

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

April 2017

FPF3042 IntelliMAX[™] 18 V-Rated, Dual-Input, Single-Output, Power-Source-Selector Switch

Features

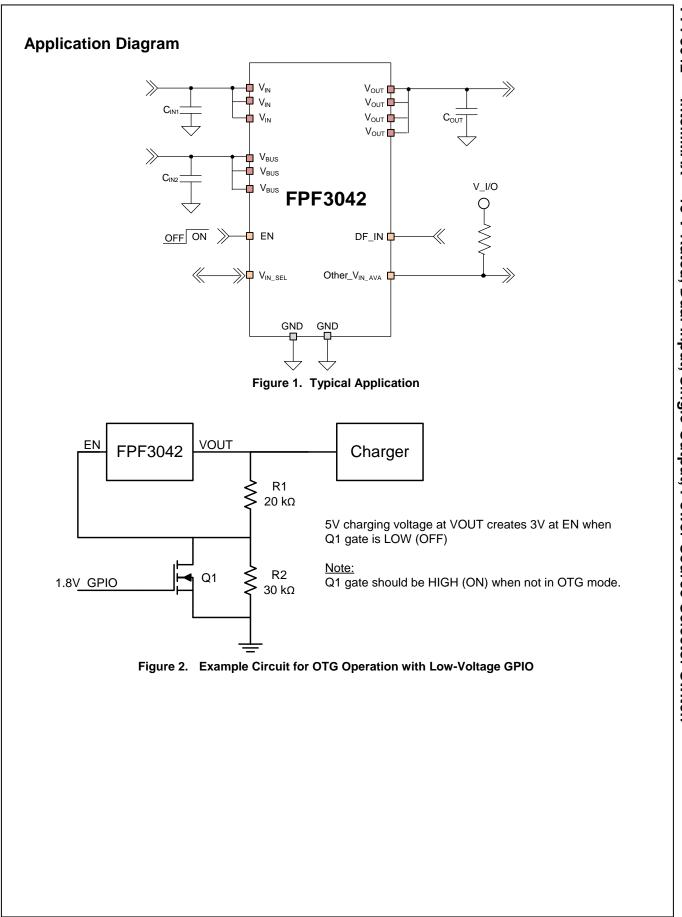
- Dual-Input, Single-Output Load Switch (DISO)
- Input Supply Operating Range:
 - 4.0 V~12.4 V at V_{IN}
 - 4.0 V~12.4 V at V_{BUS}
- Typical R_{ON}:
 - = 95 m Ω at V_{IN}=5 V
 - 70 mΩ at V_{BUS}=5 V
- Bidirectional Switch for VIN and VBUS
- Slew Rate Controlled:
 - 50 μ s at V_{IN} for < 4.7 μ F C_{OUT}
 - 90 μs at V_{BUS} for < 4.7 μF C_{OUT}
- Maximum I_{SW}: 2.7 A per Channel
- Break-Before-Make Transition
- Under-Voltage Lockout (UVLO)
- Over-Voltage Lockout (OVLO)
- Thermal Shutdown
- Logic CMOS IO Meets JESD76 Standard for GPIO Interface and Related Power Supply Requirements
- ESD Protected:
 - Human Body Model: >3 kV
 - Charged Device Model: >1.5 kV
 - IEC 61000-4-2 Air Discharge: >15 kV
 - IEC61000-4-2 Contact Discharge: >8 kV

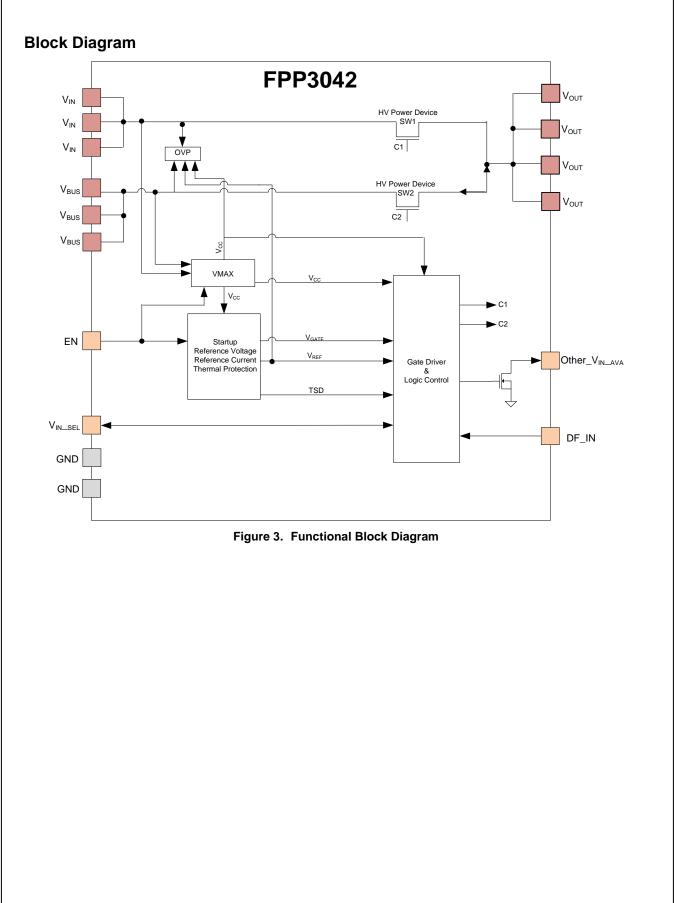
Description

The FPF3042 is an 18 V-rated Dual-Input Single-Output (DISO) load switch consisting of two channels of slewrate-controlled, low-on-resistance, N-channel MOSFET switches with protection features. The slew-ratecontrolled turn-on characteristic prevents inrush current and the resulting excessive voltage droop on the input power rails. The input voltage range operates from 4.0 V to 12.4 V at both V_{BUS} and V_{IN} to align with the needs of high-voltage portable device power rails.

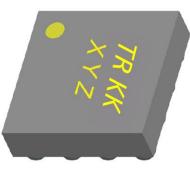
Both V_{IN} and V_{BUS} have the over-voltage protection of 14 V (typical) to avoid damage to the system.

 V_{IN} and V_{BUS} bidirectional switching allows reverse current from V_{OUT} to V_{IN} or V_{BUS} for On-The-Go, (OTG) Mode. The switching is controlled by logic input EN and V_{IN_SEL} is capable of interfacing directly with low-voltage control signal General-Purpose Input / Output (GPIO).


FPF3042 is available in 1.76 mm x 1.96 mm Wafer-Level Chip-Scale Package (WLCSP), 16-bump, 0.4 mm pitch.


Applications

- Input Power-Selection Block Supporting USB and Wireless Charging
- Smart Phone / Tablet PC


Ordering in					
Part Number	Top Mark	Channel	Typical R _{oN} per Channel at 5 V _{IN}	Rise Time (t _R)	Package
			95 m Ω for V_{IN}	50 μs for V_{IN}	16-Bump, 1.76 mm x 1.96 mm,
FPF3042UCX	TR	DISO	70 m Ω for V _{BUS}	90 µs for V _{BUS}	Wafer-Level Chip-Scale Package (WLCSP), 0.4 mm Pitch

Ordering Information

Pin Configuration

<u>Top View</u> Figure 4. Pin Assignment (Top View)

Pin Description

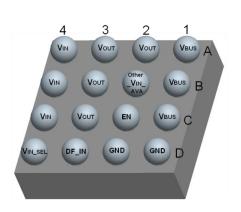


Figure 5. Pin Assignment (Bottom View)

Pin #	Name	Input / Output	Description
A1, B1, C1	VBUS	Input / Output	V_{BUS} at USB: Power input / output; bi-directional switch when $V_{IN_SEL} = LOW$.
A4, B4, C4	Vin	Input / Output	V_{IN} Supply Input: Power input / output; bi-directional switch when $V_{IN_SEL} = HIGH$.
A2, A3, B3, C3	V _{OUT}	Input / Output	Switch Output: Power input / output
C2	EN	Input	Enable : Active HIGH; EN voltage ≥ 2.5 V can power internal circuit when V _{IN} and V _{BUS} are absent. 1 M Ω pull-down resistor is included.
D4	Vin_sel	Input / Output	Supply Selector & Status: Input power source selection input and status output. This signal is ignored during EN=LOW.Selector input during EN=HIGH:HIGH = switch V_{IN} to V_{OUT} / LOW = switch V_{BUS} to V_{OUT} .Status output during EN=LOW:HIGH = V_{IN} is used for V_{OUT} / LOW = V_{BUS} is used for V_{OUT} .
D3	DF_IN	Input	Default Supply Selector during EN=LOW : Floating = V _{BUS} connects to V _{OUT} . LOW = V _{IN} connects to V _{OUT} . This signal is ignored during EN=HIGH. 1 μ A pull-up current source is included.
B2	Other_VIN_AVA	Output	Other Supply Input Status: Open-drain output. HIGH-Z = both V_{IN} and V_{BUS} are valid. LOW = the other power source is not valid.
D1, D2	GND		Ground

Table	e1. T	ruth Table					
EN	$V_{IN} > V_{UVLO}$	V _{BUS} >V _{UVLO}	V_{IN_SEL}	DF_IN	Other_V _{IN_AVA}	V _{OUT}	Comment
HIGH	х	х	LOW	х	HI-Z if VIN & VBUS > VUVLO LOW if VIN or VBUS < VUVLO	VBUS	Vout is selected by
HIGH	Х	х	HIGH	Х	HI-Z if VIN & VBUS > VUVLO LOW if VIN or VBUS < VUVLO	V _{IN}	Bidirectional channel
LOW	YES	NO	HIGH	Х	LOW	VIN	Automatic selection to
LOW	NO	YES	LOW	х	LOW	V _{BUS}	valid input V _{IN_SEL} is output.
LOW	YES	YES	LOW	Floating	HIGH-Z	V _{BUS}	V _{OUT} is selected by
LOW	YES	YES	HIGH	LOW	HIGH-Z	V _{IN}	DF_IN V _{IN_SEL} is output.
LOW	NO	NO	NO	Х	Floating	Floating	OFF

Notes:

Internal pull-down at EN.
1 μA pull-up current source at DF_IN.

Absolute Maximum Ratings

Stresses exceeding the Absolute Maximum Ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Min.	Max.	Unit			
		-1.4	40.0				
N/	VIN, VBUS to GND	Pulsed, 100 ms Maximum Nor	n-Repetitive	-2.0	18.0	Ň	
Vpin	V _{OUT} to GND ⁽³⁾			-0.3	16.0	V	
	EN, DF_IN, VIN_SEL, O	ther_V _{IN_AVA} to GND		-0.3	6.0		
			T _A =25°C		2.70		
	Maximum Cantinuaus	Quitab Qurrant ner Obernel	T _A =65°C		2.70	A	
Isw	Maximum Continuous	Switch Current per Channel	T _A =75°C		2.50		
			2.25				
t _{PD}	Total Power Dissipation	on at T _A =25°C		2.25	W		
TJ	Operating Junction Te	mperature	nperature				
T _{STG}	Storage Junction Tem	Storage Junction Temperature					
θJA	Thermal Resistance,	lunction-to-Ambient (1in. Square	Pad of 2 oz. Copper)		55(4)	°C/W	
		Human Body Model, ANSI/ESDA/JEDEC JS-001-2012					
		Charged Device Model, JESD	Charged Device Model, JESD22-C101				
ESD	Electrostatic Discharge Capability		Air Discharge (VIN, VBUS to GND)	15.0		kV	
		IEC61000-4-2 System Level ⁽ 5	Contact Discharge (VIN, VBUS to GND)	8.0			

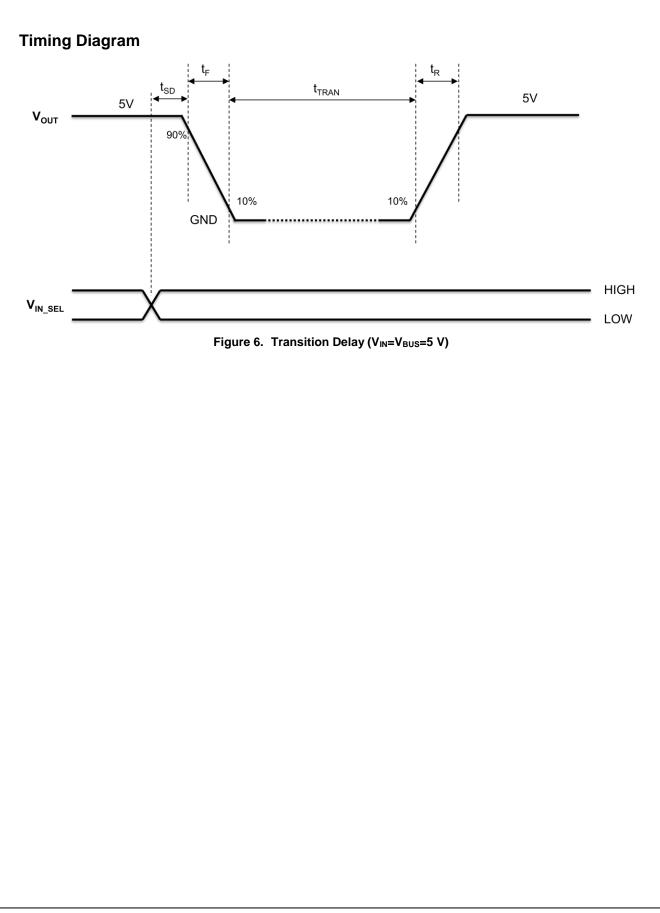
Notes:

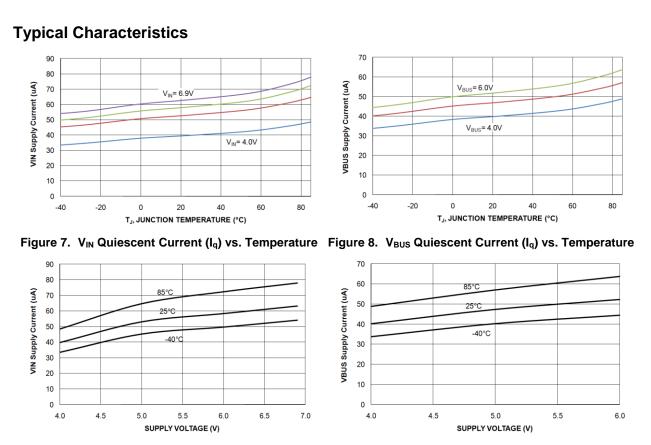
- 3. If an external voltage of more than 13 V is applied to V_{OUT} , the slew rate should be <1 V/ms from 13 V.
- 4. Measured using 2S2P JEDEC standard PCB.
- 5. System-level ESD can be guaranteed by design.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameters	Min.	Max.	Unit
N/	VIN	4.0	12.4	V
VPIN	V _{BUS}	4.0	12.4	v
TA	Ambient Operating Temperature	-40	+85	°C


Electrical Characteristics


VIN=4 to 12.4 V, VBUS=4 to 12.4 V, TA=-40 to 85°C unless otherwise noted. Typical values are at VIN=VBUS=5 V, EN=HIGH and TA=25°C unless otherwise noted.

Symbol	Parameters	Condition	Min.	Тур.	Max.	Uni	
Vin	Input Voltage from V _{IN}		4.0		12.4	V	
VBUS	Input Voltage from V _{BUS}		4.0		12.4	V	
		I _{OUT} =0 mA, EN=HIGH, V _{IN} or V _{BUS} =5 V		55	120	μA	
lq	Quiescent Current	IOUT=0 mA, EN=5 V, VIN and VBUS=GND		33	70	μA	
		V _{IN} =12 V, I _{OUT} =200 mA, T _A =25°C		95		μγγ	
		VIN=8 V, IOUT=200 mA, TA=25°C		95			
	On Resistance for V _{IN}	VIN=5 V, IOUT=200 mA, TA=25°C		95	150	mΩ	
		V _{IN} =5 V, I _{OUT} =200 mA, T _A =25°C to 85°C ⁽⁶⁾			200		
Ron		V _{BUS} =12 V, I _{OUT} =200 mA, T _A =25°C		70			
		V _{BUS} =6 V, I _{OUT} =200 mA, T _A =25°C		70			
	On Resistance for V _{BUS}	V _{BUS} =5 V, I _{OUT} =200 mA, T _A =25°C		70	100	mΩ	
		V _{BUS} =5 V, I _{OUT} =200 mA, T _A =25°C to 85°C ⁽⁶⁾					
VIH	Input Logic High Voltage	V _{IN} , V _{BUS} = 4.0 V~12.4 V	1.15			V	
VIL	Input Logic Low Voltage	V _{IN} , V _{BUS} =4.0 V~12.4 V			0.52	V	
Ven(otg)	EN Voltage in OTG Mode ⁽⁶⁾	VIN & VBUS=Float or VIN & VBUS <vuvlo< td=""><td>2.5</td><td></td><td></td><td>V</td></vuvlo<>	2.5			V	
$R_{\text{EN}_{PD}}$	Pull-Down Resistance at EN			1000		kΩ	
Protectio	n						
		VIN or VBUS Rising	3.05	3.50	4.00	V	
Vuvlo	Under-Voltage Lockout Threshold	VIN or VBUS Falling	2.55	3.00	3.55	V	
VUVHYS	Under-Voltage Lockout Hysteresis			0.5		V	
		V _{IN} Rising Threshold	12.9	14.0	15.0	V	
N/		V _{IN} Falling Threshold	12.4	13.5	14.5	V	
Vovlo	Over-Voltage Lockout Threshold	V _{BUS} Rising Threshold	12.9	14.0	15.0	V	
		VBUS Falling Threshold	12.4	13.5	14.5	V	
		Vin		0.5		V	
Vovhys	Over-Voltage Lockout Hysteresis	V _{BUS}		0.5		V	
T _{SDN}	Thermal Shutdown Threshold			150		°C	
TSDNHYS	Thermal Shutdown Hysteresis			20		°C	
Reverse (Current Blocking (RCB)	•	•	•			
IRCB	VIN or VBUS Current During RCB	Vout=8 V, VIN or VBUS=GND			30	μA	
Dynamic	Characteristics						
t -	Vout Rise Time, VBUS ^(6,7)			90			
t _R	V _{OUT} Rise Time, V _{IN} (6,7)			50		μs	
t⊧	VOUT Fall Time ^(6,7)	V _{IN} =V _{BUS} =5 V, R _L =150 Ω, C _L =4.7 μF, T _A =25°C		1.4		ms	
t TRAN	Transition Delay ^(6,7)]	50	100		ms	
t _{SD}	Selection Delay ^(6,7)			50		μs	

This parameter is guaranteed by characterization and/or design; not production tested. 6.

 $t_{SD}/t_{TRAN}/t_{R}/t_{F}$ are defined in Figure 6. 7.

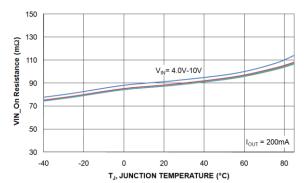


Figure 11.V_{IN} On Resistance (mΩ) vs. Temperature

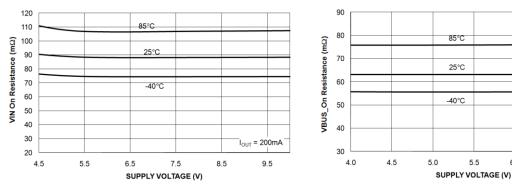
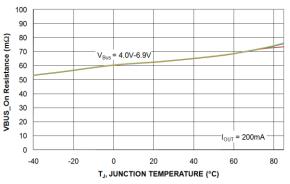
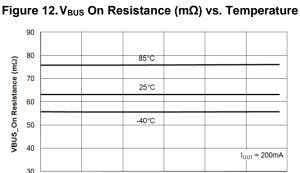
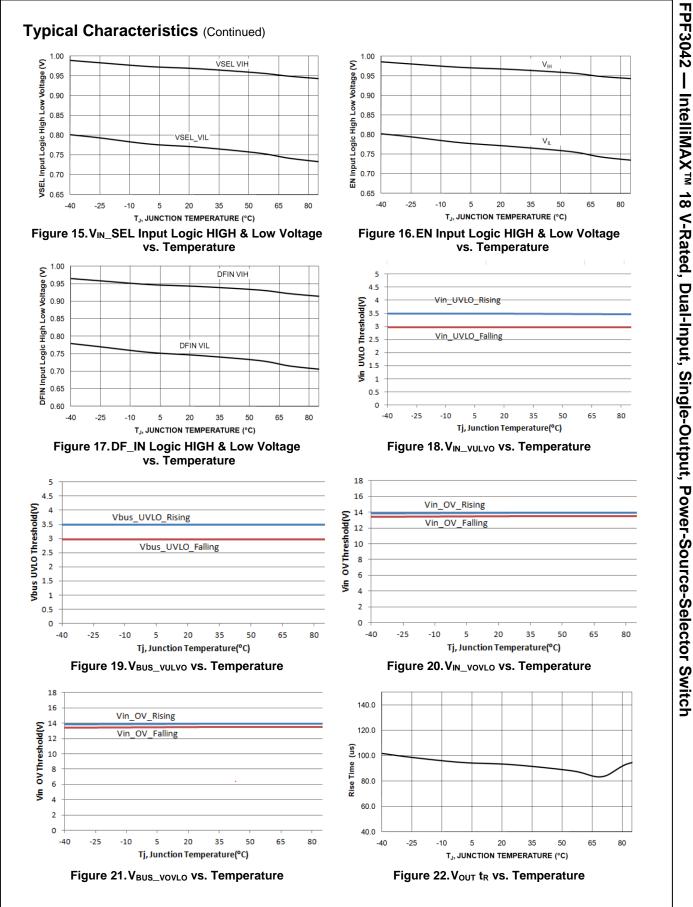
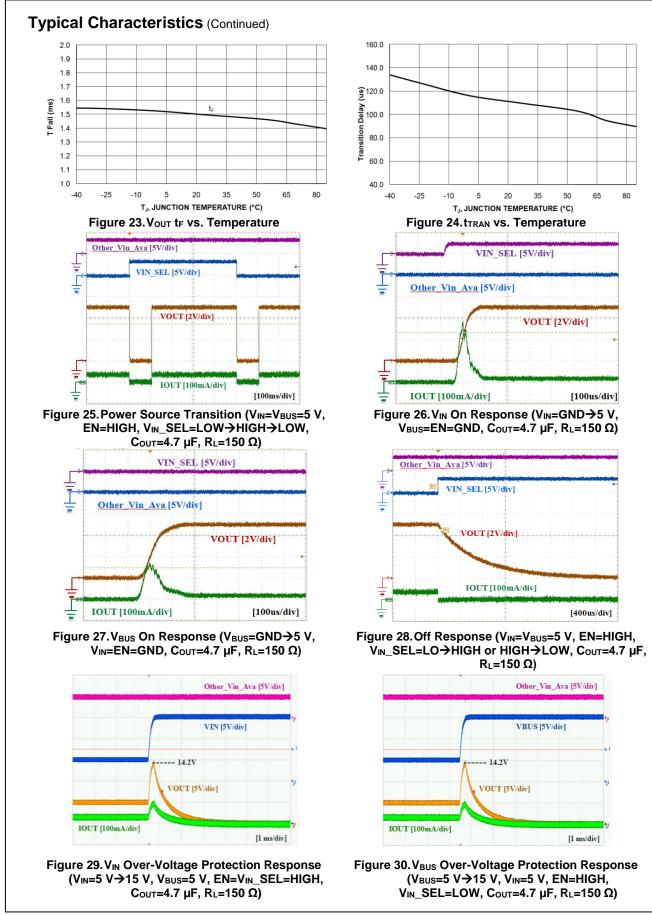




Figure 13. V_{IN} On Resistance (mΩ) vs. Supply Voltage Figure 14. V_{BUS} On Resistance (mΩ) vs. Supply Voltage

7.0





6.0

6.5

Operation and Application Information

The FPF3042 is an 18 V, 2.7 A-rated, Dual-Input Single-Output (DISO) N-channel MOSFET load switch with slew-rate-controlled and low on resistance. The input operating range is from 4 V to 12.4 V at V_{BUS} and at V_{IN}. The internal circuitry is powered from the highest voltage source among V_{IN}, V_{BUS}, and EN.

Input Power-Source Selection

The input power source can be selected by V_{IN_SEL} and DF_IN, respectively, depending on the EN state. When EN is HIGH, the input source is selected by V_{IN_SEL} regardless of DF_IN. If V_{IN_SEL} is LOW, V_{BUS} is selected. If V_{IN_SEL} is HIGH, V_{IN} is selected.

Table 2.	Input	Power	Selection	by	VIN	SEL

EN	$V_{IN} > V_{UVLO}$	V _{BUS} >V _{UVLO}	V_{IN_SEL}	DF_IN	V _{OUT}
HIGH	Х	Х	LOW	Х	V_{BUS}
HIGH	Х	Х	HIGH	Х	VIN

When EN is LOW, the input source is selected by DF_IN and the number of valid input sources. If only one input source is valid (greater than V_{UVLO(MAX)}), the source is selected automatically, regardless of DF_IN, to make charging path in case the battery is depleted. If both V_{BUS} and V_{IN} have valid input sources, the input source is selected by DF_IN. If DF_IN is LOW, V_{IN} is selected. If DF_IN is HIGH or floating, V_{BUS} is selected. DF_IN is biased HIGH with an internal 1 μ A pull-up current source.

Table 3. Input Power Selection by DF_I
--

EN	V _{IN} >V _{UVLO}	V _{BUS} >V _{UVLO}	V_{IN_SEL}	DF_IN	V _{OUT}
LOW	YES	NO	HIGH	Х	Vin
LOW	NO	YES	LOW	Х	VBUS
LOW	YES	YES	LOW	Floating	VBUS
LOW	YES	YES	HIGH	LOW	Vin
LOW	NO	NO	Х	Х	Floating

 V_{IN_SEL} can be the status output to indicate which input power source is used during EN is LOW. If V_{IN} is used, V_{IN_SEL} shows HIGH. If V_{BUS} is used, V_{IN_SEL} shows LOW. The voltage level of HIGH signal is 5.3 V if any one of V_{IN} , V_{BUS} , or EN is higher than 5.3 V. The signal

is highest voltage among $V_{\text{IN}},\,V_{\text{BUS}},$ and EN if none of them is higher than 5.3 V.

EN Voltage for Control Logic Power Supply

Internal control logic is powered from the highest voltage among V_{IN}, V_{BUS}, and V_{EN}. If valid V_{IN} or V_{BUS} higher than UVLO is applied, ON/OFF control by EN should be accomplished with V_{IH}/V_{IL}. If EN powers the internal control block without valid V_{IN} and V_{BUS}, more than 2.5 V is required on the EN pin to operate properly.

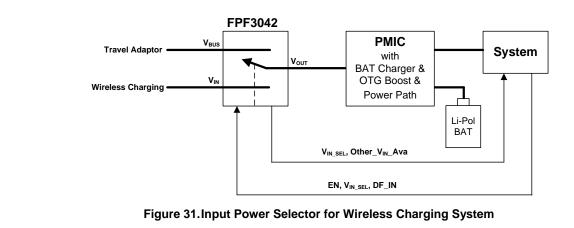
Over-Voltage Protection (OVP)

The FPF3042 includes over-voltage protection at both V_{IN} and V_{BUS}. If V_{IN} or V_{BUS} is higher than 14 V (typical), the power switch is off until input voltage is lower than the over-voltage trip level by a hysteresis voltage of 0.5 V.

Reverse Power Supply for OTG

The bidirectional switch allows reverse power for On-The-Go (OTG) operation. Even if both V_{IN} and V_{BUS} are unavailable, reverse power can be supported if internal control circuitry is powered by EN.

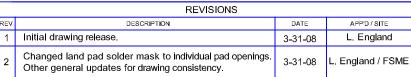
Reverse-Current Blocking (RCB)

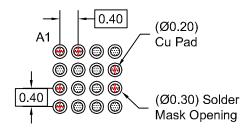

FPF3042 supports reverse-current blocking during EN LOW and an unselected channel.

Thermal Shutdown

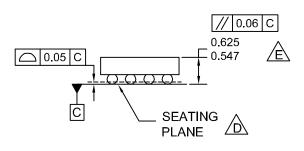
During thermal shutdown, the power switch is turned off if junction temperature exceeds 150°C to avoid damage.

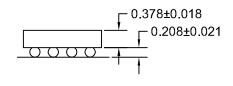
Wireless Charging System


FPF3042 can be used as an input power selector supporting Travel Adaptor (TA) and Wireless Charging (WC) with a single-input-based battery charger or Power Management IC (PMIC), including a charging block as shown in Figure 31. The system can recognize an input power source change between 5 V TA and 5 V WC without detection circuitry because FPF3042 has a 100 ms transition delay. OTG Mode can be supported without an additional power path, such as a MOSFET.



© 2013 Semiconductor Components Industries, LLC. FPF3042 • Rev. 1.0.1


D	E	X	Y
96 mm ±0.03 mm	1.76 mm ±0.03 mm	0.28 mm	0.38 mm

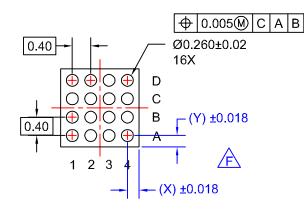


RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

TOP VIEW

SIDE VIEWS

NOTES:


- A. NO JEDEC REGISTRATION APPLIES.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCE PER ASME Y14.5M, 1994.
- D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.

<u>E</u>PACKAGE NOMINAL HEIGHT IS 586 MICRONS ±39 MICRONS (547-625 MICRONS).

F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.

G. DRAWING FILNAME: MKT-UC016AArev2.

APPROVALS	DATE	FAIR	<u>ен</u> ш				
L. England	10-26-09	SEMICO					
^{DFTG. CHK.} E. Shacham	10-26-09	10					
ENGR. CHK.		16BALL WLCSP, 4X4 ARRAY 0.4MM PITCH, 250UM BALL					
			.4101101	F I I G I , 2			
PROJECTIO	N	SCALE	SIZE	DRAWING NUMBER	2	REV	
		N/A	N/A	MKT-l	JC016AA	2	
INCH IMM		DO NO	ESCALE	DRAWING	SHEET 1 of	1	

BOTTOM VIEW

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC