Introduction

Joyin's metal oxide based chip varistors (JMV) are used for transient voltage suppression. JMV has non-linear voltage current behavior which is similar to Zener Diode.

Since each grain in JMV exhibits small p-n-p junction, it has much better electrical reliability than Zener Diode.

Furthermore, JMV also exhibits better electrical properties, such as excellent clamping voltage and low leakage current.

Features | | $■$ Small size and SMD capability |
| ---: | :--- |
| | $■$ Excellent clamping performance |
| | High transient current capability |
| | $■$ Fast response time |
| | Low voltage available |
| | $■$ Comply with RoHS and Halogen-free |

Applications

- IC and Transistor Protection
- Power Line and I/O Protection
- Telecommunication Transient Protection
- Automotive Circuit Applications

General Characteristics JMV S series, JMV C series
 0402~0805

- Operating anbient temperature range : $-55^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$
- Storage temperature range : $-55^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$

1206~2220

- Operation anbient temperature range: $-55^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$
- Storage temperature range : $-55^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$

JMV E series

- Operating anbient temperature range : $-55^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$
- Storage temperature range : $-55^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$

JMV A series

- Operating anbient temperature range : $-55^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$
- Storage temperature range : $-55^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$

Introduction

Chip Dimensions
inch (mm)

A

Chip Size	L	\mathbf{W}	\mathbf{T}	\mathbf{A}
0402	0.040 ± 0.004	0.020 ± 0.004	0.024 max.	0.010 ± 0.006
(1005)	(1.00 ± 0.10)	(0.50 ± 0.10)	$(0.6$ max. $)$	(0.25 ± 0.15)
0603	0.063 ± 0.006	0.031 ± 0.006	0.035 max.	0.014 ± 0.006
(1608)	(1.60 ± 0.15)	(0.80 ± 0.15)	$(0.9$ max. $)$	(0.35 ± 0.15)
0805	0.079 ± 0.008	0.049 ± 0.008	0.04 max.	0.028 max.
(2012)	(2.01 ± 0.20)	(1.25 ± 0.20)	$(1.02$ max. $)$	$(0.71$ max. $)$
1206	0.126 ± 0.008	0.063 ± 0.008	0.071 max.	0.028 max.
(3216)	(3.20 ± 0.20)	(1.60 ± 0.20)	$(1.8$ max. $)$	$(0.71$ max. $)$
1210	0.126 ± 0.008	0.098 ± 0.01	0.071 max.	0.028 max.
(3225)	(3.20 ± 0.20)	(2.50 ± 0.25)	$(1.8$ max. $)$	$(0.71$ max. $)$
1812	0.177 ± 0.016	0.126 ± 0.016	0.098 max.	0.031 max.
(4532)	(4.5 ± 0.40)	(3.2 ± 0.40)	$(2.5$ max. $)$	$(0.8$ max. $)$
2220	0.224 ± 0.016	0.197 ± 0.016	0.098 max.	0.031 max.
(5750)	(5.7 ± 0.40)	(5.0 ± 0.50)	$(2.5$ max. $)$	$(0.8$ max. $)$

Chip Structure

Symbol	Materials
1	Zinc Oxide Ceramics
2	Metal Inner Electrodes $(\mathrm{Ag} / \mathrm{Pd})$
3	Metal End Termination $(\mathrm{Ag} / \mathrm{Ni} / \mathrm{Sn})$

Ordering Code

ex. $3 \mathrm{R} 0=3.0 \times 10^{0}=3 \mathrm{pF}$
$331=33 \times 10^{1}=330 \mathrm{pF}$
$182=18 \times 10^{2}=1800 \mathrm{pF}$

Packaging
T-Tape on reel
B-Bulk

Performance Designator

S: Surge Protection and/or ESD Protection
E: E Series, for ESD Protection Only
C: C Series, for ESD Protection Only
A: Surge Protection and/or ESD Protection (Sb free)
P: for ESD protection Only (Sb free)

Part No.	Working Voltage (Vw)	Breakdown Voltage (Vb)	Clamping Voltage $8 / 20 \mu \mathrm{~S}$		$\begin{gathered} \text { Peak } \\ \text { Current (Ip) } \end{gathered}$	Transient Energy (Et)	Typical Capacitance (C)	
	Volt	Volt	Volt	Amp	Amp	Joule	pF	
	<50 μ	1 mA (DC)	Vc	Ic	$8 / 20 \mu \mathrm{~S}$	$10 / 1000 \mu \mathrm{~S}$	1 KHz	1 MHz
0402								
JMV0402 $\checkmark 5$ R6T301	5.6	7.0~10.0	22.0	1.0	20	0.05	-	300
JMV0402 $\checkmark 090$ T201	9.0	10.0~15.0	32.0	1.0	20	0.05	-	200
JMV0402ゝ140T850	14.0	16.2~19.8	38.0	1.0	20	0.05	-	85
JMV0402 $\downarrow 180 \mathrm{~T} 550$	18.0	21.6~26	45.0	1.0	20	0.05	-	55

0603

JMV0603 \checkmark 5R6T102	5.6	7.0~10.0	22.0	1.0	30	0.1	1000	-
JMV0603 \checkmark 5R6T351	5.6	7.0~10.0	22.0	1.0	30	0.1	350	-
JMV0603 \downarrow 090T651	9.0	10.0~15.0	30.0	1.0	30	0.1	650	-
JMV0603 $\downarrow 090$ T331	9.0	10.0~15.0	30.0	1.0	30	0.1	330	-
JMV0603 $\backslash 140 \mathrm{~T} 451$	14.0	16.2~19.8	37.0	1.0	30	0.1	450	-
JMV0603 $\downarrow 140 \mathrm{~T} 181$	14.0	16.2~19.8	37.0	1.0	30	0.1	180	-
JMV0603 $\triangle 180 \mathrm{~T} 281$	18.0	21.6~26.0	48.0	1.0	30	0.1	280	-
JMV0603 $\downarrow 180 \mathrm{~T} 111$	18.0	21.6~26.0	48.0	1.0	30	0.1	110	-
JMV0603 $\triangle 260 \mathrm{~T} 151$	26.0	31.0~38.0	62.0	1.0	30	0.1	150	-
JMV0603 $\checkmark 260 \mathrm{~T} 800$	26.0	$31.0 \sim 38.0$	62.0	1.0	30	0.1	80	-
JMV0603 $\backslash 300 \mathrm{~T} 101$	30.0	37.0~46.0	73.0	1.0	30	0.1	100	-

0805								
JMV0805 \checkmark 5R6T132	5.6	7.0~10.0	22.0	1.0	80	0.1	1300	-
JMV0805 $\checkmark 5 \mathrm{R} 6 \mathrm{~T} 451$	5.6	7.0~10.0	22.0	1.0	40	0.1	450	-
JMV0805 \triangle 5R6T661	5.6	7.0~10.0	22.0	1.0	40	0.1	660	-
JMV0805 \checkmark 090T781	9.0	10.0~15.0	27.0	1.0	40	0.1	780	-
JMV0805 $\checkmark 090$ T271	9.0	10.0~15.0	27.0	1.0	40	0.1	270	-
JMV0805 $\checkmark 120 \mathrm{~T} 531$	12.0	14.0~18.3	34.0	1.0	40	0.1	530	-
JMV0805 $\checkmark 120 \mathrm{~T} 431$	12.0	$14.0 \sim 18.3$	34.0	1.0	40	0.1	430	-
JMV0805 $\triangle 120 \mathrm{~T} 251$	12.0	14.0~18.3	34.0	1.0	40	0.1	250	-
JMV0805 $\downarrow 140 \mathrm{~T} 381$	14.0	16.2~19.8	37.0	1.0	40	0.1	380	-
JMV0805 $\diamond 140 \mathrm{~T} 201$	14.0	16.2~19.8	37.0	1.0	40	0.1	200	-
JMV0805 $\diamond 180 \mathrm{~T} 351$	18.0	21.6~26.0	48.0	1.0	40	0.1	350	-
JMV0805 $\checkmark 180 \mathrm{~T} 111$	18.0	21.6~26.0	48.0	1.0	40	0.1	110	-
JMV0805 $\checkmark 260 \mathrm{~T} 161$	26.0	31.0~38.0	62.0	1.0	40	0.1	160	-
JMV0805 $\triangle 260 \mathrm{~T} 101$	26.0	$31.0 \sim 38.0$	62.0	1.0	40	0.1	100	-
JMV0805 $\checkmark 300 \mathrm{~T} 101$	30.0	37.0~46.0	73.0	1.0	40	0.1	100	-
JMV0805 $\checkmark 300 \mathrm{~T} 311$	30.0	37.0~46.0	73.0	1.0	100	0.3	310	-

[^0]V_{w} - The max. steady state DC operating voltage of which varistor could maintain also not exceeding $50 \mu \mathrm{~A}$ leakage current.
V_{b} - The voltage acrossed the device measured at 1 mADC current.
V_{c} - The peak voltage acrossed the varistor measured at a specified pulse current and waveform.
I_{p} - The max. peak current applied with specified waveform without any possibility of device fail
E_{t} - The max. energy which dissipated with the specified waveform without any possibility of device fail.
C - The device capacitance measured with zero volt bias, 1.0 Vrms and $1 \mathrm{KHz} / 0.5 \mathrm{Vrms}$ and 1 MHz .
*Any special design or request is welcomed. Please contact our e-mail address: sales@joyin.com.tw

Part No．	Working Voltage （Vw）	Breakdown Voltage （Vb）	$\begin{aligned} & \text { Clamping } \\ & \text { Voltage } \\ & 8 / 20 \mu \mathrm{~S} \end{aligned}$		$\begin{gathered} \text { Peak } \\ \text { Current (Ip) } \end{gathered}$	Transient Energy（Et）	Typical Capacitance （ C ）	
	Volt	Volt	Volt	Amp	Amp	Joule	pF	
	$<50 \mu \mathrm{~A}$	1 mA （DC）	Vc	Ic	$8 / 20 \mu \mathrm{~S}$	$10 / 1000 \mu \mathrm{~S}$	1 KHz	1 MHz
1206								
JMV1206 $\checkmark 5$ R6T152	5.6	$7.0 \sim 10.0$	22.0	1.0	150	1.0	1500	－
JMV1206 $\bigcirc 120 \mathrm{~T} 801$	12.0	$14.0 \sim 18.3$	34.0	1.0	150	0.6	800	－
JMV1206 $\bigcirc 140 \mathrm{~T} 401$	14.0	16．2～19．8	37.0	1.0	100	0.3	400	－
JMV1206 $\bigcirc 140 \mathrm{~T} 801$	14.0	16．2～19．8	37.0	1.0	200	0.5	800	－
JMV1206 $>160 \mathrm{~T} 132$	16.0	19．8～24．2	40.0	1.0	200	1.0	1300	－
JMV1206 $>180 \mathrm{~T} 132$	18.0	$21.6 \sim 26.0$	48.0	1.0	200	1.0	1300	－
JMV1206 $\bigcirc 180 \mathrm{~T} 901$	18.0	$21.6 \sim 26.0$	48.0	1.0	100	0.3	900	－
JMV1206 $\checkmark 260 \mathrm{~T} 901$	26.0	31．0～38．0	62.0	1.0	200	1.0	900	－
JMV1206 $\checkmark 300 \mathrm{~T} 201$	30.0	$37.0 \sim 46.0$	73.0	1.0	100	0.3	200	－
JMV1206 $\bigcirc 300 \mathrm{~T} 401$	30.0	$37.0 \sim 46.0$	73.0	1.0	100	0.3	400	－
JMV1206 $\bigcirc 300 \mathrm{~T} 551$	30.0	$37.0 \sim 46.0$	73.0	1.0	200	1.0	550	－
JMV1206 $\bigcirc 330 \mathrm{~T} 551$	33.0	39．0～47．0	75.0	1.0	180	1.0	550	－
JMV1206 $\bigcirc 380 \mathrm{~T} 501$	38.0	$42.3 \sim 51.7$	88.0	1.0	200	1.1	500	－
JMV1206 $\bigcirc 450 \mathrm{~T} 551$	45.0	50．4～61．6	95.0	1.0	180	0.8	550	－
JMV1206 $\bigcirc 480 \mathrm{~T} 251$	48.0	$55.8 \sim 68.2$	100.0	1.0	100	0.8	250	－
JMV1206 $\bigcirc 560 \mathrm{~T} 101$	56.0	$61.0 \sim 77.0$	120.0	1.0	100	0.3	100	－
JMV1206 $\checkmark 560 \mathrm{~T} 381$	56.0	$61.0 \sim 77.0$	120.0	1.0	180	1.0	380	－
JMV1206 $\downarrow 650 \mathrm{~T} 241$	65.0	73．8～90．2	135.0	1.0	100	0.6	240	－
1210								
JMV1210ゝ5R6T502	5.6	$7.0 \sim 10.0$	22.0	2.5	250	0.4	5000	－
JMV1210 $\vee 180 \mathrm{~T} 202$	18.0	21．6～26．0	48.0	2.5	400	1.5	2000	－
JMV1210 $\downarrow 220 \mathrm{~T} 182$	22.0	24．3～29．7	52.0	2.5	400	1.7	1800	－
JMV1210＜260T112	26.0	31．0～38．0	62.0	2.5	250	1.2	1100	－
JMV1210 $\downarrow 260 \mathrm{~T} 152$	26.0	$31.0 \sim 38.0$	62.0	2.5	400	1.9	1500	－
JMV1210〈300T901	30.0	$37.0 \sim 46.0$	77.0	2.5	250	1.7	900	－
JMV1210ゝ300T122	30.0	$37.0 \sim 46.0$	77.0	2.5	400	1.9	1200	－
JMV1210〈450T951	45.0	50．4～61．6	95.0	2.5	250	2.2	950	－
1812								
JMV1812 $\downarrow 180 \mathrm{~T} 452$	18.0	21．6～26．0	48.0	5	800	2.3	4500	－
JMV1812 $\downarrow 220 \mathrm{~T} 352$	22.0	24．3～29．7	52.0	5	500	2.0	3500	－
JMV1812 $\checkmark 220 \mathrm{~T} 402$	22.0	24．3～29．7	52.0	5	800	2.7	4000	－
JMV1812 $\bigcirc 260 \mathrm{~T} 282$	26.0	31．0～38．0	65.0	5	500	2.5	2800	－
JMV1812 $\bigcirc 260 \mathrm{~T} 302$	26.0	$31.0 \sim 38.0$	65.0	5	800	3.0	3000	－
JMV1812 $\bigcirc 300 \mathrm{~T} 252$	30.0	$37.0 \sim 46.0$	78.0	5	800	3.7	2500	－
JMV1812 $\bigcirc 380 \mathrm{~T} 202$	38.0	42．3～51．7	88.0	5	800	4.2	2000	－
2220								
JMV2220 \downarrow 5R6T203	5.6	$7.0 \sim 10.0$	19.0	10	1200	1.4	20000	－
JMV2220 $\downarrow 180 \mathrm{~T} 153$	18.0	$22.0 \sim 27.0$	56.0	10	1200	5.8	15000	－
JMV2220〈300T502	30.0	37．0～46．0	85.0	10	1200	9.6	5000	－
JMV2220 $>380 \mathrm{~T} 402$	38.0	42．3～51．7	88.0	10	1200	12.0	4000	

\diamond ：S＝JMV S series，A＝JMV A series
V_{w}－The max．steady state DC operating voltage of which varistor could maintain also not exceeding $50 \mu \mathrm{~A}$ leakage current．
V_{b}－The voltage acrossed the device measured at 1 mA DC current．
V_{c}－The peak voltage acrossed the varistor measured at a specified pulse current and waveform．
I_{p}－The max．peak current applied with specified waveform without any possibility of device fail．
Et－The max．energy which dissipated with the specified waveform without any possibility of device fail．
C－The device capacitance measured with zero volt bias， 1.0 Vrms and $1 \mathrm{KHz} / 0.5 \mathrm{Vrms}$ and 1 MHz ．
＊Any special design or request is welcomed．Please contact our e－mail address：sales＠joyin．com．tw
for ESD protection - C series

Part Number	Working Voltage (V_{w})	$\begin{aligned} & \text { Clamping } \\ & \text { Voltage } \\ & (\mathrm{Vc}) \end{aligned}$	ESD Withstanding	Capacitance (C)		Capacitance Tolerance
	Volt	Volt	Time	pF		\%
	$<15 \mu \mathrm{~A}$	1A,8/20巧s	8 KV *	1 KHz	1 MHz	
0402						
JMV0402C050T4R7	5.0	50.0	1000	-	4.7	$-20 \% \sim+80 \%$
JMV0402C050T100	5.0	50.0	1000	-	10	20\%
JMV0402C050T120	5.0	50.0	1000	-	12	20\%
JMV0402C050T150	5.0	50.0	1000	-	15	20\%
JMV0402C050T180	5.0	50.0	1000	-	18	20\%
JMV0402C050T220	5.0	50.0	1000	-	22	20\%
JMV0402C050T270	5.0	50.0	1000	-	27	20\%
JMV0402C050T330	5.0	50.0	1000	-	33	20\%
JMV0402C050T390	5.0	50.0	1000	-	39	20\%
JMV0402C050T470	5.0	50.0	1000	-	47	20\%
JMV0402C050T560	5.0	50.0	1000	-	56	20\%
JMV0402C050T680	5.0	50.0	1000	-	68	20\%
JMV0402C050T820	5.0	50.0	1000	-	82	20\%
JMV0402C050T101	5.0	30.0	1000	100	-	20\%
JMV0402C050T121	5.0	30.0	1000	120	-	20\%
JMV0402C050T151	5.0	29.0	1000	150	-	20\%
JMV0402C050T181	5.0	29.0	1000	180	-	20\%
JMV0402C050T221	5.0	27.0	1000	220	-	20\%
JMV0402C050T271	5.0	27.0	1000	270	-	20\%
JMV0402C050T331	5.0	26.0	1000	330	-	20\%
JMV0402C120T4R7	12.0	80.0	1000	-	4.7	$-20 \% \sim+80 \%$
JMV0402C120T100	12.0	60.0	1000	-	10	20\%
JMV0402C120T220	12.0	50.0	1000	-	22	20\%
JMV0402C120T330	12.0	50.0	1000	-	33	20\%
JMV0402C120T560	12.0	50.0	1000	-	56	20\%
JMV0402C120T820	12.0	50.0	1000	-	82	20\%
JMV0402C120T101	12.0	50.0	1000	100	-	20\%
JMV0402C240T3R3	24.0	200.0	1000	-	3.3	$-20 \% \sim+80 \%$
JMV0402C240T4R7	24.0	130.0	1000	-	4.7	-20\% $\sim+80 \%$

[^1]for ESD protection - C series

Part Number	Working Voltage (Vw)	Clamping Voltage (Vc)	ESD Withstanding	Capacitance (C)		Capacitance Tolerance
	Volt	Volt	Time	pF		\%
	$<15 \mu \mathrm{~A}$	$1 \mathrm{~A}, 8 / 20 \mu \mathrm{~s}$	8 KV *	1 KHz	1 MHz	
0603						
JMV0603C050T4R7	5.0	50.0	1000	-	4.7	
JMV0603C050T100	5.0	50.0	1000	-	10	20\%
JMV0603C050T120	5.0	50.0	1000	-	12	20\%
JMV0603C050T150	5.0	50.0	1000	-	15	20\%
JMV0603C050T180	5.0	50.0	1000	-	18	20\%
JMV0603C050T220	5.0	50.0	1000	-	22	20\%
JMV0603C050T270	5.0	50.0	1000	-	27	20\%
JMV0603C050T330	5.0	50.0	1000	-	33	20\%
JMV0603C050T390	5.0	50.0	1000	-	39	20\%
JMV0603C050T470	5.0	50.0	1000	-	47	20\%
JMV0603C050T560	5.0	50.0	1000	-	56	20\%
JMV0603C050T680	5.0	50.0	1000	-	68	20\%
JMV0603C050T820	5.0	50.0	1000	-	82	20\%
JMV0603C050T101	5.0	30.0	1000	100	-	20\%
JMV0603C050T151	5.0	29.0	1000	150	-	20\%
JMV0603C050T181	5.0	29.0	1000	180	-	20\%
JMV0603C050T221	5.0	27.0	1000	220	-	20\%
JMV0603C050T271	5.0	27.0	1000	270	-	20\%
JMV0603C050T331	5.0	26.0	1000	330	-	20\%
JMV0603C050T391	5.0	26.0	1000	390	-	20\%
JMV0603C050T471	5.0	26.0	1000	470	-	20\%
JMV0603C050T102	5.0	23.0	1000	1000	-	20\%
JMV0603C120T4R7	12.0	80.0	1000	-	4.7	$-20 \% \sim+80 \%$
JMV0603C120T100	12.0	60.0	1000	-	10	20\%
JMV0603C120T220	12.0	50.0	1000	-	22	20\%
JMV0603C120T330	12.0	50.0	1000	-	33	20\%
JMV0603C120T390	12.0	50.0	1000	-	39	20\%
JMV0603C120T470	12.0	50.0	1000	-	47	20\%
JMV0603C120T560	12.0	50.0	1000	-	56	20\%
JMV0603C120T820	12.0	50.0	1000	-	82	20\%
JMV0603C120T101	12.0	50.0	1000	100	-	20\%
JMV0603C120T151	12.0	50.0	1000	150	-	20\%
JMV0603C120T181	12.0	47.0	1000	180	-	20\%
JMV0603C120T331	12.0	46.0	1000	330	-	20\%
JMV0603C240T3R3	24.0	200.0	1000	-	3.3	$-20 \% \sim+80 \%$

[^2]for ESD protection - E series

Part No.	Working Voltage (V_{w})	Breakdown Voltage (Vb)	Clamping Voltage (Vc)	Peak Current (Ip)	Transient Energy (Et)	Typical Capacitance (C)	
	Volt	Volt	Volt	Amp	Joule	pF	
	$<15 \mu \mathrm{~A}$	1 mA (DC)	$1 \mathrm{~A}, 8 / 20 \mu \mathrm{~S}$	$8 / 20 \mu \mathrm{~S}$	$10 / 1000 \mu \mathrm{~S}$	1 KHz	1 MHz
0402 / 0603							
JMV0402E200T220	12.0	15.0~25.0	50.0	1 max.	0.05 max .	-	22
JMV0402E270T150	17.0	21.6~32.4	66.0	1 max.	0.05 max .	-	15
JMV0402E270T300	17.0	21.6~32.4	66.0	1 max.	0.05 max .	-	30
JMV0402E520T030	17.0	41.6~56.0	130.0	1 max.	0.05 max .	-	3.0
JMV0603E270T150	17.0	21.6~32.4	66.0	2 max .	0.05 max .	-	15
JMV0603E270T300	17.0	21.6~32.4	66.0	2 max .	0.05 max .	-	30
JMV0603E520T030	17.0	41.6~56.0	130.0	2 max .	0.05 max .	-	3.0
JMV0603E620T150	17.0	55.8~68.2	120.0	2 max .	0.05 max .	-	15
JMV0603E620T300	17.0	55.8~68.2	120.0	2 max .	0.05 max .	-	30

V_{w} - The max. steady state DC operating voltage of which varistor could maintain also not exceeding $50 \mu \mathrm{~A}$ leakage current.
V_{b} - The voltage acrossed the device measured at 1 mADC current.
V_{c} - The peak voltage acrossed the varistor measured at a specified pulse current and waveform.
I_{p} - The max. peak current applied with specified waveform without any possibility of device fail.
E_{t} - The max. energy which dissipated with the specified waveform without any possibility of device fail.
C - The device capacitance measured with zero volt bias, 1.0 Vrms and $1 \mathrm{KHz} / 0.5 \mathrm{Vrms}$ and 1 Mhz .
for ESD Protection - Low capacitance Series

Part No.	$\begin{aligned} & \text { Size } \\ & (\mathrm{mm}) \end{aligned}$	Vw	Trigger Voltage* (Vt)	Clamping Voltage* (Vc)	ESD		ESD Pulse Withstand* min.	$\begin{gathered} \mathrm{Cp} \\ (1 \mathrm{MHz}) \\ \mathrm{PF} \end{gathered}$
					Contact	Air		
JES0402C5R5T0R1	0402	5.5	500	35	8KV	15 KV	500	0.1
JES0402C120T0R1		12						
JES0603C5R5T0R1	0603	5.5						
JES0603C120T0R1		12						
JES0603C240T0R.1		24						

[^3]
Carrier Tape Specifications

Dimensions of Embossed Tape

Size	$\mathbf{A}_{0} \pm 0.1$ $(\mathrm{~mm})$	$\mathrm{B} 0 \pm 0.1$ $(\mathrm{~mm})$	$\mathrm{P}_{1} \pm 0.1$ $(\mathrm{~mm})$	$\mathrm{t}_{1} / \mathrm{t}_{2}$ $(\mathrm{~mm})$	$\mathrm{t}_{3} / \mathrm{t}_{4}$ $(\mathrm{~mm})$		Quantity/Reel (Pcs)	
	Paper Tape	Embossed Tape						
0402	0.62	1.10	2	-	$1.0 \mathrm{max} / 1.1 \mathrm{max}$	10000	-	
0603	1.08	1.88	4	-	$1.0 \mathrm{max} / 1.1 \mathrm{max}$	4000	-	
0805	1.42	2.30	4	$0.6 \mathrm{max} / 2.0 \mathrm{max}$	$1.0 \mathrm{max} / 1.1 \mathrm{max}$	4000	4000	
1206	1.88	3.50	4	$0.6 \mathrm{max} / 2.9 \mathrm{max}$	-	-	3000	
1210	2.18	3.46	4	$0.6 \mathrm{max} / 2.9 \mathrm{max}$	-	-	2000	
1812	3.66	4.95	8	$0.6 \mathrm{max} / 2.9 \mathrm{max}$	-	-	1000	
2220	5.10	5.97	8	$0.6 \mathrm{max} / 2.9 \mathrm{max}$	-	-	1000	

A_{0} : Width of Cavity $\quad t_{1}$: Embossed Tape Thickness t_{3} : Paper Tape for Width
B_{0} : Length of Cavity $\quad t_{2}$: Height of Embossed Tape t_{4} : Paper Tape Bottom Width
P_{1} : Pitch

Reel Specifications

Dimensions

Size	A	B	C	W	W1
0402	178	60	13	10	1.6
0603	178	60	13	10	1.6
0805	178	60	13	10	1.6
1206	178	60	13	10	1.6
1210	178	60	13	10	1.6
1812	178	60	13.5	13.6	1.6
2220	178	60	13.5	13.6	1.6

[^0]: $\diamond: S=J M V$ S series , $A=J M V$ A series

[^1]: * - In system ESD withstanding pulse per IEC 61000-4-2,8K V, contact discharge method.
 V_{w-} The max. steady state DC operating voltage of which varistor could maintain also not exceeding 15μ A leakage current.
 V_{c} - The peak voltage acrossed the varistor measured at a specified pulse current and waveform.
 C - The device capacitance measured with $1.0 \mathrm{Vrms}, 1 \mathrm{KHz} / 0.5 \mathrm{rms}, 1 \mathrm{MHz}$.
 *Any special design or request is welcomed. Please contact our e-mail address: sales@joyin.com.tw

[^2]: * - In system ESD withstanding pulse per IEC 61000-4-2,8KV, contact discharge method.
 V_{w} - The max. steady state DC operating voltage of which varistor could maintain also not exceeding $15 \mu \mathrm{~A}$ leakage current
 V_{c} - The peak voltage acrossed the varistor measured at a specified pulse current and waveform.
 C -The device capacitance measured with $1.0 \mathrm{Vrms}, 1 \mathrm{KHz} / 0.5 \mathrm{rms}, 1 \mathrm{MHz}$.
 *Any special design or request is welcomed. Please contact our e-mail address: sales@joyin.com.tw

[^3]: *Per IEC $61000-4-2,8 \mathrm{KV}$, Clamp measurement made 30 ns after initiation of pulse, all test in contact discharge mode.
 V_{w} - The max. steady state DC operating voltage of which varistor could maintain also not exceeding $50 \mu \mathrm{~A}$ leakage current.
 V_{c} - The peak voltage acrossed the varistor measured at a specified pulse current and waveform.
 C - The device capacitance measured with zero volt bias, 1 Mhz .

