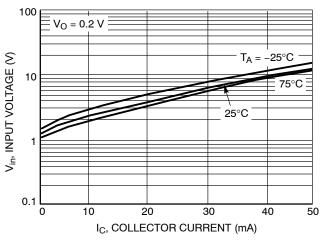
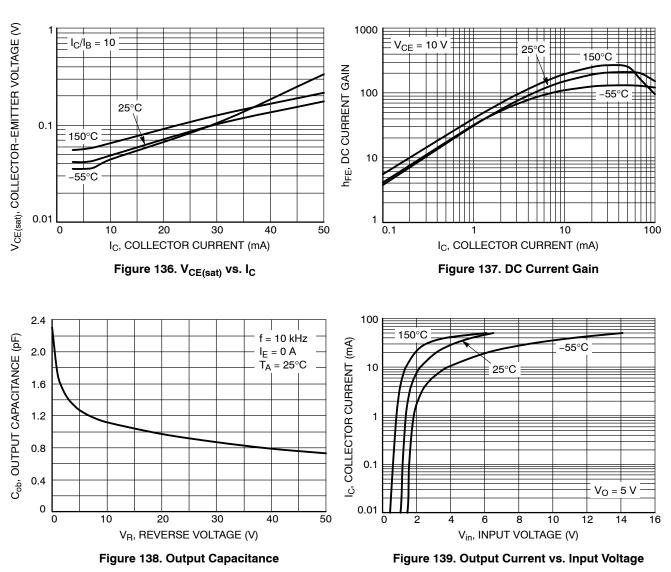
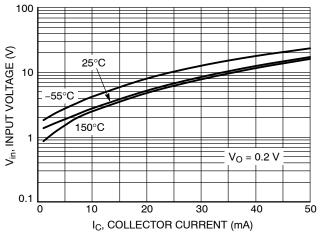
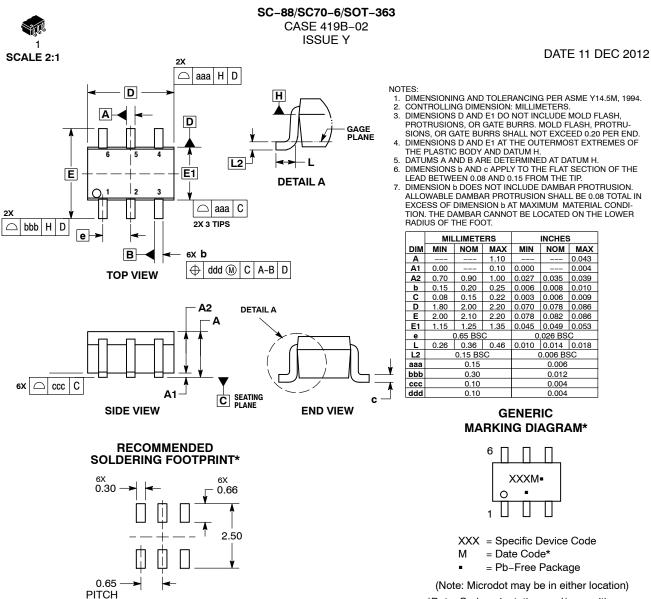




Figure 135. Input Voltage vs. Output Current

TYPICAL CHARACTERISTICS NSBC124EDP6



0.043

0.004

- XXX = Specific Device Code

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering

details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42985B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SC-88/SC70-6/SOT-363 PAGE 1 OF 2 ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SC-88/SC70-6/SOT-363 CASE 419B-02 ISSUE Y

DATE 11 DEC 2012

STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6: PIN 1. ANODE 2 2. N/C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 7: PIN 1. SOURCE 2 2. DRAIN 2 3. GATE 1 4. SOURCE 1 5. DRAIN 1 6. GATE 2	STYLE 8: CANCELLED	STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2	STYLE 10: PIN 1. SOURCE 2 2. SOURCE 1 3. GATE 1 4. DRAIN 1 5. DRAIN 2 6. GATE 2	STYLE 11: PIN 1. CATHODE 2 2. CATHODE 2 3. ANODE 1 4. CATHODE 1 5. CATHODE 1 6. ANODE 2	STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2
STYLE 13:	STYLE 14:	STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE	PIN 1. VREF	PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. N/C	2. GND	2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. COLLECTOR	3. GND	3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. EMITTER	4. IOUT	4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. BASE	5. VEN	5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE	6. VCC	6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 19:	STYLE 20:	STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. I OUT	PIN 1. COLLECTOR	PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. GND	2. COLLECTOR	2. N/C	2. GND	2. CH1	2. ANODE
3. GND	3. BASE	3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. V CC	4. EMITTER	4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. V EN	5. COLLECTOR	5. N/C	5. VBUS	5. CH2	5. CATHODE
6. V REF	6. COLLECTOR	6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 25:	STYLE 26:	STYLE 27:	STYLE 28:	STYLE 29:	STYLE 30:
PIN 1. BASE 1	PIN 1. SOURCE 1	PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. CATHODE	2. GATE 1	2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 2	3. DRAIN 2	3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. BASE 2	4. SOURCE 2	4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER	5. GATE 2	5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 1	6. DRAIN 1	6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

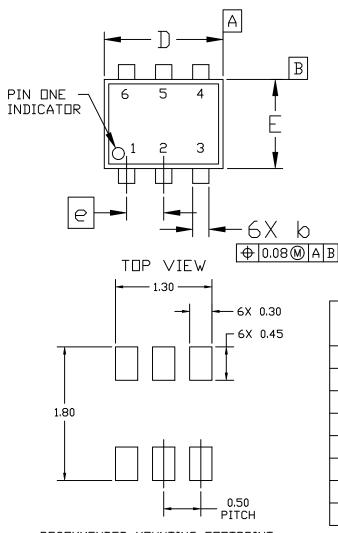
Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42985B Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SC-88/SC70-6/SOT-363		PAGE 2 OF 2	
ON Semiconductor and 🕕 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding				

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

6Х

SOT-563, 6 LEAD CASE 463A ISSUE H


DATE 26 JAN 2021

ALE 4:1

NDTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.

А

- 1. DIMENSIONING AND TOLERANCING PER A 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS DF BASE MATERIAL.

SIDE VIEW MILLIMETERS DIM MIN. NDM. MAX. 0.50 0.55 0.60 Α 0.17 0.22 0.27 b 0.08 0.13 0.18 С 1.50 1.60 1.70 D Ε 1.10 1.20 1.30 0.50 BSC e L 0.10 0.20 0.30 H_E 1.50 1.60 1.70

 $\overline{}$

RECOMMENDED MOUNTING FOOTPRINT* * For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

	ncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION: SOT-563, 6 LEAD	PAGE 1 OF 2

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. EMITTER 1	PIN 1. EMITTER 1	PIN 1. CATHIDE 1
2. BASE 1	2. EMITTER 2	2. CATHIDE 1
3. COLLECTOR 2	3. BASE 2	3. ANUDE/ANUDE 2
4. EMITTER 2	4. COLLECTOR 2	4. CATHIDE 2
5. BASE 2	5. BASE 1	5. CATHIDE 2
6. COLLECTOR 1	6. COLLECTOR 1	6. ANUDE/ANUDE 1
STYLE 4:	STYLE 5:	STYLE 6:
PIN 1. COLLECTOR	PIN 1. CATHEDE	PIN 1. CATHODE
2. COLLECTOR	2. CATHEDE	2. ANODE
3. BASE	3. ANEDE	3. CATHODE
4. EMITTER	4. ANEDE	4. CATHODE
5. COLLECTOR	5. CATHEDE	5. CATHODE
6. COLLECTOR	6. CATHEDE	6. CATHODE
STYLE 7:	STYLE 8:	STYLE 9:
PIN 1. CATHODE	PIN 1. DRAIN	PIN 1. SDURCE 1
2. ANODE	2. DRAIN	2. GATE 1
3. CATHODE	3. GATE	3. DRAIN 2
4. CATHODE	4. SDURCE	4. SDURCE 2
5. ANODE	5. DRAIN	5. GATE 2
6. CATHODE	6. DRAIN	6. DRAIN 1
STYLE 10: PIN 1. CATHODE 1 2. N/C 3. CATHODE 2 4. ANODE 2 5. N/C 6. ANODE 1	STYLE 11: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	

6. COLLECTOR 2

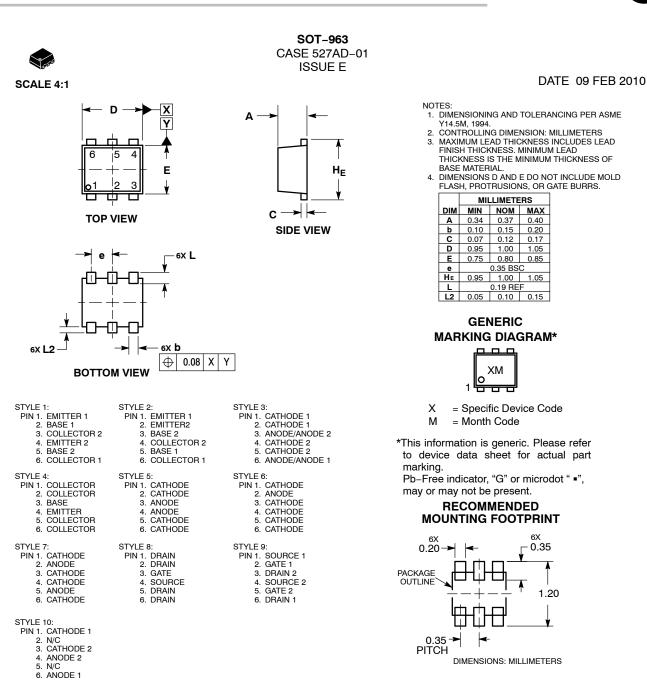
DATE 26 JAN 2021

GENERIC **MARKING DIAGRAM***

XX = Specific Device Code

M = Month Code

. = Pb-Free Package


*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON11126D Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 2 OF 2

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

4. ANDDE 2 5. N/C 6. ANDDE 1

DOCUMENT NUMBER:	98AON26456D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	CRIPTION: SOT-963, 1X1, 0.35P PAGE 1 OF 1			
ON Semiconductor and i are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically				

rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative