MOSFET, N-Channel, POWERTRENCH[®]

60 V, 158 A, 2.5 mΩ

General Description

This N–Channel MOSFET has been designed specifically to improve the overall efficiency and to minimize switch node ringing of DC/DC converters using either synchronous or synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$, fast switching speed and body diode reverse recovery performance.

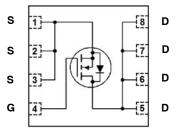
Features

- Max $r_{DS(on)} = 2.5 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 25 \text{ A}$
- Max $r_{DS(on)} = 3.7 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 20 \text{ A}$
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- Next generation enhanced body diode technology, engineered for soft recovery
- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant

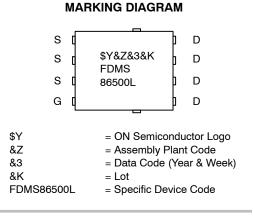
Applications

- Primary Switch in Isolated DC-DC
- Synchronous Rectifier
- Load Switch

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)


Symbol	Parameter	Ratings	Unit
V _{DS}	Drain to Source Voltage	60	V
V _{GS}	Gate to Source Voltage	±20	V
ID	Drain Current: – Continuous $T_C = 25^{\circ}C$ (Note 5) – Continuous $T_C = 100^{\circ}C$ (Note 5) – Continuous $T_A = 25^{\circ}C$ (Note 1a) – Pulsed (Note 4)	158 100 25 799	A
E _{AS}	Single Pulse Avalanche Energy (Note 3)	240	mJ
P _D	Power Dissipation: T _C = 25°C T _A = 25°C (Note 1a)	104 2.5	W
T _J , T _{STG}	Operating and Storage Junction Tempera- ture Range	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


ON Semiconductor®

www.onsemi.com

N-Channel MOSFET

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

S [3] G [4]

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Quantity
FDMS86500L	FDMS86500L	Power 56 (PQFN8) (Pb-Free / Halogen Free)	3000/Tape&Reel

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit		
$R_{\theta JC}$	Thermal Resistance, Junction to Case	1.2 °C/		1.2	°C/W
R _{θJA}	Thermal Resistance, Junction to Ambient (Note 1a)	50			

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHARA	ACTERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	60			V
$\begin{array}{c} \Delta \text{BV}_{\text{DSS}} \\ / \Delta T_{\text{J}} \end{array}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25°C		30		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 48 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			1	μA
I _{GSS}	Gate to Source Leakage Current, Forward	V_{GS} = ±20 V, V_{DS} = 0 V			±100	nA
ON CHARA	CTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS}=V_{DS},\ I_{D}=250\ \mu A$	1	1.8	3	V
${\Delta V_{GS(th)} \over /\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 $\mu A,$ referenced to 25°C		-7		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 25 A		2.1	2.5	mΩ
		V_{GS} = 4.5 V, I _D = 20 A		2.9	3.7	1
		V_{GS} = 10 V, I_{D} = 25 A, T_{J} = 125°C		3.1	3.7	1

g_{FS} Forward Transconductance

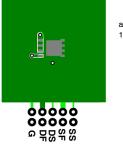
C _{iss}	Input Capacitance	V_{DS} = 30 V, V_{GS} = 0 V, f = 1 MHz		9420	12530	pF
C _{oss}	Output Capacitance			1470	1955	pF
C _{rss}	Reverse Transfer Capacitance			50	80	pF
Rg	Gate Resistance	f = 1MHz	0.1	1.1	3.0	Ω

V_{DS} = 5 V, I_D = 20 A

95

S

SWITCHING CHARACTERISTICS


t _{d(on)}	Turn-On Delay Time	$V_{DD} = 30 \text{ V}, \text{ I}_{D} = 25 \text{ A}, \text{ V}_{GS} = 10 \text{ V},$	27	43	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$	16	28	ns
t _{d(off)}	Turn-Off Delay Time		63	100	ns
t _f	Fall Time		7.8	16	ns
Qg	Total Gate Charge	V_{GS} = 0 V to 10 V, V_{DD} = 30 V, I _D = 25 A	117	165	nC
		V_{GS} = 0 V to 4.5 V, V_{DD} = 30 V, I_{D} = 25 A	54	108	nC
Q _{gs}	Gate to Source Charge	V _{DD} = 30 V, I _D = 25 A	26.6		nC
Q _{gd}	Gate to Drain "Miller" Charge	7	11.5		nC

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
DRAIN-SOU	IRCE DIODE CHARACTERISTICS					
l _s	Continuous Drain to Source Diode Forward Current	$T_{\rm C} = 25^{\circ}{\rm C}$			80	A
I _{s,pulse}	Pulse Drain to Source Diode Forward Current	$T_{C} = 25^{\circ}C$			799	A
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2.1 A (Note 2)		0.68	1.2	V
		V _{GS} = 0 V, I _S = 25 A (Note 2)		0.79	1.3	
t _{rr}	Reverse Recovery Time	I _F = 25 A, di/dt = 100 A/μs		54	87	ns
Q _{rr}	Reverse Recovery Charge			42	67	nC
t _{rr}	Reverse Recovery Time	I _F = 25 A, di/dt = 300 A/μs		46	73	ns
Q _{rr}	Reverse Recovery Charge	7		84	134	nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. R_{0JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. R_{0CA} is determined by the user's board design.

a. 50 °C/W when mounted on a 1 in² pad of 2 oz copper.

b. 125 °C/W when mounted on a minimum pad of 2 oz copper.

- Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.
 E_{AS} of 220 mJ is based on starting T_J = 25°C, L = 0.3 mH, I_{AS} = 40 A, V_{DD} = 54 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 66 A.
 Pulsed Id please refer to Figure 11 SOA graph for more details.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & the substantial depice. electro-mechanical application board design.

TYPICAL CHARACTERISTICS

(T_J = 25°C unless otherwise noted)

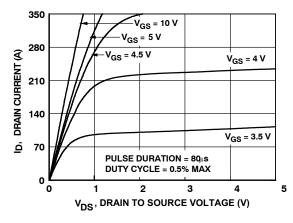


Figure 1. On Region Characteristics

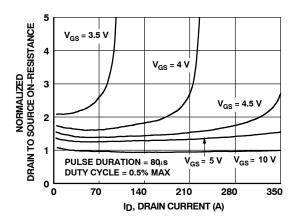
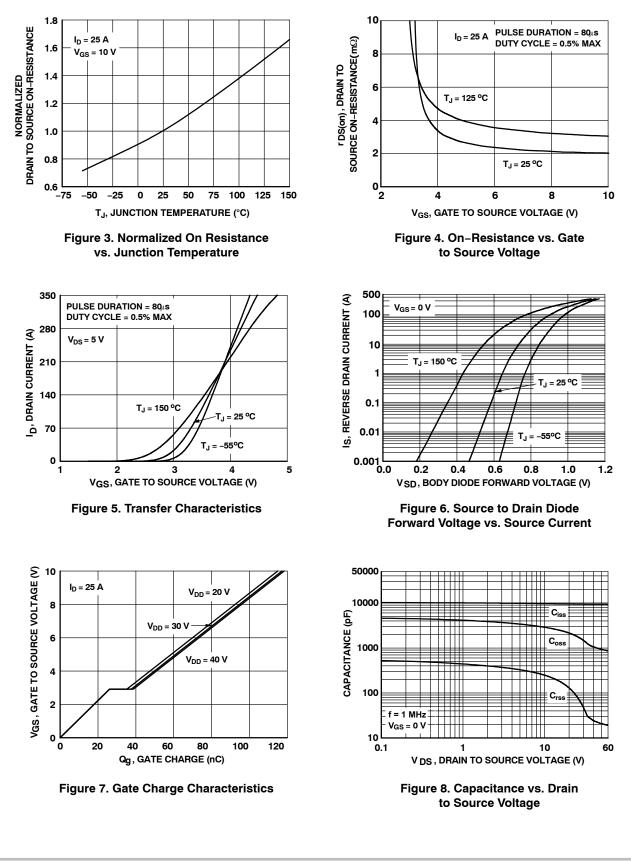
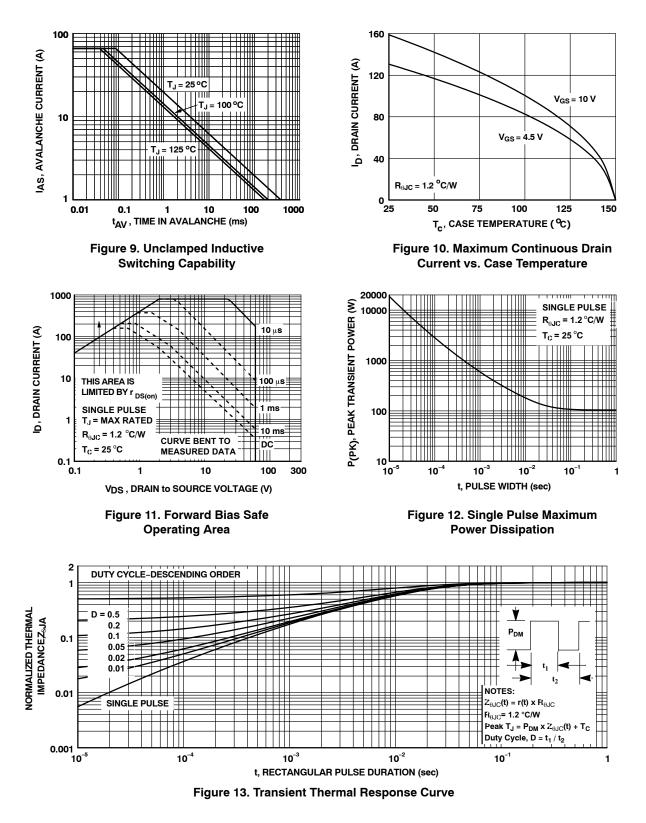
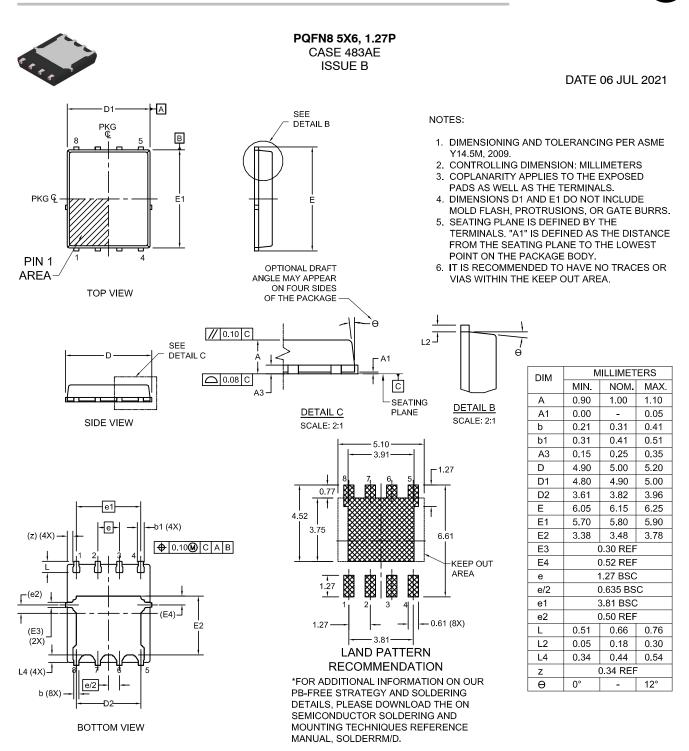



Figure 2. Normalized On–Resistance vs. Drain Current and Gate Voltage


TYPICAL CHARACTERISTICS (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$



TYPICAL CHARACTERISTICS (continued)

(T_J = 25°C unless otherwise noted)

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and or other countries.

DOCUMENT NUMBER:	98AON13655G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	PTION: PQFN8 5X6, 1.27P		PAGE 1 OF 1			
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the						

© Semiconductor Components Industries, LLC, 2019

rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative