NLAS324

Dual SPST Analog Switch, Low Voltage, Single Supply

The NLAS324 is a dual SPST (Single Pole, Single Throw) switch, similar to $1 / 2$ a standard 4066 . The device permits the independent selection of 2 analog/digital signals. Available in the Ultra-Small 8 package.

The use of advanced 0.6μ CMOS process, improves the R_{ON} resistance considerably compared to older higher voltage technologies.

Features

- On Resistance is 20Ω Typical at 5.0 V
- Matching is $<\Omega$ Between Sections
- 2-6V Operating Range
- Ultra Low $<5 \mathrm{pC}$ Charge Injection
- Ultra Low Leakage $<1 \mathrm{nA}$ at $5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$
- Wide Bandwidth $>200 \mathrm{MHz},-3 \mathrm{~dB}$
- 2000 V ESD (HBM)
- Ron Flatness $\pm 6 \Omega$ at 5.0 V
- Negative Enable
- Switches are Independent
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Pinout

NLAS324

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0	V
V_{1}	DC Input Voltage	-0.5 to +7.0	V
V_{O}	DC Output Voltage	-0.5 to +7.0	V
I_{IK}	DC Input Diode Current $\quad \mathrm{V}_{1}<\mathrm{GND}$	-50	mA
lok	DC Output Diode Current $\quad \mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	-50	mA
Io	DC Output Sink Current	± 50	mA
I_{Cc}	DC Supply Current per Supply Pin	± 100	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature under Bias	+150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Note 1)	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$	250	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\begin{gathered} >2000 \\ >150 \\ N / A \end{gathered}$	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2-ounce copper trace with no air flow.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit
V_{CC}	Positive DC Supply Voltage	2.0	5.5	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage (Enable)	GND	5.5	V
V_{10}	Static or Dynamic Voltage Across an Off Switch	GND	$\mathrm{V}_{\text {CC }}$	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage (NO, COM)	GND	$\mathrm{V}_{\text {CC }}$	V
$\mathrm{T}_{\text {A }}$	Operating Temperature Range, All Package Types	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{tf}_{f}$	Input Rise or Fall Time, $\quad \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (Enable Input) $\quad \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DEVICE JUNCTION TEMPERATURE VERSUS TIME

 TO 0.1\% BOND FAILURES| Junction
 Temperature ${ }^{\circ} \mathbf{C}$ | Time, Hours | Time, Years |
| :---: | :---: | :---: |
| 80 | $1,032,200$ | 117.8 |
| 90 | 419,300 | 47.9 |
| 100 | 178,700 | 20.4 |
| 110 | 79,600 | 9.4 |
| 120 | 37,000 | 4.2 |
| 130 | 17,800 | 2.0 |
| 140 | 8,900 | 1.0 |

Figure 2. Failure Rate vs. Time Junction Temperature

NLAS324

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Condition	V_{cc}	Guaranteed Max Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$<85{ }^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Enable Inputs		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.1 \\ & 3.15 \\ & 3.85 \end{aligned}$	1.5 2.1 3.15 3.85	$\begin{aligned} & 1.5 \\ & 2.1 \\ & 3.15 \\ & 3.85 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage, Enable Inputs		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V
1 N	Maximum Input Leakage Current, Enable Inputs	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	0 V to 5.5 V	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current (per package)	Enable and $\mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}}$ or GND	5.5	1.0	1.0	2.0	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS - Analog Section

Symbol	Parameter	Condition	V_{cc}	Guaranteed Max Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
RON	Maximum ON Resistance (Figures 8-12)	$\begin{aligned} & V_{I N}=V_{I H} \\ & V_{I S}=V_{C C} \text { to GND } \\ & I_{I S} I=\leq 10.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 45 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 50 \\ & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 55 \\ & 40 \\ & 35 \end{aligned}$	Ω
$\mathrm{R}_{\text {FLAT(ON) }}$	ON Resistance Flatness	$\begin{aligned} & \hline \mathrm{V}_{I N}=\mathrm{V}_{1 \mathrm{H}} \\ & I_{\mid \mathrm{S}} \mathrm{~S}=\leq 10.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mid S}=1 \mathrm{~V}, 2 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	4.5	4	4	5	Ω
$\mathrm{I}_{\text {NO(OFF) }}$	Off Leakage Current, Pin 2 (Figure 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{NO}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{COM}}=1.0 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{NO}} 4.5 \mathrm{~V} \end{aligned}$	5.5	1	10	100	nA
ICOM(OFF)	Off Leakage Current, Pin 1 (Figure 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{NO}}=4.5 \mathrm{~V} \text { or } 1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=1.0 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \end{aligned}$	5.5	1	10	100	nA

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & (\mathrm{~V}) \end{aligned}$	Guaranteed Max Limit						$<125^{\circ} \mathrm{C}$			Unit
				-55 to $25^{\circ} \mathrm{C}$			$<85^{\circ} \mathrm{C}$						
				Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
t_{ON}	Turn-On Time	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 4, 5, and 13)	2.03.04.55.5		7.0 5.0 4.5 4.5	$\begin{gathered} \hline 14 \\ 10 \\ 9 \\ 9 \end{gathered}$			16 12 11 11			16 12 11 11	ns
toff	Turn-Off Time	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 4, 5, and 13)	$\begin{gathered} \hline 2.03 .04 .5 \\ 5.5 \end{gathered}$		11.0 7.0 5.0 5.0	$\begin{aligned} & \hline 22 \\ & 14 \\ & 10 \\ & 10 \end{aligned}$			24 16 12 12			24 16 12 12	ns

		Typical @ 25, $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{V}$	
C_{IN}	Maximum Input Capacitance, Select Input	8	pF
$\mathrm{C}_{\mathrm{NO} \text { or }} \mathrm{C}_{\mathrm{NC}}$	Analog I/O (switch off)	10	
$\mathrm{C}_{\mathrm{COM} \text { (OFF) }}$	Common I/ (switch off)	10	
$\mathrm{C}_{\mathrm{COM} \text { (ON) }}$	Feedthrough (switch on)	20	

NLAS324

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Condition	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{v} \end{gathered}$	Limit	Unit
				$25^{\circ} \mathrm{C}$	
BW	Maximum On-Channel -3dB Bandwidth or Minimum Frequency Response	$\mathrm{V}_{\mathrm{IS}}=0 \mathrm{dBm}$ $\mathrm{V}_{\text {IS }}$ centered between V_{CC} and $G N D$ (Figures 6 and 14)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 190 \\ & 200 \\ & 220 \end{aligned}$	MHz
$\mathrm{V}_{\text {ONL }}$	Maximum Feedthrough On Loss	$\mathrm{V}_{\text {IS }}=0 \mathrm{dBm} @ 10 \mathrm{kHz}$ $\mathrm{V}_{\text {IS }}$ centered between V_{CC} and GND (Figure 6)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -2 \\ & -2 \\ & -2 \end{aligned}$	dB
$\mathrm{V}_{\text {ISO }}$	Off-Channel Isolation	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{VRMS}$ $\mathrm{V}_{\text {IS }}$ centered between V_{CC} and GND (Figures 6 and 15)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	-93	dB
Q	Charge Injection Enable Input to Common I/O	$\begin{aligned} & \mathrm{V}_{I S}=\mathrm{V}_{\mathrm{CC}} \text { to } \\ & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \mathrm{~F}_{I S}=20 \mathrm{kHz} \\ & \mathrm{R}_{I S}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF} \\ & \mathrm{Q}=\mathrm{C}_{\mathrm{L}} * \Delta \mathrm{~V}_{\text {OUT }}(\text { Figures } 7 \text { and 16) } \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	pC
THD	Total Harmonic Distortion THD + Noise	$\begin{aligned} & \mathrm{F}_{I S}=20 \mathrm{~Hz} \text { to } 1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=\text { Rgen }=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\text {IS }}=3.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \\ & \mathrm{V}_{\mathrm{IS}}=5.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave (Figure 17) } \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.5 \end{aligned}$	$\begin{gathered} 0.3 \\ 0.15 \end{gathered}$	\%

Figure 3. Switch Leakage vs. Temperature

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

NLAS324

Figure 5. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20$ Log $\left(\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {INT }}}\right) \mathrm{I}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\text {ONL }}=$ On Channel Loss $\left.=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)\right)_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth $(B W)=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$

Figure 6. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$

Figure 7. Charge Injection: (Q)

Figure 8. RoN vs. $\mathrm{V}_{\text {COM }}$ and $\mathrm{V}_{\mathrm{CC}}\left(@ 25^{\circ} \mathrm{C}\right.$)

Figure 10. R $\mathrm{RON}_{\mathrm{N}}$ vs. $\mathrm{V}_{\text {COM }}$ and Temperature, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$

Figure 12. R R_{ON} vs. $\mathrm{V}_{\mathrm{COM}}$ and Temperature, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

Figure 9. R R_{ON} vs. $\mathrm{V}_{\text {COM }}$ and Temperature, $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$

Figure 11. R R_{ON} vs. $\mathrm{V}_{\text {COM }}$ and Temperature, $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$

Figure 13. Switching Time vs. Supply Voltage, $\mathrm{T}=25^{\circ} \mathrm{C}$

Figure 14. ON Channel Bandwidth and Phase Shift Over Frequency

Figure 15. Off Channel Isolation

Figure 17. THD vs. Frequency

US8
CASE 493
ISSUE D
SCALE 4:1

DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSION OR GATE BURR. MOLD
FLASH. PROTRUSION AND GATE BURR SHALL NOT EXCEED 0.14MM ($0.0055^{\prime \prime}$) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH AND PROTRUSION SHALL NOT EXCEED 0.14MM (0.0055") PER SIDE.
5. LEAD FINISH IS SOLDER PLATING WITH
THICKNESS OF 0.0076-0.0203MM (0.003-0.008").
6. ALL TOLERANCE UNLESS OTHERWISE SPECIFIED $\pm 0.0508 \mathrm{MM}$ (0.0002 ").

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	1.90	2.10	0.075	0.083
B	2.20	2.40	0.087	0.094
C	0.60	0.90	0.024	0.035
D	0.17	0.25	0.007	0.010
F	0.20	0.35	0.008	0.014
G	0.50 BSC		0.020 BSC	
H	0.40 REF		0.016 REF	
J	0.10	0.18	0.004	0.007
K	0.00	0.10	0.000	0.004
L	3.00	3.20	0.118	0.128
M	0°	6°	0°	6°
N	0°	10°	0°	10°
P	0.23	0.34	0.010	0.013
R	0.23	0.33	0.009	0.013
S	0.37	0.47	0.015	0.019
U	0.60	0.80	0.024	0.031
V	0.12 BSC		0.005 BSC	

GENERIC MARKING DIAGRAM*

XX	$=$ Specific Device Code
M	$=$ Date Code
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to
*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
device data sheet for actual part marking.

| DOCUMENT NUMBER: | 98AONO4475D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | US8 | PAGE 1 OF 1 |

ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:
NLAS324US NLAS324USG

