
Dynamic Differential Hall Effect Sensor IC Detection

About this document

Overview

Features

- Advanced performance
- High sensitivity
- Symmetrical thresholds
- High piezo resistivity
- Reduced power consumption
- South and north pole pre-induction possible
- AC coupled
- Digital output signal
- Two-wire and three-wire configuration possible
- Large temperature range
- · Large airgap
- Low cut-off frequency
- Protection against overvoltage
- Protection against reversed polarity
- Output protection against electrical disturbances

Target applications

The differential Hall Effect sensor TLE4921-5U provides a high sensitivity and a superior stability over temperature and symmetrical thresholds in order to achieve a stable duty cycle. TLE4921-5U is particularly suitable for rotational speed detection and timing applications of ferromagnetic toothed wheels such as anti-lock braking systems, transmissions, crankshafts, etc. The integrated circuit (based on Hall effect) provides a digital signal output with frequency proportional to the speed of rotation. Unlike other rotational sensors differential Hall ICs are not influenced by radial vibration within the effective airgap of the sensor and require no external signal processing.

Product type	Marking	Ordering code	Package
TLE4921-5U	215U	SP000013593	PG-SSO-4-1

Dynamic Differential Hall Effect Sensor IC Detection

Table of contents

Table of contents

	About this document	1
	Table of contents	2
1	General	3
1.1	Pin Configuration (view on branded side of component)	3
1.2	Block diagram	3
1.3	Functional description	4
1.4	Circuit description	4
2	Maximum ratings	5
3	Operating range	6
4	Electrical and magnetic parameters	7
5	Application configurations	9
6	Typical performance characteristics	12
7	Package outlines	19
8	Revision history	20
	Disclaimer	21

1 General

1 General

1.1 Pin Configuration (view on branded side of component)

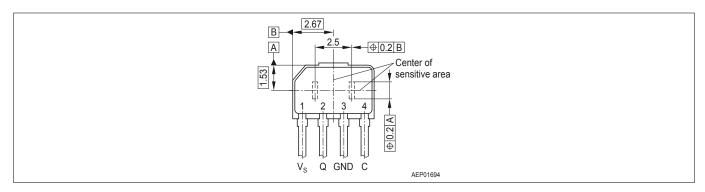


Figure 1

Table 1 Pin definitions and functions

Pin No.	Symbol	Function
1	V _S	Supply voltage
2	Q	Output
3	GND	Ground
4	С	Capacitor

1.2 Block diagram

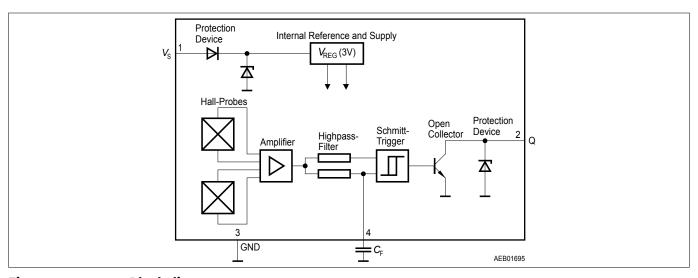


Figure 2 Block diagram

Dynamic Differential Hall Effect Sensor IC Detection

1 General

1.3 Functional description

The Differential Hall Sensor IC detects the motion and position of ferromagnetic and permanent magnet structures by measuring the differential flux density of the magnetic field. To detect ferromagnetic objects the magnetic field must be provided by a back biasing permanent magnet (south or north pole of the magnet attached to the rear unmarked side of the IC package).

Using an external capacitor the generated Hall voltage signal is slowly adjusted via an active high pass filter with a low cut-off frequency. This causes the output to switch into a biased mode after a time constant is elapsed. The time constant is determined by the external capacitor. Filtering avoids ageing and temperature influence from Schmitttrigger input and eliminates device and magnetic offset.

The TLE4921-5U can be exploited to detect toothed wheel rotation in a rough environment. Jolts against the toothed wheel and ripple have no influence on the output signal.

Furthermore, the TLE4921-5U can be operated in a two-wire as well as in a three-wireconfiguration.

The output is logic compatible by high/low levels regarding on and off.

1.4 Circuit description

The TLE4921-5U is comprised of a supply voltage reference, a pair of Hall probes spaced at 2.5 mm, differential amplifier, filter for offset compensation, Schmitt trigger, and an open collector output.

The TLE4921-5U was designed to have a wide range of application parameter variations. Differential fields up to \pm 80 mT can be detected without influence to the switching performance. The pre-induction field can either come from a magnetic south or north pole, whereby the field strength up to 500 mT or more will not influence the switching points. The improved temperature compensation enables a superior sensitivity and accuracy over the temperature range. Finally the optimized piezo compensation and the integrated dynamic offset compensation enable easy manufacturing and elimination of magnet offsets.

Protection is provided at the input/supply (pin 1) for overvoltage and reverse polarity and against over-stress such as load dump, etc., in accordance with ISO-TR 7637 and DIN 40839. The output (pin 2) is protected against voltage peaks and electrical disturbances.

Dynamic Differential Hall Effect Sensor IC Detection

2 Maximum ratings

2 Maximum ratings

Table 2 Absolute maximum ratings

 $T_j = -40$ °C to 150°C

Parameter	Symbol	Limit	t Values	Unit	Remarks
		Min.	Max.		
Supply voltage	V _S	-35 ⁽¹⁾	30	V	
Output voltage	V_{Q}	-0.7	30	V	
Output current	IQ	-	50	mA	
Output reverse current	-I _Q	_	50	mA	
Capacitor voltage	V _C	-0.3	3	V	
Junction temperature	T _j	_	150	°C	5000 h
		-	160		2500 h
		-	170		1000 h
		-	210		40 h
Storage temperature	T _S	-40	150	°C	
Thermal resistance PG-SSO-4-1	R _{thJA}	_	190	K/W	
Current through input- protection device	I _{SZ}	-	200	mA	t < 2 ms; v = 0.1
Current through output- protection device	I_{QZ}	_	200	mA	t < 2 ms; v = 0.1

⁽¹⁾ Reverse current < 10 mA

Dynamic Differential Hall Effect Sensor IC Detection

3 Operating range

3 Operating range

Table 3 ESD Protection

Human Body Model (HBM) tests according to: Standard EIA/JESD22-A114-B HBM

Parameter	Symbol	Limit Values		Limit Values Uni		Unit	Remarks
		Min.	Max.				
ESD - protection	V_{ESD}	_	±2	kV			

Table 4 Operating range

Parameter	Symbol	L	Limit Values			Remarks
		Min.	Тур.	Мах.		
Supply voltage	V _S	4.5	_	24	V	
Junction temperature	T _j	-40	_	150	°C	5000 h
		_	_	160		2500 h
		_	_	170		1000 h
Pre-induction	B_0	-500	-	500	mT	at Hall probe; independent of magnet orientation
Differential induction	ΔΒ	-80	_	80	mT	

Note: In the operating range the functions given in the circuit description are fulfilled.

Dynamic Differential Hall Effect Sensor IC Detection

4 Electrical and magnetic parameters

4 Electrical and magnetic parameters

Table 5 Electrical Characteristics table template

Parameter	Symbol	Li	Limit Values			Test	Test Circuit
		Min.	Тур.	Max.		Condition	
Supply current	Is	3.8	5.3	8.0	mA	$V_Q = high$ $I_O = 0 mA$	1
		4.3	5.9	8.8	mA	$V_Q = low$ $I_O = 40 \text{ mA}$	1
Output saturation voltage	V_{QSAT}	-	0.25	0.6	V	I _Q = 40 mA	1
Output leakage current	I_{QL}	_	_	50	μΑ	V _Q = 24 V	1
Center of switching points: (ΔB _{OP} + ΔB _{RP}) / 2	$\Delta B_{ m m}$	-1	0	1	mT	-20 mT < ΔB < 20 mT ⁽¹⁾ (2) f = 200 Hz	2
Operate point	ΔB_{OP}	-	-	0	mT	f = 200 Hz, ΔB = 20 mT	2
Release point	ΔB_{RP}	0	-	-	mT	f = 200 Hz, ΔB = 20 mT	2
Hysteresis	ΔB _H	0.5	1.5	2.5	mT	f = 200 Hz, ΔB = 20 mT	2
Overvoltage protection	V _{SZ}	27	_	35	V	I _S = 16 mA	1
at supply voltage at output	V_{QZ}	27	_	35	V	I _Q = 16 mA	1
Output rise time	t _r	-	_	0.5	μs	$I_Q = 40 \text{ mA}$ $C_L = 10 \text{ pF}$	1
Output fall time	t_{f}	-	_	0.5	μs	$I_Q = 40 \text{ mA}$ $C_L = 10 \text{ pF}$	1
Delay time	t _{dop}	_	_	25	μs	f = 10 kHz	2
	t _{drp}	-	_	10	μs	$\Delta B = 5 \text{ mT}$	
	t _{dop} - t _{drp}	_	0	15	μs		
Filter input resistance	R _C	35	43	52	kΩ	25°C ±2°C	1
Filter sensitivity to ΔB	S _C	-	-5	_	mV/ mT	_	1
Filter bias voltage	V _C	1.6	2	2.4	V	ΔB = 0	1
Frequency	f	(3)	_	2000	Hz	$\Delta B = 5 \text{ mT}$	2
Resistivity against mechanical stress (piezo)	ΔBm ΔBH	-0.1 -0.1	_	0.1	mT mT	F = 2 N	2 ⁽⁴⁾

⁽¹⁾ The Current consumption characteristic will be different and the specified values can slightly change

4 Electrical and magnetic parameters

(2) Leakage currents at pin 4 should be avoided. The bias shift of Bm caused by a leakage current IL can be calculated by:

$$\Delta B_m = \frac{I_L \times R_C(T)}{S_C(T)}$$

- (3) For higher ΔB the values may exceed the limits like following $|\Delta B_m| < |0.05 \times \Delta B|$
- (4) Depends on filter capacitor C_F. The cut-off frequency is given by

$$f = \frac{1}{2\pi \times R_C \times C_F}$$

. The switching points are guaranteed over the whole frequency range, but amplitude modification and phase shift due to the 1st order highpass filter have to be taken into account.

Note:

The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_i = 25^{\circ}\text{C}$ and the given supply voltage.

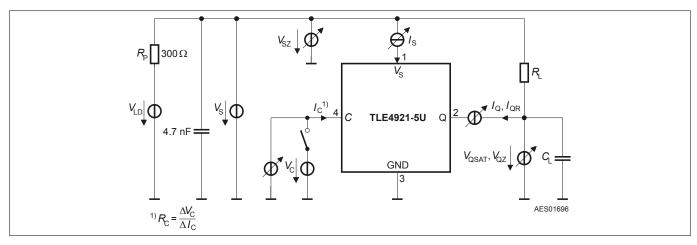


Figure 3 Test circuit 1

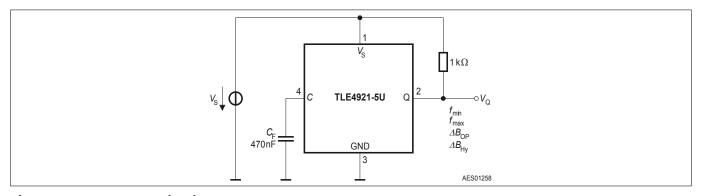


Figure 4 Test circuit 2

5 Application configurations

5 Application configurations

Two possible applications are shown in Figure 7 and Figure 8 (Toothed and Magnet Wheel). The difference between two-wire and three-wire application is shown in Figure 9.

Gear Tooth Sensing

In the case of ferromagnetic toothed wheel application the IC has to be biased by the south or north pole of a permanent magnet (e.g. $SmCO_5$ (Vacuumschmelze VX145)) with the dimensions 8 mm × 5 mm × 3 mm) which should cover both Hall probes.

The maximum air gap depends on:

- the magnetic field strength (magnet used; pre-induction) and
- the toothed wheel that is used (dimensions, material, etc.; resulting differential field)

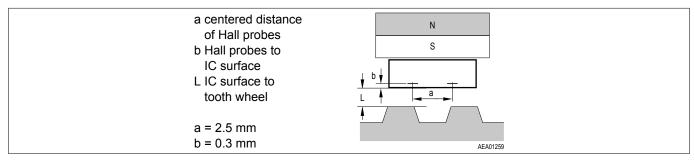


Figure 5 Sensor Spacing

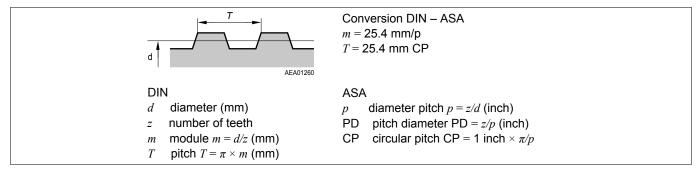


Figure 6 Tooth Wheel Dimensions

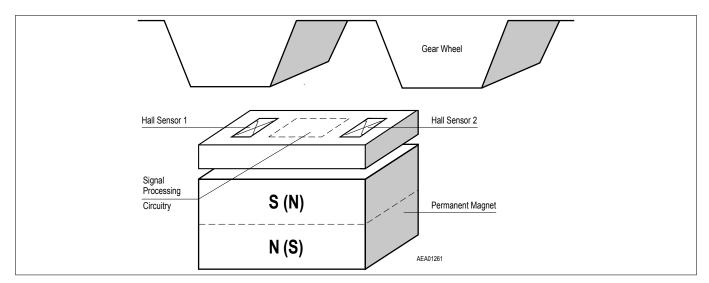


Figure 7 TLE4921-5U, with Ferromagnetic Toothed Wheel

5 Application configurations

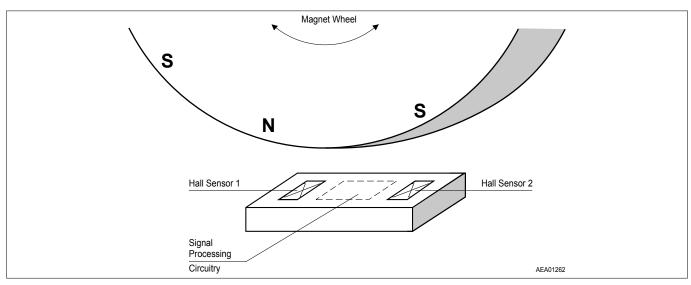
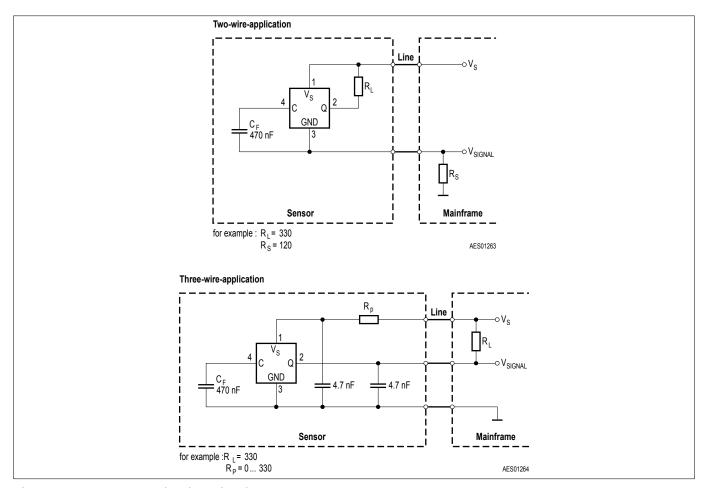
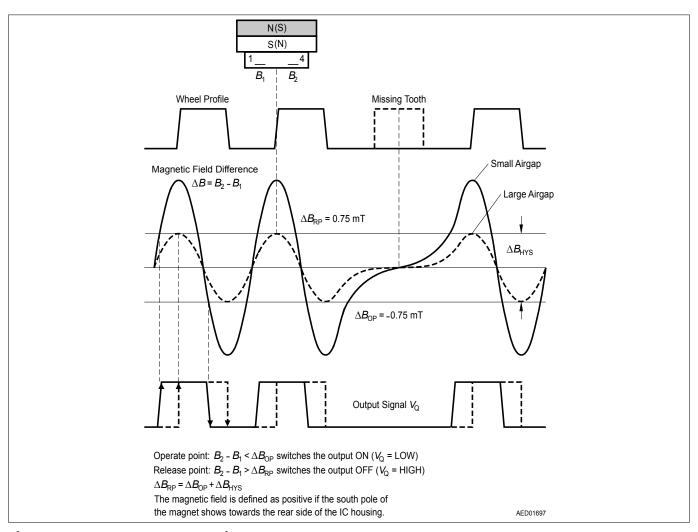



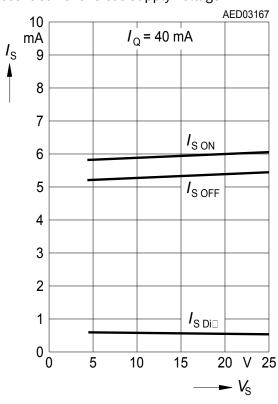
Figure 8 TLE4921-5U, with Magnet Wheel

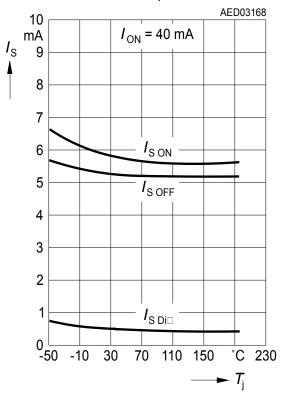
Application Circuits Figure 9

Dynamic Differential Hall Effect Sensor IC Detection

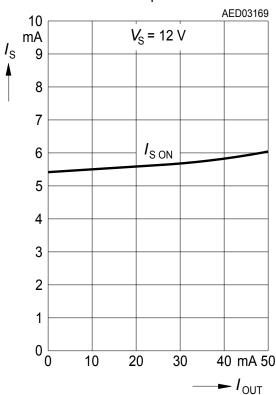
5 Application configurations

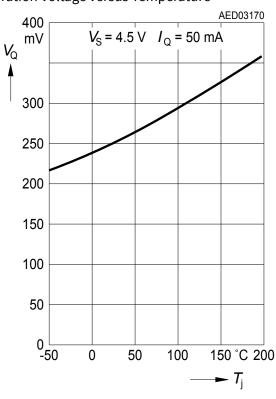



Figure 10 System Operation

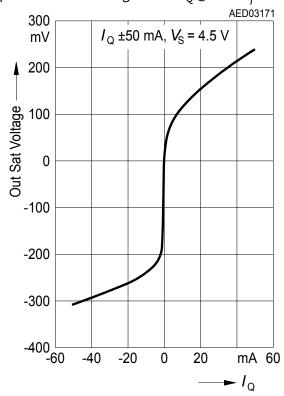

6 Typical performance characteristics

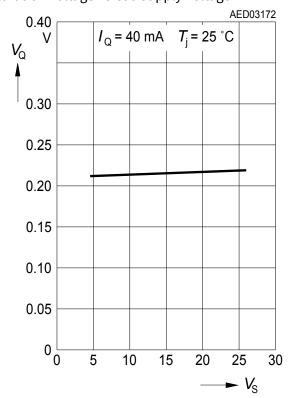
6 Typical performance characteristics


Quiescent Current versus Supply Voltage

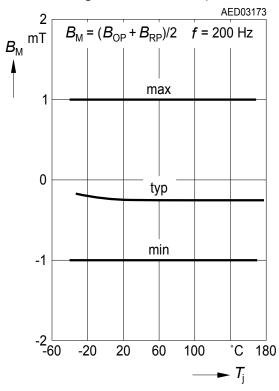

Quiescent Current versus Temperature

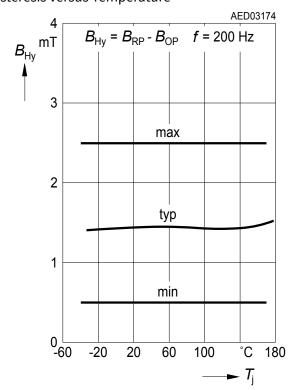
Quiescent Current versus Output Current


Saturation Voltage versus Temperature

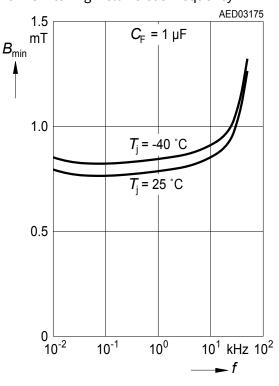


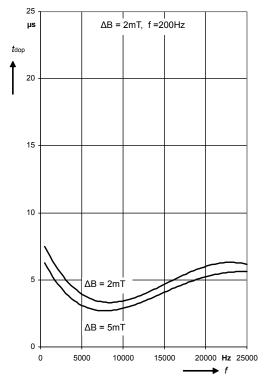
6 Typical performance characteristics


Output Saturation Voltage versus I_Q @ 25°C T_i

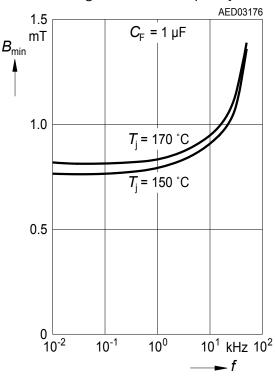

Saturation Voltage versus Supply Voltage

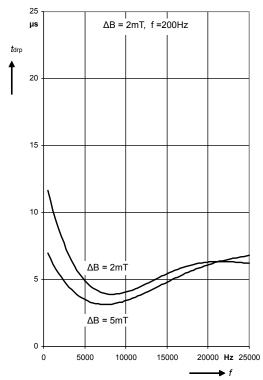
Center of Switching Points versus Temperature


Hysteresis versus Temperature

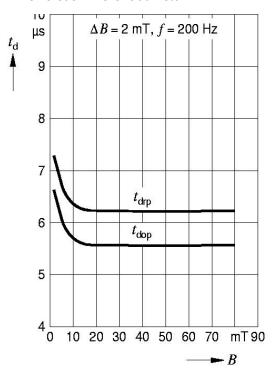


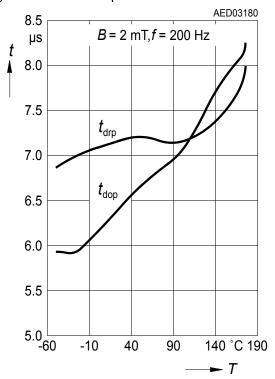
6 Typical performance characteristics


Minimum Switching Field versus Frequency

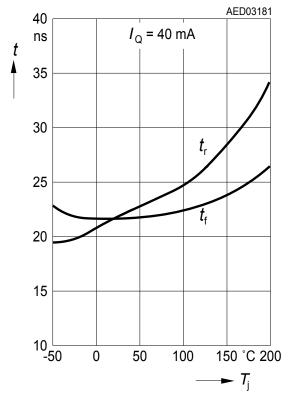

Delay Time between Switching Threshold ΔB and Falling Edge of V_{OUT} at $T_j = 25^{\circ}C$

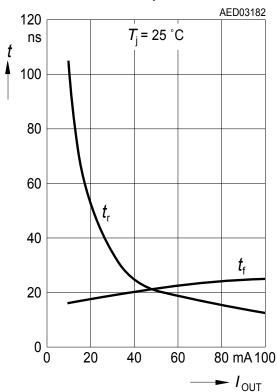
Minimum Switching Field versus Frequency


Delay Time between Switching Threshold ΔB and Rising Edge of V_{OUT} at T_j = 25°C



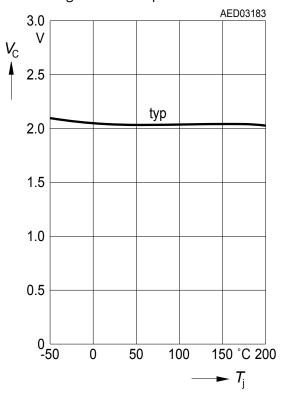
6 Typical performance characteristics


Delay Time versus Differential Field

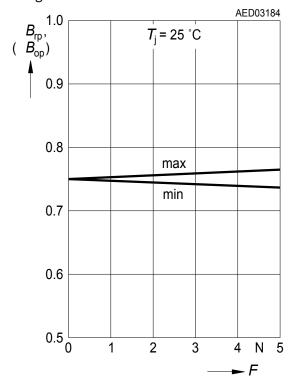

Delay Time versus Temperature

Rise and Fall Time versus Temperature

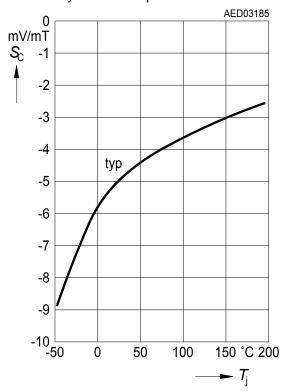
Rise and Fall Time versus Output Current

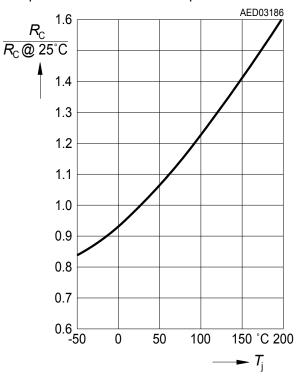


Dynamic Differential Hall Effect Sensor IC Detection



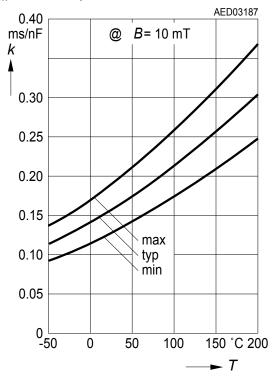
6 Typical performance characteristics


Capacitor Voltage versus Temperature


Switching Thresholds versus Mechanical Stress

Filter Sensitivity versus Temperature

Filter Input Resistance versus Temperature


16

Dynamic Differential Hall Effect Sensor IC Detection

6 Typical performance characteristics

Delay Time for Power on (V_S Switching from 0 V to 4.5 V) t_{pon} versus Temp.

Periodjitter (1σ) versus Temperature

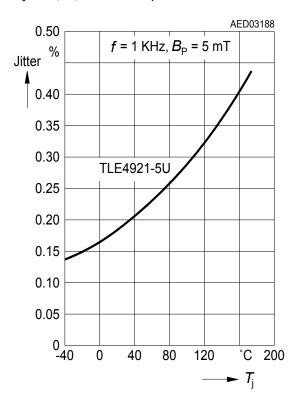


Table 6 Electro magnetic compatibility

ref. DIN 40839 part 1; test circuit 1

Parameter	Symbol	Level/Typ	Status	
Testpulse 1	V_{LD}	IV / - 100 V	С	
Testpulse 2		IV /100 V	В	
Testpulse 3a		IV / – 150 V	С	
Testpulse 3b		IV / 100 V	С	
Testpulse 4		IV / – 7 V	С	
Testpulse 5		IV / 86.5 V	С	

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Dynamic Differential Hall Effect Sensor IC Detection

6 Typical performance characteristics

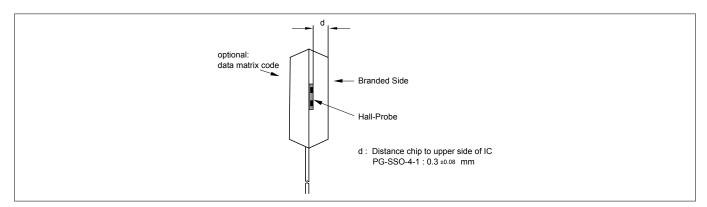


Figure 11 Distance Chip to Upper Side of IC

7 Package outlines

7 Package outlines

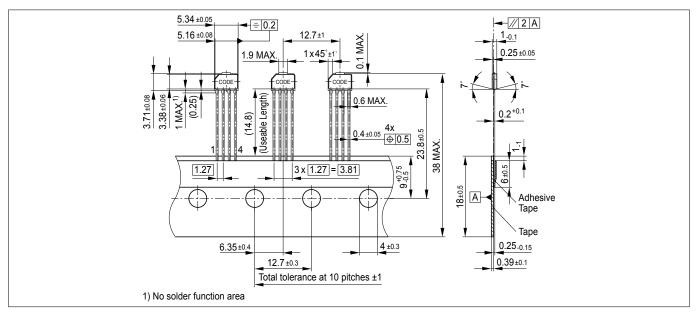


Figure 12 PG-SSO-4-1 (Plastic Single Small Outline Package)

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products. Dimensions in mm

Dynamic Differential Hall Effect Sensor IC Detection

8 Revision history

8 Revision history

Revision H	istory
Page	Subjects (major changes since last revision)
Revision Hi	story: 2020-11, Rev. 1.2
Previous Re	evisions: Rev. 1.1
17	Edited figure 11 (optional: data matrix code)
Rev. 1.0	
5	Ordering Code changed
11	"Output leakage current" unit corrected
20	Figures "Delay Time between Switching Threshold" exchanged and corrected
21	Figure "Delay Time versus Differential Field" corrected

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2008-01 Published by Infineon Technologies AG 81726 Munich, Germany

© 2020 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-jwo1598516982309

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.