NSB9435T1G, NSV9435T1G

High Current Bias Resistor Transistor

PNP Silicon

Features

• Collector –Emitter Sustaining Voltage –

$$V_{CEO(sus)} = 30 \text{ Vdc (Min)} @ I_C = 10 \text{ mAdc}$$

• High DC Current Gain -

$$h_{FE}$$
 = 125 (Min) @ I_C = 0.8 Adc
= 90 (Min) @ I_C = 3.0 Adc

• Low Collector -Emitter Saturation Voltage -

$$V_{CE(sat)} = 0.275 \text{ Vdc (Max)} @ I_C = 1.2 \text{ Adc}$$

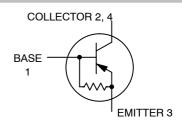
= 0.55 Vdc (Max) @ I_C = 3.0 Adc

- SOT-223 Surface Mount Packaging
- ESD Rating Human Body Model: Class 1B
 - Machine Model: Class B
- AEC-Q101 Qualified and PPAP Capable
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

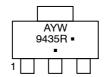
MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	30	Vdc
Collector-Base Voltage	V _{CB}	45	Vdc
Emitter-Base Voltage	V _{EB}	±6.0	Vdc
Base Current - Continuous	Ι _Β	1.0	Adc
Collector Current Continuous Peak	I _C	3.0 5.0	Adc
$\begin{tabular}{ll} Total Power Dissipation & $(@\ T_C=25^\circ$C) \\ Derate above 25^\circ$C \\ Total P_D & $(T_A=25^\circ$C)$ mounted on $1''$ sq. (645 sq. mm) Collector pad on $FR-4$ bd material & $Total\ P_D$ & $(T_A=25^\circ$C)$ mounted on $0.012''$ sq. (7.6 sq. mm) Collector pad on $FR-4$ bd material & $(T_A=25^\circ$C)$ mounted on $T_A=4$ bd material & $T_A=25^\circ$C} \end{tabular}$	P _D	3.0 24 1.56	W mW/°C W
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


ON Semiconductor®

http://onsemi.com


POWER BJT $I_C = 3.0$ AMPERES $BV_{CEO} = 30$ VOLTS $V_{CE(sat)} = 0.275$ VOLTS

SOT-223 CASE 318E STYLE 1

MARKING DIAGRAM

A = Assembly Location

Y = Year
W = Work Week
9435R = Device Code
• = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NSB9435T1G	SOT-223 (Pb-Free)	1,000/Tape & Reel
NSV9435T1G	SOT-223 (Pb-Free)	1,000/Tape & Reel

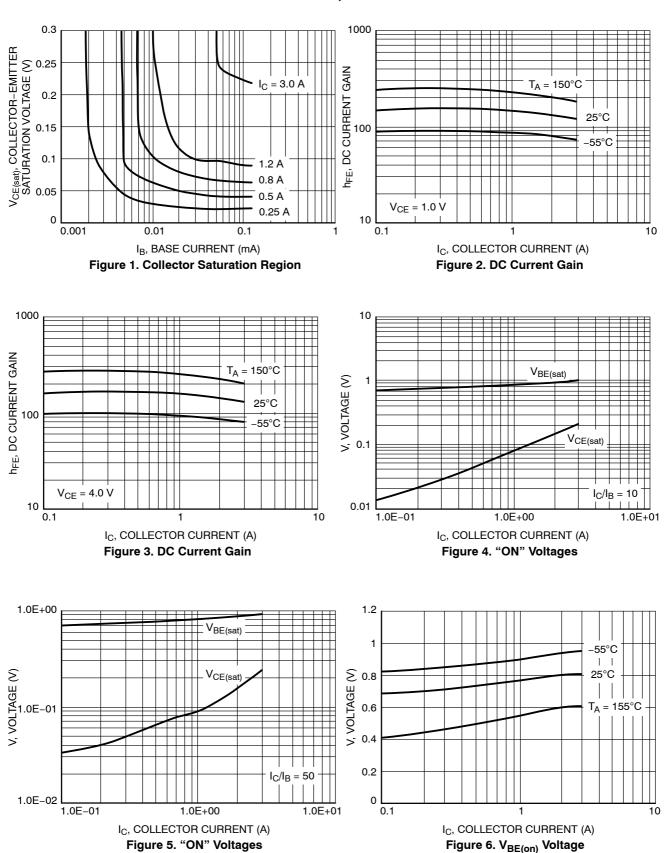
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NSB9435T1G, NSV9435T1G

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance Junction-to-Case Junction-to-Ambient on 1" sq. (645 sq. mm) Collector pad on FR-4 board material Junction-to-Ambient on 0.012" sq. (7.6 sq. mm) Collector pad on FR-4 board material	R _{θJC} R _{θJA} R _{θJA}	42 80 174	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 s	TL	260	°C


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristics	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•	•	•
Collector–Emitter Sustaining Voltage (I _C = 10 mAdc, I _B = 0 Adc)	V _{CEO(sus)}	30	-	_	Vdc
Emitter–Base Voltage (I _E = 50 μAdc, I _C = 0 Adc)	V _{EBO}	6.0	-	_	Vdc
Collector Cutoff Current $(V_{CE} = 25 \text{ Vdc})$ $(V_{CE} = 25 \text{ Vdc}, T_J = 125^{\circ}\text{C})$	I _{CER}	-	- -	20 200	μAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc)	I _{EBO}	-	-	700	μAdc
ON CHARACTERISTICS (Note 1)	<u> </u>				
Collector–Emitter Saturation Voltage (I_C = 0.8 Adc, I_B = 20 mAdc) (I_C = 1.2 Adc, I_B = 20 mAdc) (I_C = 3.0 Adc, I_B = 0.3 Adc)	V _{CE(sat)}	- - -	0.155 - -	0.210 0.275 0.550	Vdc
Base–Emitter Saturation Voltage ($I_C = 3.0 \text{ Adc}$, $I_B = 0.3 \text{ Adc}$)	V _{BE(sat)}	-	-	1.25	Vdc
Base-Emitter On Voltage (I _C = 1.2 Adc, V _{CE} = 4.0 Vdc)	V _{BE(on)}	-	-	1.10	Vdc
DC Current Gain $(I_C = 0.8 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 1.2 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 3.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$	h _{FE}	125 110 90	220 - -	- - -	-
Resistor	R1	7.5	10	12.5	kΩ
DYNAMIC CHARACTERISTICS	1			J	I.
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0 Adc, f = 1.0 MHz)	C _{ob}	-	100	150	pF
Input Capacitance (V _{EB} = 8.0 Vdc)	C _{ib}	-	135	-	pF
Current-Gain - Bandwidth Product (Note 2) (I _C = 500 mA, V _{CE} = 10 V, F _{test} = 1.0 MHz)	f _T	-	110	-	MHz

^{1.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.

^{2.} $f_T = |h_{FE}| \cdot f_{test}$

NSB9435T1G, NSV9435T1G

NSB9435T1G, NSV9435T1G

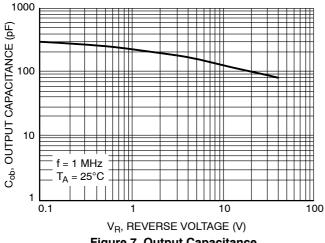
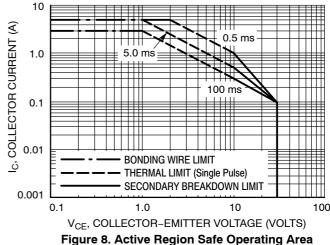



Figure 7. Output Capacitance

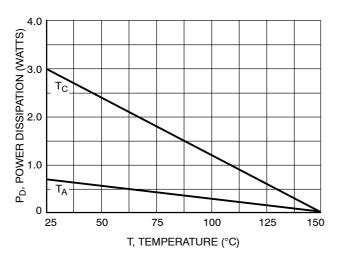
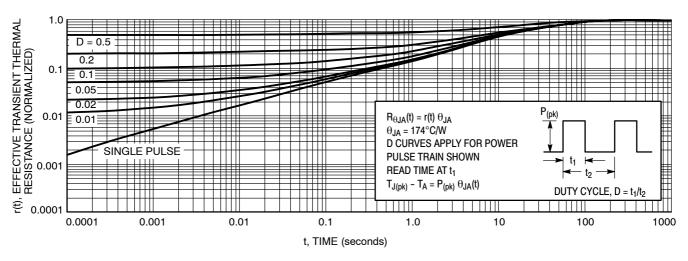
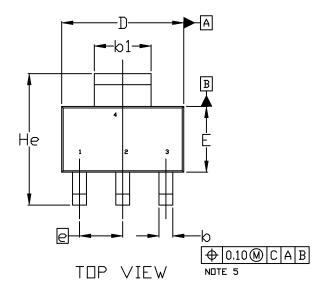
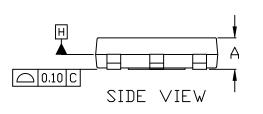


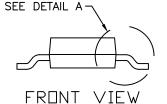
Figure 9. Power Derating

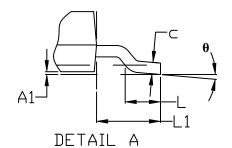
There are two limitations on the power handling ability of a transistor: average junction temperature and secondary breakdown. Safe operating area curves indicate I_C - V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 8 is based on $T_{J(pk)} = 150^{\circ}C$; T_C is variable depending on conditions. Secondary breakdown pulse limits are valid for duty cycles to 10% provided T_{J(pk)} $\leq 150^{\circ}$ C. $T_{J(pk)}$ may be calculated from the data in Figure 10. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown.

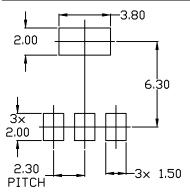




Figure 10. Thermal Response




SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018



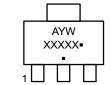
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS, MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. ALLIS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	1.50	1.63	1.75	
A1	0.02	0.06	0.10	
b	0.60	0.75	0.89	
b1	2.90	3.06	3.20	
c	0.24	0.29	0.35	
D	6.30	6.50	6.70	
E	3.30	3.50	3.70	
е	2.30 BSC			
L	0.20			
L1	1.50	1.75	2.00	
He	6.70	7.00	7.30	
θ	0°		10°	

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2	


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

A = Assembly Location

Y = Year W = Work Week

 $XXXXX \ = Specific \ Device \ Code$

= Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot "•", may
or may not be present. Some products may
not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative