NLSF302

Quad 2-Input NOR Gate

The NLSF302 is an advanced high speed CMOS 2-input NOR gate fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7.0 V , allowing the interface of 5.0 V systems to 3.0 V systems.

Features

- High Speed: $\mathrm{t}_{\mathrm{PD}}=3.6 \mathrm{~ns}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=2.0 \mu \mathrm{~A}$ (Max) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High Noise Immunity: $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2.0 V to 5.5 V Operating Range
- Low Noise: V ${ }_{\text {OLP }}=0.8 \mathrm{~V}$ (Max)
- Function Compatible with Other Standard Logic Families
- QFN-16 Package
- Latchup Performance Exceeds 300 mA
- ESD Performance: Human Body Model; > 2000 V, Machine Model > 200 V
- Chip Complexity: 40 FETs or 10 Equivalent Gates
- $\mathrm{Pb}-$ Free Package is Available*

FUNCTION TABLE

Inputs		Output
A	B	Y
L	L	H
L	H	L
H	L	L
H	H	L

[^0]ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

QFN-16 MN SUFFIX CASE 485G

MARKING DIAGRAM

NLSF302	$=$ Device Code
A	= Assembly Location
L	= Wafer Lot
Y	= Year
W	= Work Week
-	= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NLSF302MNR2	QFN-16	3000/Tape \& Reel
NLSF302MNR2G	QFN-16 (Pb-Free)	3000/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 1. LOGIC DIAGRAM

Figure 2. PIN ASSIGNMENT (QFN-16)

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
DC Supply Voltage	V_{CC}	-0.5 to +7.0	V
DC Input Voltage	$\mathrm{V}_{\text {in }}$	-0.5 to +7.0	V
DC Output Voltage	$\mathrm{V}_{\text {out }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Input Diode Current	I_{IK}	-20	mA
Output Diode Current	I_{OK}	± 20	mA
DC Output Current, per Pin	$\mathrm{I}_{\mathrm{out}}$	± 25	mA
DC Supply Current, V_{CC} and GND Pins	I_{CC}	± 50	mA
Power Dissipation in Still Air	P_{D}	450	mW
Storage Temperature	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
DC Supply Voltage	V_{CC}	2.0	5.5	V
DC Input Voltage	$V_{\text {in }}$	0	5.5	V
DC Output Voltage	$V_{\text {out }}$	0	V_{CC}	V
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { Input Rise and Fall Time } & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}\end{array}$	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	ns/V

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{CC}}$.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS

Parameter	Test Conditions	Symbol	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
Minimum High-Level Input Voltage		V_{IH}	$\begin{gathered} 2.0 \\ 3.0 \text { to } 5.5 \end{gathered}$	$\begin{gathered} 1.50 \\ V_{C C} \times 0.7 \end{gathered}$			$\begin{gathered} 1.50 \\ V_{C C} \times 0.7 \end{gathered}$		V
Maximum Low-Level Input Voltage		$\mathrm{V}_{\text {IL }}$	$\begin{gathered} 2.0 \\ 3.0 \text { to } 5.5 \end{gathered}$			$\begin{gathered} 0.50 \\ v_{C C} \times 0.3 \end{gathered}$		$\begin{gathered} 0.50 \\ \mathrm{~V}_{C C} \times 0.3 \end{gathered}$	V
Minimum High-Level Output Voltage	$\begin{aligned} & V_{\text {in }}=V_{\text {IH }} \text { or } V_{\text {IL }} \\ & I_{O H}=-50 \mu \mathrm{~A} \end{aligned}$	V_{OH}	2.0 3.0 4.5	$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		V
	$\begin{aligned} & V_{\text {in }}=V_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 3.94 \end{aligned}$			$\begin{aligned} & 2.48 \\ & 3.80 \end{aligned}$		
Maximum Low-Level Output Voltage	$\begin{aligned} & V_{\text {in }}=V_{\text {IH }} \text { or } V_{I L} \\ & I_{O L}=50 \mu \mathrm{~A} \end{aligned}$	V_{OL}	2.0 3.0 4.5		0.0 0.0 0.0	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$		$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	
Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$ or GND	$\mathrm{l}_{\text {in }}$	0 to 5.5			± 0.1		± 1.0	$\mu \mathrm{A}$
Maximum Quiescent Supply Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}$ or GND	$I_{C C}$	5.5			2.0		20.0	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 n s$)

Parameter	Test Conditions	Symbol	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
			Min	Typ	Max	Min	Max	
Maximum Propagation Delay, Input A or B to Output Y	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \vee \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \text { tpLH, } \\ & t_{\text {PHLL }} \end{aligned}$		$\begin{aligned} & 5.6 \\ & 8.1 \end{aligned}$	$\begin{gathered} \hline 7.9 \\ 11.4 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 13.0 \end{gathered}$	ns
	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \vee \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{aligned} & 3.6 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	
Maximum Input Capacitance		$\mathrm{C}_{\text {in }}$		4	10		10	pF
Power Dissipation Capacitance (Note 1)		$\mathrm{C}_{\text {PD }}$	Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$					pF
		15						

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{C C(O P R)}=C_{P D} \bullet \mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} / 4$ (per gate). $\mathrm{C}_{P D}$ is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

NOISE CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Characteristic	Symbol	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Unit
		Typ	Max	
Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\text {OLP }}$	0.3	0.8	V
Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\text {OLV }}$	-0.3	-0.8	V
Minimum High Level Dynamic Input Voltage	$\mathrm{V}_{\text {IHD }}$		3.5	V
Maximum Low Level Dynamic Input Voltage	$\mathrm{V}_{\text {ILD }}$		1.5	V

Figure 3. Switching Waveforms

*Includes all probe and jig capacitance
Figure 4. Test Circuit

Figure 5. Input Equivalent Circuit

QFN16 3x3, 0.5P
CASE 485G-01
ISSUE F
DATE 22 JUN 2011

RECOMMENDED
Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " r ", may or may not be present.

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON04795D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | QFN16, 3X3 MM, 0.5 PITCH | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:
NLSF302MNR2 NLSF302MNR2G

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

