MOSFET – Power, Single, N-Channel, TSOP-6 30 V, 7.0 A

Features

- Low R_{DS(on)}
- Low Gate Charge
- NV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- Pb–Free Package is Available

Applications

- Load Switch
- Notebook PC
- Desktop PC

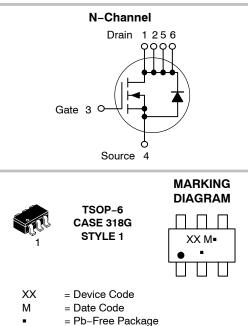
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Ratin	Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	30	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain	Steady	$T_A = 25^{\circ}C$	I _D	5.0	А
Current (Note 1)	State	T _A = 85°C		3.6	
	t ≤ 10 s	T _A = 25°C		7.0	
Power Dissipation (Note 1)	Steady State	$T_A = 25^{\circ}C$	P _D	1.0	W
	t ≤ 10 s			2.0	
Continuous Drain	Steady	$T_A = 25^{\circ}C$	I _D	3.5	А
Current (Note 2)	State	T _A = 85°C		2.5	
Power Dissipation (Note 2)		$T_A = 25^{\circ}C$	PD	0.5	W
Pulsed Drain Current	t_p = 10 μ s, V _{GS} =10V		I _{DM}	45	А
Pulsed Drain Current	t _p = 30 μ	s, V _{GS} =5V	I _D	30	А
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Body Diode)			۱ _S	2.0	Α
Single Pulse Drain–to–Source Avalanche Energy (V _{DD} = 30 V, I _L = 10.4 A, V _{GS} = 10 V, L = 1.0 mH, R _G = 25 Ω)			EAS	54	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

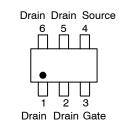
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS

Rating	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	125	°C/W
Junction-to-Ambient – t \leq 10 s (Note 1)	$R_{\theta JA}$	62.5	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	248	


1. Surface-mounted on FR4 board using 1 inch sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ON Semiconductor®


http://onsemi.com

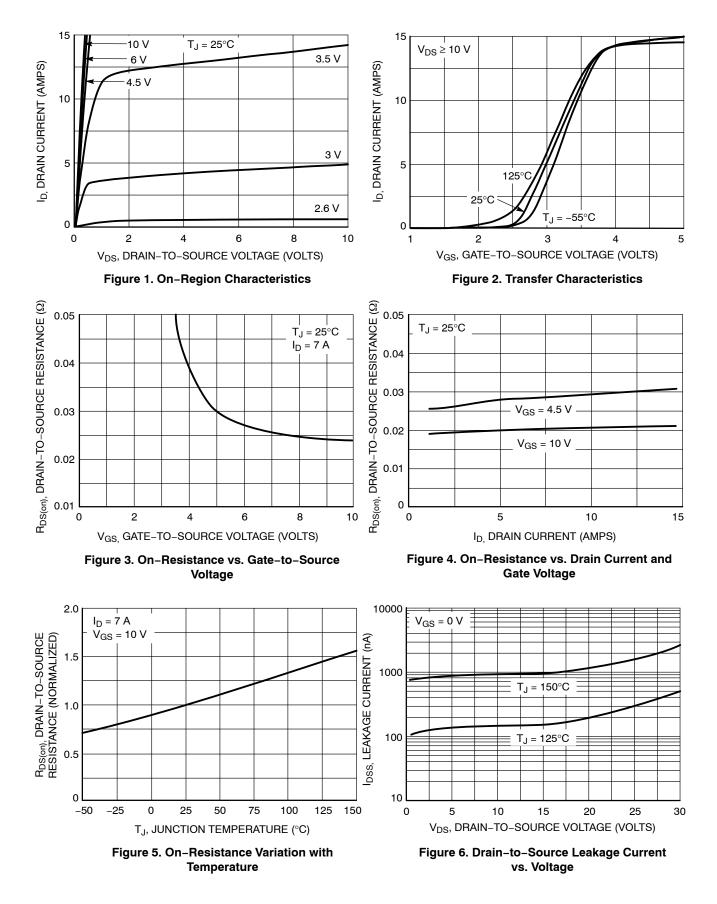
V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX	
30 V	21.5 mΩ @ 10 V	7.0 A	
	30 V 30 mΩ @ 4.5 V		

PIN ASSIGNMENT

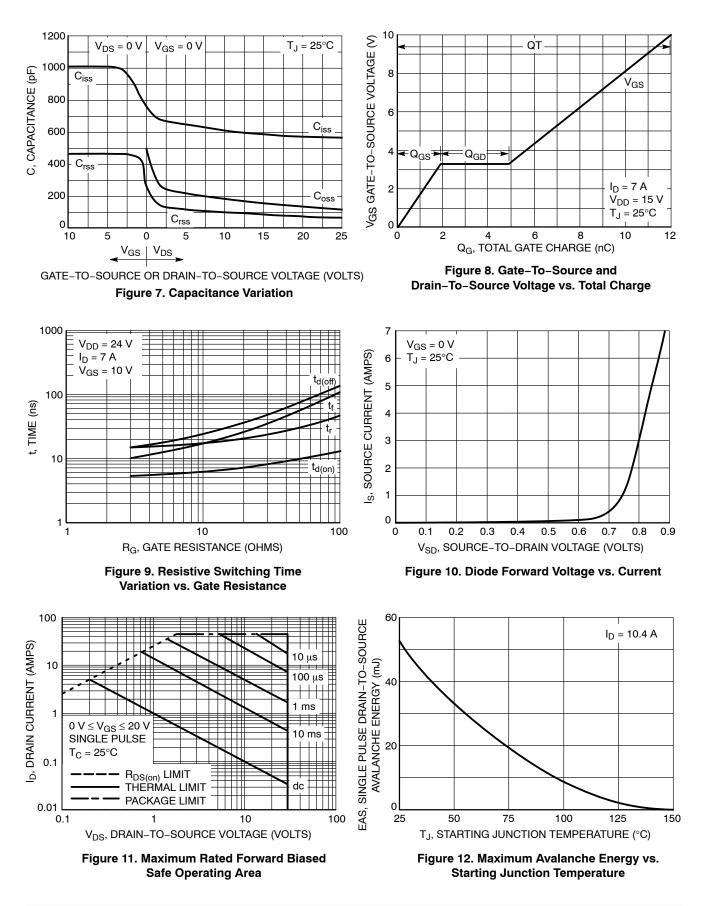
(Note: Microdot may be in either location)

ORDERING INFORMATION

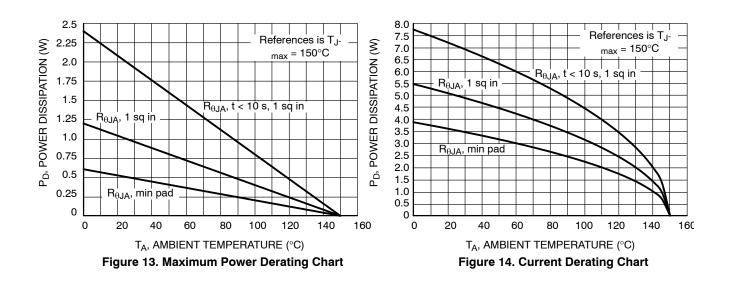
See detailed ordering and shipping information ion page 6 of this data sheet.

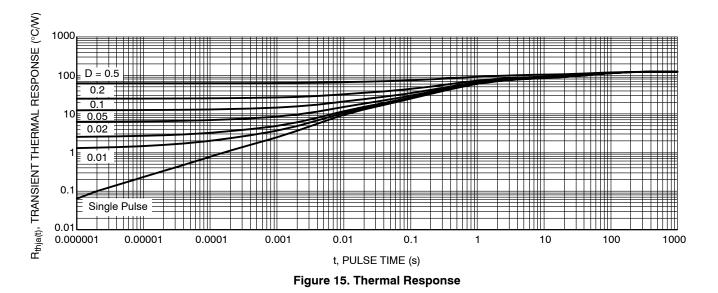

2. Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 0.0773 in sq).

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)


Characteristic	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				18.4		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V_{.}$	T _J = 25°C			1.0	μA
		V _{GS} = 0 V, V _{DS} = 24 V	T _J = 125°C			10	1
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V ₀	_{GS} = ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I	_D = 250 μA	1.0		3.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 7.0 A			21.5	25	mΩ
		V _{GS} = 4.5 V,	I _D = 6.0 A		30	35	1
Forward Transconductance	9 FS	V _{DS} = 10 V, I _D = 7.0 A			30		S
CHARGES, CAPACITANCES AND GATE RE	SISTANCE						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 24 V			560		pF
Output Capacitance	C _{OSS}				115		1
Reverse Transfer Capacitance	C _{RSS}				75		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V, I _D = 7.0 A			12		nC
Threshold Gate Charge	Q _{G(TH)}				0.85		1
Gate-to-Source Charge	Q _{GS}				1.9		1
Gate-to-Drain Charge	Q _{GD}				3.0		1
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 7.0 A			6.0		nC
Threshold Gate Charge	Q _{G(TH)}				0.8		1
Gate-to-Source Charge	Q _{GS}				1.85		1
Gate-to-Drain Charge	Q _{GD}				3.0		1
Gate Resistance	R _G				2.8		Ω
SWITCHING CHARACTERISTICS (Note 4)							
Turn-On Delay Time	t _{d(ON)}				6.0		ns
Rise Time	t _r	V _{GS} = 10 V, V	/pc = 24 V		15		1
Turn-Off Delay Time	t _{d(OFF)}	$I_{\rm D} = 7.0 \rm{A}, \rm{F}$	$R_{\rm G} = 3.0 \ \Omega$		18		1
Fall Time	t _f	1			4.0		1
DRAIN – SOURCE DIODE CHARACTERIST	CS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.78	1.0	V
5		V _{GS} = 0 V, I _S = 2.0 A	T _J = 125°C		0.63		_
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V dI _S /dt = 100 A/μs, I _S = 2.0 A			15		ns
Charge Time	ta				9.0	1	1
Discharge Time	t _b				6.0		-
Reverse Recovery Charge	Q _{RR}				8.0		nC

performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$. 4. Switching characteristics are independent of operating junction temperatures.


TYPICAL PERFORMANCE CURVES



TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

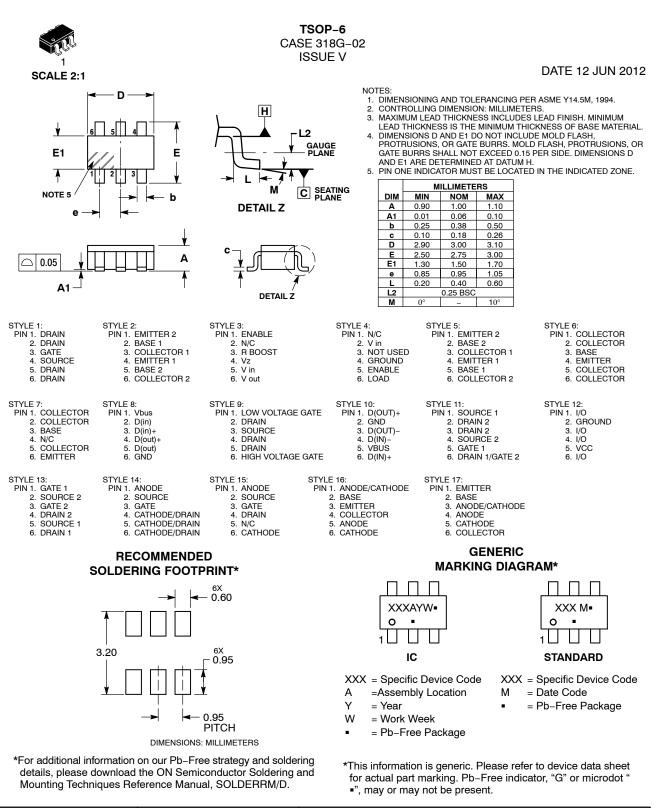


Table 1. ORDERING INFORMATION

Part Number	Marking (XX)	Package	Shipping [†]
NTGS4141NT1	S4	TSOP-6	3000 / Tape & Reel
NTGS4141NT1G	S4	TSOP-6 (Pb-Free)	3000 / Tape & Reel
NVGS4141NT1G	VS4	TSOP-6 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
TSOP-6		PAGE 1 OF 1		
_	98ASB14888C TSOP-6	98ASB14888C Printed versions are uncontrolled except when stamped "CONTROLLED "		

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights for dhers.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative