ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Current Limit Switch, with OVP and TRCB, 28 V / 5 A Rated

FPF2895V

Features

- AEC-Q100 Qualified (Grade 2)
- 28 V / 5 A Capability
- Wide Input Voltage Range: 4 V ~ 22 V
- Ultra Low On-Resistance
- Typ. 27 m Ω at 5 V and 25 °C
- Adjustable Current Limit with external RSET
 - 500 mA ~ 5 A
- Selectable OVLO with OV1 and OV2 Logic Input
 - ◆ 5.95 V ± 50 mV
 - ◆ 10 V ± 100 mV
 - ◆ 16.8 V ± 300 mV
 - $23 V \pm 460 mV$
- Selectable ON Polarity
- Selectable Over-Current Behavior
 - Auto–Restart Mode
 - Current Source Mode
- True Reverse Current Block
- Thermal Shutdown
- Open Drain Fault FLAGB Output
- UL60950-1 & IEC 60950-1 Certification 5 A Max Loading
- Robust ESD Capability
 - 2 kV HBM & 1 kV CDM
 - 15 kV Air Discharge & 8 kV Contact Discharge under IEC 61000-4-2

Applications

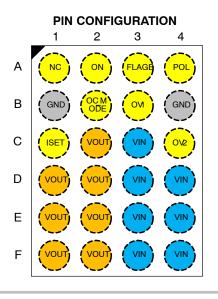
- Laptop, Desktop Computing and Monitor
- Power Accessories
- Automotive

Description

The FPF2895V features a 28 V and 5 A rated current limit power switch, which offers Over–Current Protection (OCP), Over–Voltage Protection (OVP), and True Reverse Current Block (TRCB) to protect system. It has low On–resistance of typical 27 Ω m with WL–CSP can operate over an input voltage range of 4 V to 22 V.

The FPF2895V supports $\pm 15\%$ of current limit accuracy, over-current range of 500 mA to 2 A and $\pm 10\%$ of current limit accuracy, over-current range of 2 A to 5 A, flexible operations such as selectable OVP, selectable ON polarity and selectable OCP behavior, which can be optimized according to system requirements.

The FPF2895V is available in a 24-bump, 1.67 mm x 2.60 mm Wafer-Level Chip-Scale Package (WL-CSP) with 0.4 mm pitch.


ON

ON Semiconductor®

www.onsemi.com

WLCSP24 2.6x1.67x0.612 CASE 567TQ

ORDERING INFORMATION

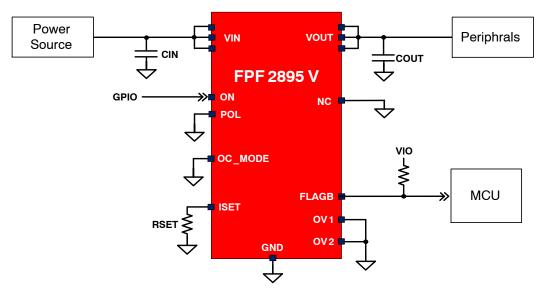
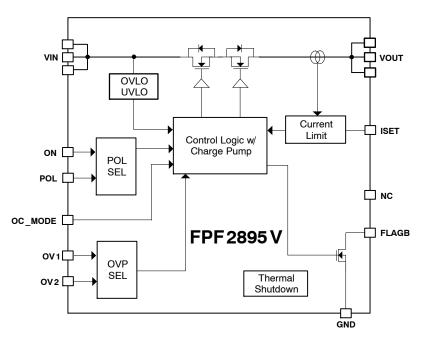
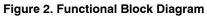
See detailed ordering and shipping information on page 2 of this data sheet.

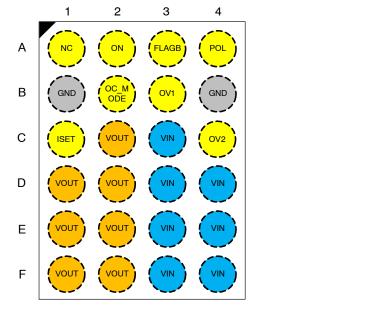
1

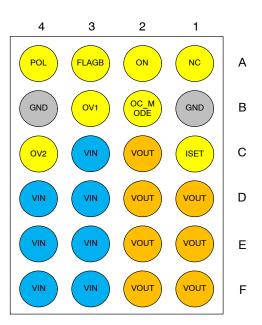
Table 1. ORDERING INFORMATION

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FPF2895VUCX	−40°C − +105°C	ЗK	24-Ball, 0.4 mm Pitch WLCSP	Tape & Reel

Application Diagram


Figure 1. Typical Application


Block Diagram

PIN CONFIGURATION

Pin Configuration (Top View)

Figure 3. Pin Configuration

Pin Configuration (Bottom View)

Table 2. PIN DEFINITIONS

Name	Bump	Туре	Description
VIN	C3, D3, D4, E3, E4, F3, F4	Input/Supply	Switch Input and Device Supply
VOUT	C2, D1, D2, E1, E2, F1, F2	Output	Switch Output to Load
NC	A1	Dummy	Recommended to connect to GND
ON	A2	Input	Internal pull-down resistor of 1 M Ω is included. Active polarity is depending on POL state (Note 1)
POL	A4	Input	Enable Polarity Selection. Internal pull/up of 1 M Ω is included. HIGH (or Floating): Active LOW LOW: Active HIGH (Note 1)
FLAGB	A3	Output	Active LOW, open drain output indicates an over-current, under-voltage, over-voltage, or over-temperature state.
ISET	C1	Input	A resistor from ISET to ground set the current limit for the switch. See below selection Table 6.
OC_MODE	B2	Input	 OCP behavior can be selected. Internal pull-up of 1 MΩ is included. HIGH (or Floating): Auto-restart mode during over-current condition. LOW: Current source mode during over-current condition. (Note 1)
OV1	B3	Input	Over–Voltage Selection Input 1. Internal pull–up of 1 $M\Omega$ is included and see below selection Table 7. (Note 1)
OV2	C4	Input	Over–Voltage Selection Input 2. Internal pull–up of 1 $M\Omega$ is included and see Table 7 (Note 1)
GND	B1, B4	GND	Device Ground

1. To avoid external noise influence when floating, recommend to connect these pins to a certain level.

Table 3. ABSOLUTE MAXIMUM RATINGS

Symbol	Para	Min.	Max.	Unit	
VIN, VOUT	VIN, VOUT to GND		-0.3	28.0	V
V _{PIN}	ON, POL, OC_MODE, ISET, FLAG	B and OVn to GND	-0.3	6.0	V
I _{SW}	Continuous Switch Current			5.5	Α
t _{PD}	Total Power Dissipation at $T_A = 25^{\circ}$	C		2.08	W
T _{STG}	Storage Junction Temperature	Storage Junction Temperature		+150	°C
TJ	Operating Junction Temperature	Operating Junction Temperature		+150	°C
TL	Lead Temperature (Soldering, 10 Soldering, 1	Lead Temperature (Soldering, 10 Seconds)		+260	°C
ΘJ_A	Thermal Resistance, Junction-to-A	Thermal Resistance, Junction-to-Ambient (1in. ² pad of 2 oz. copper)		60 (Note 2)	°C/W
ESD	Electrostatic Discharge Capability	Human Body Model, ANSI/ESDA/JEDEC JS-001	2		
		Charged Device Model, JESD22-C101	1		kV
	IEC61000-4-2 System Level	Air Discharge	15		
		Contact Discharge	8		1

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.Measured using 2S2P JEDEC std. PCB.

Table 4. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
V _{IN}	Supply Voltage	4.0	22.0	V
C _{IN /} C _{OUT}	Input and Output Capacitance	1.0		μF
T _A	Ambient Operating Temperature	-40	+105	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 5. ELECTRICAL CHARACTERISTICS (Unless otherwise noted, VIN = 4 to 22 V, TA = -40 to 105°C; typical values are at	
V_{IN} = 5 V, C_{IN} = C_{OUT} = 1 μ F, ON = HIGH, POL = OV1 = OV2 = OC_MODE = GND and T_A = 25°C.)	

0	Davia 1				-		
Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
BASIC OPERA		1			1	T	1
V _{IN}	Input Voltage (Note 4)			4		22	V
I _{SD_IN}	V _{IN} Shutdown Current	V _{ON} = OFF, V _{IN} = 5.5 V, V _{OUT} GND	V_{ON} = OFF, V_{IN} = 5.5 V, V_{OUT} = Short to GND		75	100	μA
	Quiescent Current		V _{IN} = 5 V		270	400	μΑ
Ι _Q		I _{OUT} = 0 mA, V _{ON} = ON	V _{IN} = 12 V		300	450	
			V _{IN} = 20 V		350	500	
			V _{IN} = 5 V		27	39	
R _{ON}	On Resistance	T _A = 25°C, I _{OUT} = 1 A	V _{IN} = 12 V		27	39	mΩ
			V _{IN} = 20 V		27	39	
I _{ON}	ON Input Leakage	V _{ON} = V _{IN} or GND				10	μA
V _{IH}	Logic Pin Input (ON, POL, OV1, OV2, OC_MODE) High Voltage	V _{IN} = 3 V ~ 23 V		1.2			v
VIL	Logic Pin Input (ON, POL, OV1, OV2, OC_MODE) Low Voltage	V _{IN} = 3 V ~ 23 V				0.4	v
V_{P_LOW}	FLAGB Output Logic Low Volt- age	V _{IN} = 5 V, I _{SINK} = 5 mA			0.1	0.2	V
I _{LKG}	FLAGB Output High, Leakage Current	V _{IN} = 5 V, Switch ON				1	μΑ
ROTECTIONS	6						
L	$V_{IN} = 5 \text{ V}, V_{OUT} = 4 \text{ V}, \text{ R}_{SET} = 3.01 \text{ k}\Omega,$ $T_A = -40 \text{ to } 105^{\circ}\text{C}$		1.275	1.50	1.725	A	
I _{LIM}	Current Limit (Note 3)	V_{IN} = 5 V, V_{OUT} = 4 V, R_{SET} = T_A = -40 to 105 °C	1.54 kΩ,	2.70	3.00	3.30	
V _{FOLD}	ILIM Foldback Trip Voltage (Note 3)	V _{OUT} under ILIM Mode			2		V
		V _{IN} = 5 V, V _{OUT} < V _{FOLD} , T _A = OC_MODE = HIGH	= 25°C,		500		mA
I _{FOLD}	ILIM Foldback Current (Note 3)	V _{IN} = 5 V, V _{OUT} < V _{FOLD} , T _A = OC_MODE = LOW	= 25°C,		250		mA
		V _{IN} Increasing			2.70	2.95	
V _{UVLO}	Under-Voltage Lockout	V _{IN} Decreasing			2.5		V
	UVLO Hysteresis				200		mV
			VINRising	22.20	23.00	23.46	
		OV1 = LOW, OV2 = LOW	V _{IN} Falling	22.00			- - - - -
			V _{IN} Rising	9.80	10.00	10.10	
		OV1 = LOW, OV2 = HIGH	V _{IN} Falling	9.75			
V _{OVLO}	Over-Voltage Lockout		V _{IN} Rising	16.30	16.80	17.10	
		OV1 = HIGH, OV2 = LOW	V _{IN} Falling	16.10			
		$OV1 = HIGH, OV2 = HIGH$ $V_{IN}Rising$ $V_{IN}Falling$		5.85	5.95	6.00	
				5.80			-
T _{OVP}	OVP Response Time (Note 3)	$R_L = 100 \Omega$, $C_L = 0 \mu$ F, $V_{IN} > V_{OVLO}$ to $V_{OUT} = 0.9 \times V_{IN}$				150	ns
V _{T_RCB}	TRCB Protection Trip Point	V _{OUT} – V _{IN}		25	40	mV	

		*				
$V_{R_{RCB}}$	TRCB Protection, Release Point	V _{IN –} V _{OUT}	25	40	mV	
t _{RCB}	TRCB Response Time (Note 3)	V _{IN} = 5 V, V _{ON} = HIGH/LOW	5		μs	
t _{RCB_Release}	TRCB Release Time (Note 3)	V _{IN} = 5 V, Enabled	1		μs	
toc	t _{OC} Over Current Response Time (Note 3)	V _{IN} = 5 V, Moderate OC	20		_	
		V _{IN} = 5 V, Hard Short	5		μs	
I _{SD_OUT}	VOUT Shutdown Current	$V_{ON} = OFF$, $V_{OUT} = 5 V$, $V_{IN} = Short$ to GND		2	μA	
705		Shutdown Threshold	150		- °C	
TSD	Thermal Shutdown (Note 3)	Hysteresis	20			
DYNAMIC BEH	AVIOR		•	•		
t _{DON}	Delay On Time	$R_L = 100 \ \Omega \ C_L = 1 \ \mu F$	1		ms	
t _R	V _{OUT} Rise Time	$R_L = 100 \ \Omega \ C_L = 1 \ \mu F$	1		ms	
t _{ON}	Turn–On Time	$R_L = 100 \ \Omega \ C_L = 1 \ \mu F$	2		ms	
t _{DOFF}	Delay Off Time	$R_L = 100 \ \Omega \ C_L = 1 \ \mu F$	10		μs	
t _F	V _{OUT} Fall Time	$R_L = 100 \ \Omega \ C_L = 1 \ \mu F$	200		μs	
t _{OFF}	Turn-Off Time	$R_L = 100 \ \Omega \ C_L = 1 \ \mu F$	210		μs	
t _{BLANK}	Over-Current Blanking Time (Note 3)	OC_MODE = HIGH	5		ms	
t _{RSTRT}	Auto-Restart Time (Note 3)	OC_MODE = HIGH	200		ms	
t _{QUAL}	Over-Current Qualification Time (Note 3)	OC_MODE = LOW	5		ms	
t _{DEB}		Restart-up during or after OC	3			
UED	FLAGB De-bounce Time (Note 3)	Restart-up during or after Thermal shutdown	15		ms	
	(Restart-up during or after UVLO	1		1	

Table 5. ELECTRICAL CHARACTERISTICS (Unless otherwise noted, $V_{IN} = 4$ to 22 V, $T_A = -40$ to 105°C; typical values are at
V_{IN} = 5 V, C_{IN} = C_{OUT} = 1 μ F, ON = HIGH, POL = OV1 = OV2 = OC_MODE = GND and T _A = 25°C.)

Guaranteed by characterization and design, not production test.
 To avoid output voltage is coupled to high during cold start, the slew rate of Vin should be less than 10 mV/μs

Setting Current Limit

FPF2895V current limit is set with an external resistor connected between $I_{\mbox{\scriptsize SET}}$ and GND. This resistor is selected using the following equation:

$$R_{SET}(k\Omega) = \left(\frac{4674.89}{I_{SET}mA}\right)^{1/1.0326} (eq. 1)$$

Resistor tolerance of 1% or less is recommended. 10%tolerance can be achieved only when ILIM is set to larger than 2 A.

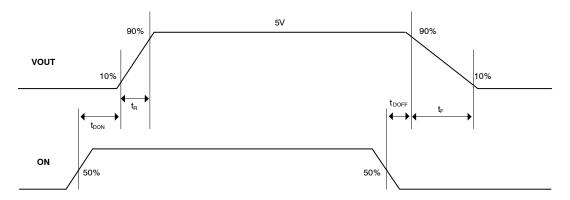
Table 6. ILIM VS. RSET LOOK-UP TABLE

	ILIM [mA]			
RSET [kΩ]	Min.	Тур.	Max.	
8.75	425	500	575	
7.35	510	600	690	
6.30	595	700	805	
5.55	680	800	920	
4.95	765	900	1035	
4.45	850	1000	1150	
4.06	935	1100	1265	
3.73	1020	1200	1380	
3.45	1105	1300	1495	
3.21	1190	1400	1610	
3.01	1275	1500	1725	
2.82	1360	1600	1840	
2.66	1445	1700	1955	
2.52	1530	1800	2070	
2.39	1615	1900	2185	
2.28	1700	2000	2300	
2.17	1890	2100	2310	
2.07	1980	2200	2420	
1.99	2070	2300	2530	
1.91	2160	2400	2640	
1.83	2250	2500	2750	
1.77	2340	2600	2860	
1.70	2430	2700	2970	
1.64	2520	2800	3080	
1.59	2610	2900	3190	
1.54	2700	3000	3300	
1.49	2790	3100	3410	
1.44	2880	3200	3520	
1.40	2970	3300	3630	
1.36	3060	3400	3740	
1.32	3150	3500	3850	
1.29	3240	3600	3960	
1.25	3330	3700	4070	
1.22	3420	3800	4180	
1.19	3510	3900	4290	
1.16	3600	4000	4400	
1.14	3690	4100	4510	
1.11	3780	4200	4620	
1.08	3870	4300	4730	
1.06	3960	4400	4840	
1.04 (Note 5)	4050	4500	4950	

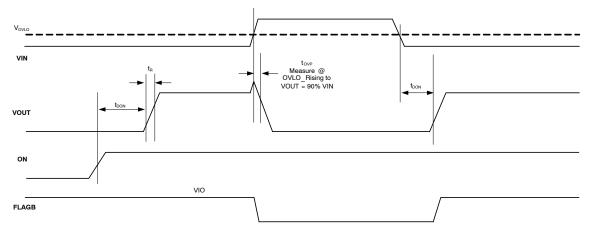
Table 6. ILIM VS. RSET LOOK-UP TABLE

	ILIM [mA]				
RSET [kΩ]	Min.	Тур.	Max.		
1.02	4140	4600	5060		
0.99	4230	4700	5170		
0.97	4320	4800	5280		
0.96	4410	4900	5390		
0.94	4500	5000	5500 (Note 6)		

5. Passed UL&CB certification with max. 5 A output current.
 6. 6 A absolute limit current value. See Figure 9. for protection timing diagram.


Table 7. OVLO LEVEL SELECTION

OV1	OV2	OVLO
LOW	LOW	23 V ± 460 mV
LOW	HIGH (Floating)	$10 \text{ V} \pm 100 \text{ mV}$
HIGH (Floating)	LOW	$16.3\pm V~300~mV$
HIGH (Floating)	HIGH (Floating)	$5.95\pm$ V 50 mV


Table 8. DEVICE ENABLE POLARITY SELECTION

POL	ON	Device State	ON Polarity
LOW	LOW (Floating)	OFF	
LOW	HIGH	ON	Active HIGH
HIGH (Floating)	LOW (Floating)	ON	
HIGH (Floating)	HIGH	OFF	Active LOW

TIMING DIAGRAMS

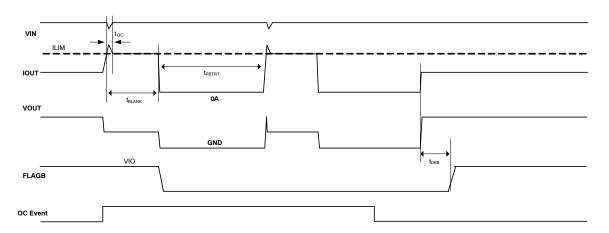
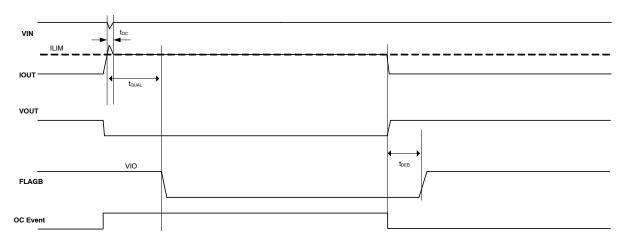



Figure 6. Current Limit Operation (OC_MODE = HIGH & FLAGB is pulled up with an external VIO)

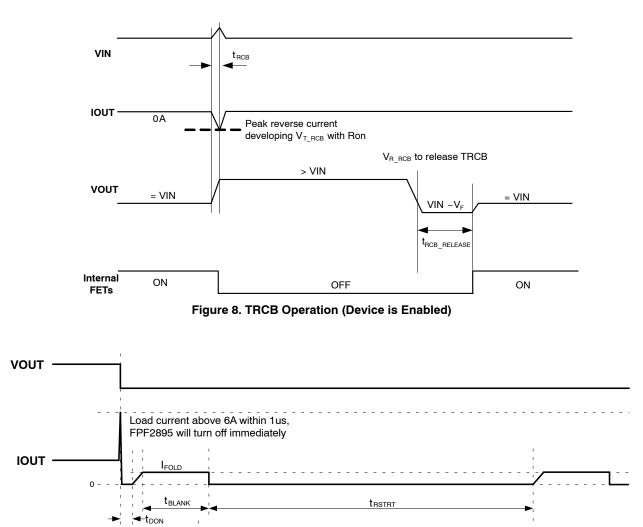
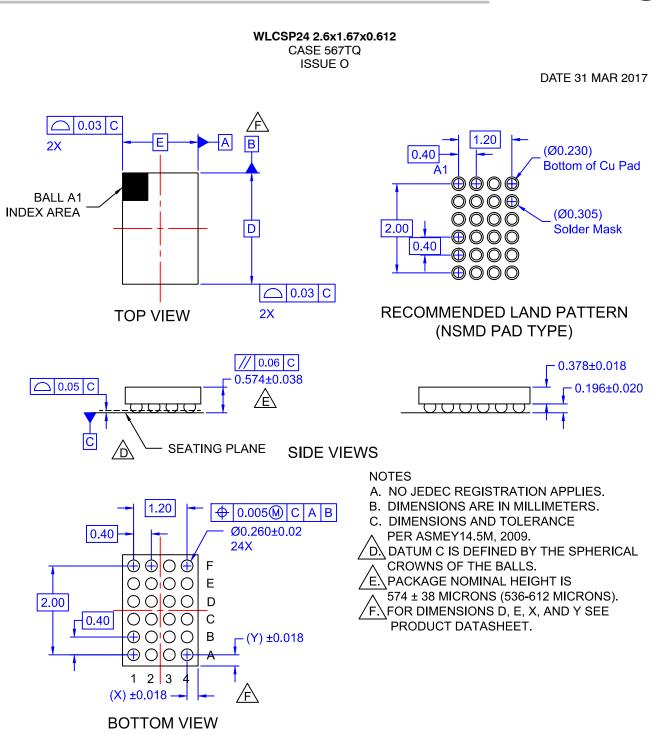


Figure 9. VOUT Hard Short to GND (OC_MODE = HIGH & FLAGB is pulled up with an external VIO)


FLAGB

 t_{QUAL}

PRODUCT-SPECIFIC DIMENSIONS

D	E	Х	Y
$2600~\mu m\pm 30~\mu m$	1670 μm \pm 30 μm	235 μ m \pm 18 μ m	300 μ m \pm 18 μ m

DOCUMENT NUMBER:	98AON13331G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	WLCSP24 2.6x1.67x0.612		PAGE 1 OF 1		
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.					

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative