EcoSPARK[®] Ignition IGBT

300 mJ, 400 V, N-Channel Ignition IGBT

Features

- SCIS Energy = 300 mJ at $T_J = 25^{\circ}C$
- Logic Level Gate Drive
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

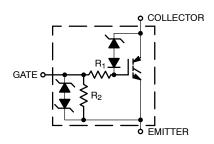
Applications

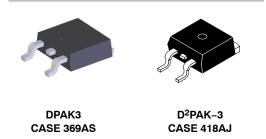
- Automotive Ignition Coil Driver Circuits
- High Current Ignition System
- Coil on Plug Application

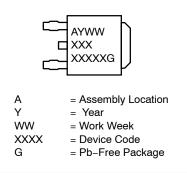
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Value	Unit
BV _{CER}	Collector to Emitter Breakdown Voltage (IC = 1 mA)	400	V
BV _{ECS}	Emitter to Collector Voltage – Reverse Battery Condition (IC = 10 mA)	24	V
E _{SCIS25}	ISCIS = 14.2 A, L = 3.0 mHy, RGE = 1 KΩ, T _C = 25°C (Note 1)	300	mJ
E _{SCIS150}	ISCIS = 10.6 A, L = 3.0 mHy, RGE = 1 KΩ, T _C = 150°C (Note 2)	170	mJ
IC25	Collector Current Continuous at VGE = 4.0 V, T _C = 25°C	21	A
IC110	Collector Current Continuous at VGE = 4.0 V, T _C = 110°C	17	A
V _{GEM}	Gate to Emitter Voltage Continuous	±10	V
PD	Power Dissipation Total, $T_C = 25^{\circ}C$	150	W
	Power Dissipation Derating, $T_C > 25^{\circ}C$	1	W/°C
T _J , T _{STG}	Operating Junction and Storage Temperature	-55 to +175	°C
TL	Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	300	°C
T _{PKG}	Reflow Soldering according to JESD020C	260	°C
ESD	HBM–Electrostatic Discharge Voltage at 100 pF, 1500 Ω	4	kV
	CDM–Electrostatic Discharge Voltage at 1 Ω	2	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Self clamped inductive Switching Energy (ESCIS25) of 300 mJ is based on the test conditions that is starting $T_J = 25^{\circ}C$, L = 3 mHy, ISCIS = 14.2 A, VCC = 100 V during inductor charging and VCC = 0 V during time in clamp.


2. Self Clamped inductive Switching Energy (ESCIS150) of 170 mJ is based on the test conditions that is starting $T_J = 150^{\circ}$ C, L = 3mHy, ISCIS = 10.6 A, VCC = 100 V during inductor charging and VCC = 0 V during time in clamp.


ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

THERMAL RESISTANCE RATINGS

Characteristic	Symbol	Мах	Units
Junction-to-Case - Steady State (Drain)		1	°C/W

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test 0	Conditions	Min	Тур.	Max.	Units
OFF CHARA	ACTERISTICS						
BV _{CER}	Collector to Emitter Breakdown Voltage	$ I_{CE} = 2 \text{ mA}, V_{GE} = 0 \text{ V}, \\ R_{GE} = 1 k\Omega, \\ T_J = -40 \text{ to } 150^\circ\text{C} $		370	400	430	V
BV _{CES}	Collector to Emitter Breakdown Voltage	$I_{CE} = 10 \text{ mA}, V_{GE} = 0 \text{ V}, R_{GE} = 0, T_{J} = -40 \text{ to } 150^{\circ}\text{C}$		390	420	450	V
BV _{ECS}	Emitter to Collector Breakdown Voltage	I_{CE} = -75 mA, V_{GE} = 0 V, T _J = 25°C		30	-	_	V
BV_{GES}	Gate to Emitter Breakdown Voltage	$I_{GES} = \pm 2 \text{ mA}$		±12	±14	-	V
ICER	Collector to Emitter Leakage Current	V _{CE} = 175 V R _{GE} = 1 kΩ	$T_J = 25^{\circ}C$	-	-	25	μA
			$T_J = 150^{\circ}C$	-	-	1	mA
I _{ECS}	Emitter to Collector Leakage Current	V _{EC} = 24 V	$T_J = 25^{\circ}C$	-	-	1	mA
			$T_J = 150^{\circ}C$	-	-	40	
R ₁	Series Gate Resistance			-	70	-	Ω
R ₂	Gate to Emitter Resistance			10K	-	26K	Ω
N CHARAG	CTERISTICS						
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	$I_{CE} = 6 \text{ A}, V_{GE} = 4 \text{ V}, T_{J} = 25^{\circ}\text{C}$		-	1.25	1.65	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I_{CE} = 10 A, V_{GE} = 4.5 V, T_{J} = 150°C		-	1.58	1.80	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I_{CE} = 15 A, V_{GE} = 4.5 V, T_{J} = 150°C		_	1.90	2.20	V
OYNAMIC C	HARACTERISTICS	-					
Q _{G(ON)}	Gate Charge	I_{CE} = 10 A, V_{CE}	= 12 V, V _{GE} = 5 V	-	17	-	nC
V _{GE(TH)}	Gate to Emitter Threshold Voltage	I _{CE} = 1 mA V _{CE} = V _{GE}	$T_J = 25^{\circ}C$	1.3	-	2.2	V
			T _J = 150°C	0.75	-	1.8	
V _{GEP}	Gate to Emitter Plateau Voltage	V_{CE} = 12 V, I_{CE}	= 10 A	_	3.0	-	V
WITCHING	CHARACTERISTICS						
td _{(ON)R}	Current Turn-On Delay Time-Resistive			_	0.7	4	μs
t _{rR}	Current Rise Time-Resistive			_	2.1	7	
td _{(OFF)L}	Current Turn-Off Delay Time-Inductive	V_{CE} = 300 V, L = 1 mH, V_{GE} = 5 V, R _G = 470 Ω, I_{CE} = 6.5 A, T _J = 25°C		-	4.8	15	1
	1			I	1		-

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

PACKAGE MARKING AND ORDERING INFORMATION

Device	Package	Shipping [†]
ISL9V3040D3ST-F085C	DPAK (Pb-Free)	2500 Units/Tape & Reel
ISL9V3040S3ST-F085C	D2PAK (Pb-Free)	800 Units/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

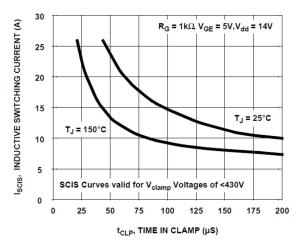


Figure 1. Self Clamped Inductive Switching Current vs. Time in Clamp

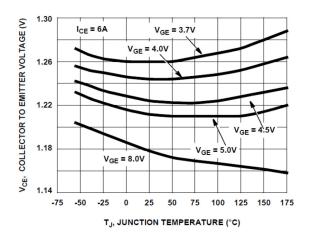


Figure 3. Collector to Emitter On–State Voltage vs. Junction Temperature

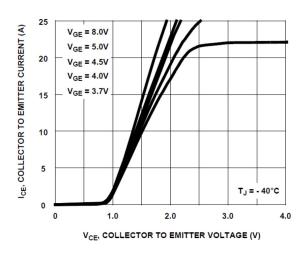


Figure 5. Collector to Emitter On–State Voltage vs. Collector Current

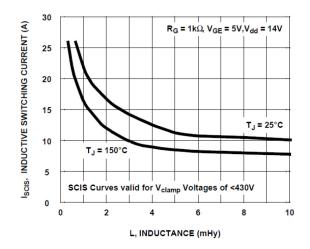


Figure 2. Self Clamped Inductive Switching Current vs. Inductance

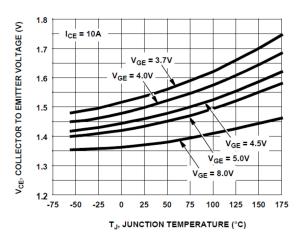


Figure 4. Collector to Emitter On–State Voltage vs. Junction Temperature

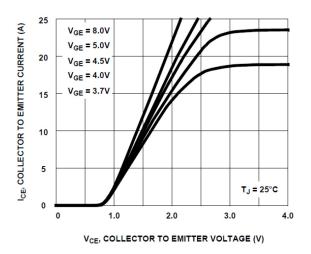


Figure 6. Collector to Emitter On–State Voltage vs. Collector Current

TYPICAL CHARACTERISTICS (continued)

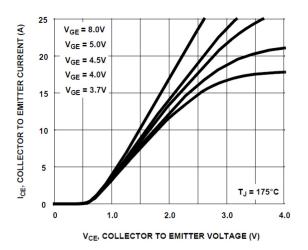


Figure 7. Collector to Emitter On–State Voltage vs. Collector Current

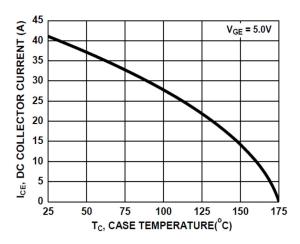


Figure 9. DC Collector Current vs. Case Temperature

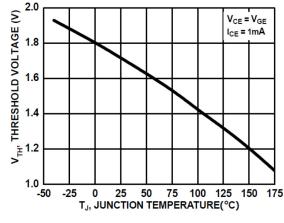


Figure 11. Threshold Voltage vs. Junction Temperature

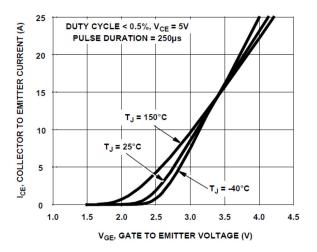


Figure 8. Transfer Characteristics

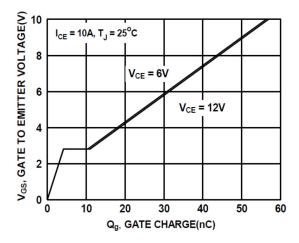
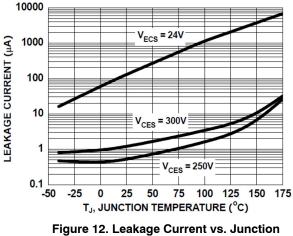
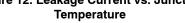




Figure 10. Gate Charge

TYPICAL CHARACTERISTICS (continued)

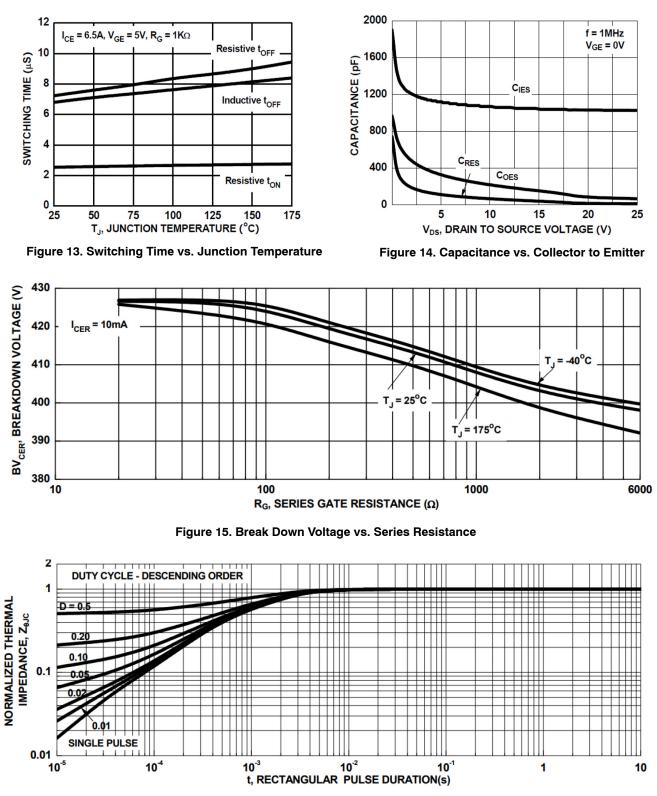


Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

TEST CIRCUIT AND WAVEFORMS

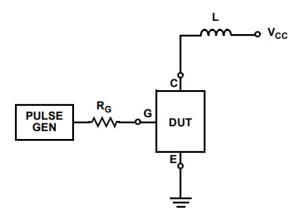


Figure 17. Inductive Switching Test Circuit

Figure 18. t_{ON} and t_{OFF} Switching Test Circuit

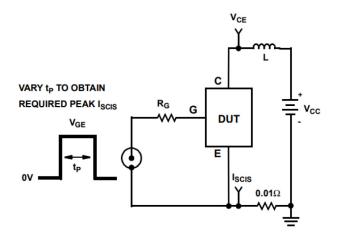


Figure 19. Energy Test Circuit

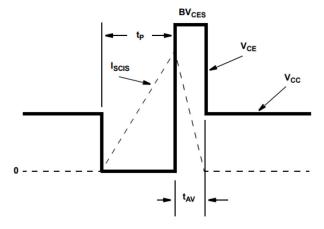
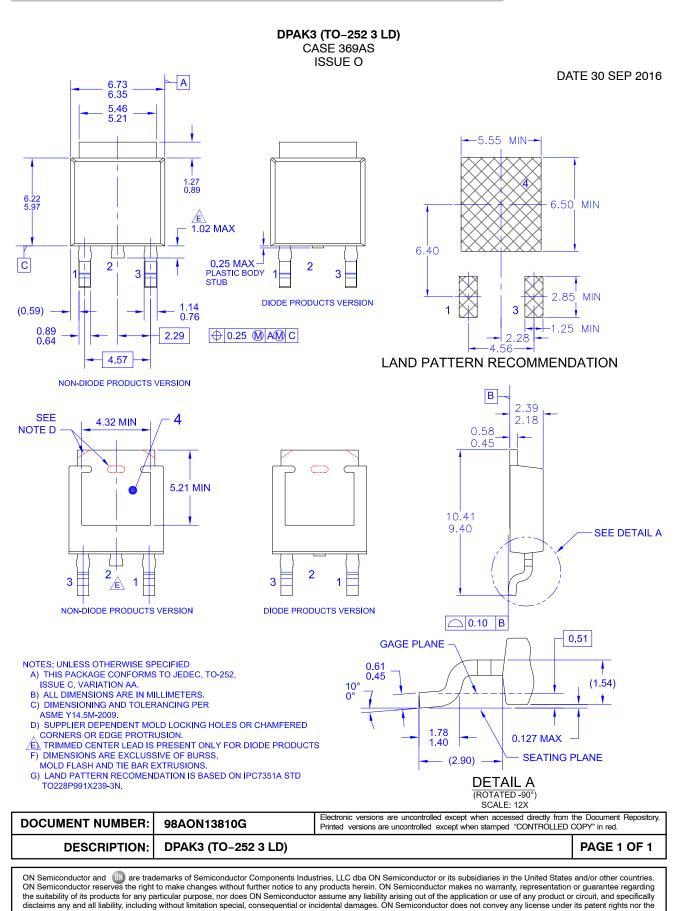
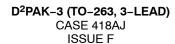
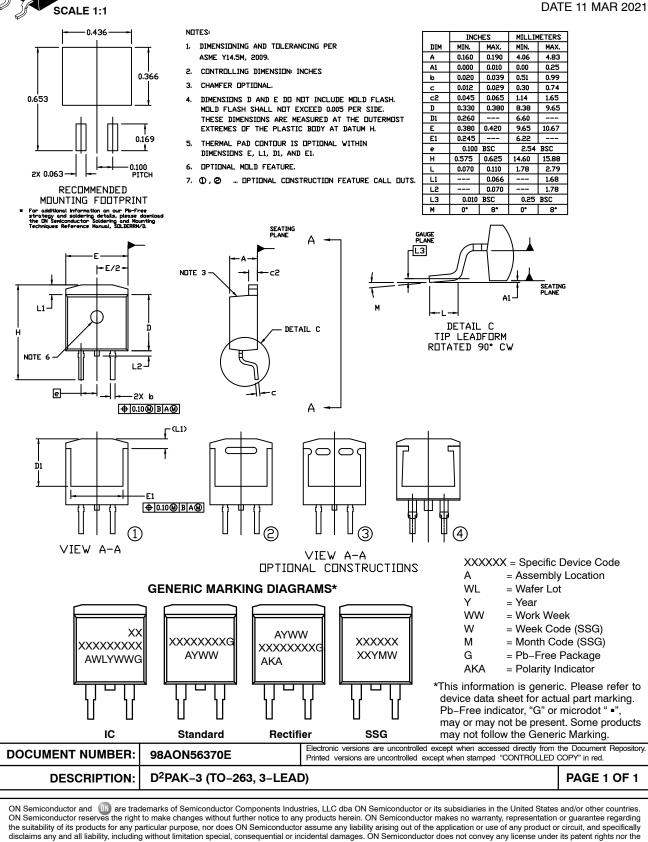



Figure 20. Energy Waveforms

ECOSPARK is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.



© Semiconductor Components Industries, LLC, 2019


rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

© Semiconductor Components Industries, LLC, 2018

rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: ISL9V3040D3ST-F085C ISL9V3040S3ST-F085C