Renesas 4 O/P 1.5V PCle Gen1-2-3 ZDB/FOB $w / Z o=1000 \mathrm{hms}$

Description

The 9DBU0441 is a member of IDT's 1.5 V Ultra-Low-Power (ULP) PCle family. It has integrated output terminations providing $\mathrm{Zo}=100 \Omega$ for direct connection to 100Ω transmission lines. The device has 4 output enables for clock management, and 3 selectable SMBus addresses.

Recommended Application

1.5V PCle Gen1-2-3 Zero-Delay/Fan-out Buffer (ZDB/FOB)

Output Features

- 4 - 1-167MHz Low-Power (LP) HCSL DIF pairs $w / Z O=100 \Omega$

Key Specifications

- DIF cycle-to-cycle jitter <50ps
- DIF output-to-output skew <75ps
- DIF phase jitter is PCle Gen1-2-3 compliant
- DIF bypass mode additive phase jitter is $<300 \mathrm{fs}$ rms for PCle Gen3
- DIF bypass mode additive phase jitter <350fs rms for 12k-20MHz

Features/Benefits

- Direct connection to 100Ω transmission lines; saves 16 resistors compared to standard HCSL outputs
- 45 mW typical power consumption in PLL mode; eliminates thermal concerns
- Spread Spectrum (SS) compatible; allows SS for EMI reduction
- OE\# pins; support DIF power management
- HCSL-compatible differential input; can be driven by common clock sources
- SMBus-selectable features; optimize signal integrity to application
- slew rate for each output
- differential output amplitude
- Pin/software selectable PLL bandwidth and PLL Bypass; optimize PLL to application
- Outputs blocked until PLL is locked; clean system start-up
- Device contains default configuration; SMBus interface not required for device control
- 3.3V tolerant SMBus interface works with legacy controllers
- Three selectable SMBus addresses; multiple devices can easily share an SMBus segment
- Space saving 32-pin $5 \times 5 \mathrm{~mm}$ VFQFPN; minimal board space

Block Diagram

Pin Configuration

32-pin VFQFPN, $5 \times 5 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch

\wedge prefix indicates internal 120KOhm pull up resistor
$\wedge v$ prefix indicates internal 120KOhm pull up AND pull down resistor (biased to VDD/2)
v prefix indicates internal 120KOhm pull down resistor

SMBus Address Selection Table

	SADR	Address	$\boldsymbol{+}$
State ofRead/Write bit SADR on first application of CKPWRGD_PD\# O	1101011	x	
	M	1101100	x
	1	1101101	x

Power Management Table

CKPWRGD_PD\#	CLK_IN	SMBus OEx bit	OEx\# Pin	DIFx		PLL
				Comp. O/P		
0	X	X	X	Low	Low	Off
1	Running	0	X	Low	Low	On 1
1	Running	1	0	Running	Running	On 1
1	Running	1	1	Low	Low	On 1

1. If Bypass mode is selected, the PLL will be off, and outputs will be running.

Power Connections

Pin Number		Description
VDD	GND	
4	7	Input receiver analog
9	8	Digital Power
16,25	$15,20,26,30$	DIF outputs
21	20	PLL Analog

Note: epad on this device is not electrically connected to the die. It should be connected to ground for best thermal performance.

PLL Operating Mode

HiBW_BypM_LoBW\#	MODE	Byte1 [7:6] Readback	Byte1 [4:3] Control
0	PLL Lo BW	00	00
M	Bypass	01	01
1	PLL Hi BW	11	11

Pin Descriptions

Pin\#	Pin Name	Type	Pin Description
1	^vHIBW_BYPM_LOB	$\begin{aligned} & \text { LATCHED } \\ & \text { IN } \end{aligned}$	Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.
2	FB_DNC	DNC	True clock of differential feedback. The feedback output and feedback input are connected internally on this pin. Do not connect anything to this pin.
3	FB_DNC\#	DNC	Complement clock of differential feedback. The feedback output and feedback input are connected internally on this pin. Do not connect anything to this pin.
4	VDDR1.5	PWR	1.5 V power for differential input clock (receiver). This VDD should be treated as an Analog power rail and filtered appropriately.
5	CLK_IN	IN	True Input for differential reference clock.
6	CLK_IN\#	IN	Complementary Input for differential reference clock.
7	GNDR	GND	Analog Ground pin for the differential input (receiver)
8	GNDDIG	GND	Ground pin for digital circuitry
9	VDDDIG1.5	PWR	1.5 V digital power (dirty power)
10	SCLK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
11	SDATA_3.3	1/O	Data pin for SMBus circuitry, 3.3V tolerant.
12	vOEO\#	IN	Active low input for enabling DIF pair 0 . This pin has an internal pull-down. 1 =disable outputs, $0=$ enable outputs
13	DIF0	OUT	Differential true clock output
14	DIFO\#	OUT	Differential Complementary clock output
15	GND	GND	Ground pin.
16	VDDO1.5	PWR	Power supply for outputs, nominally 1.5 V .
17	vOE1\#	IN	Active low input for enabling DIF pair 1. This pin has an internal pull-down. 1 =disable outputs, $0=$ enable outputs
18	DIF1	OUT	Differential true clock output
19	DIF1\#	OUT	Differential Complementary clock output
20	GNDA	GND	Ground pin for the PLL core.
21	VDDA1.5	PWR	1.5 V power for the PLL core.
22	DIF2	OUT	Differential true clock output
23	DIF2\#	OUT	Differential Complementary clock output
24	vOE2\#	IN	Active low input for enabling DIF pair 2. This pin has an internal pull-down. 1 =disable outputs, $0=$ enable outputs
25	VDDO1.5	PWR	Power supply for outputs, nominally 1.5 V .
26	GND	GND	Ground pin.
27	DIF3	OUT	Differential true clock output
28	DIF3\#	OUT	Differential Complementary clock output
29	vOE3\#	IN	Active low input for enabling DIF pair 3. This pin has an internal pull-down. 1 =disable outputs, $0=$ enable outputs
30	GND	GND	Ground pin.
31	^CKPWRGD_PD\#	IN	Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal pull-up resistor.
32	^SADR_tri	$\begin{gathered} \hline \text { LATCHED } \\ \text { IN } \end{gathered}$	Tri-level latch to select SMBus Address. See SMBus Address Selection Table.
33	EPAD	GND	Connect ePAD to ground.

Test Loads

Note: The device can drive transmission line lengths greater than those allowed by the PCle SIG

Driving LVDS

Driving LVDS inputs

Component	Value		Note
	Receiver has termination	Receiver does not have termination	
R7a, R7b	10K ohm	140 ohm	
R8a, R8b	5.6 K ohm	75 ohm	
Cc	0.1 uF	0.1 uF	
Vcm	1.2 volts	1.2 volts	

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9DBU0441. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx		-0.5		2	V	1,2
Input Voltage	$\mathrm{V}_{\text {IN }}$		-0.5		$\mathrm{~V}_{\mathrm{DD}}+0.5$	V	1,3
Input High Voltage, SMBus	$\mathrm{V}_{\text {IHSMB }}$	SMBus clock and data pins			3.3	V	1
Storage Temperature	Ts		-65		150	${ }^{\circ} \mathrm{C}$	1
Junction Temperature	Tj				125	${ }^{\circ} \mathrm{C}$	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Operation under these conditions is neither implied nor guaranteed.
${ }^{3}$ Not to exceed 2.0V.

Electrical Characteristics-Clock Input Parameters

$T A=T_{\text {AMB }}$, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input Common Mode Voltage - DIF_IN	$\mathrm{V}_{\text {COM }}$	Common Mode Input Voltage	200		725	mV	1
Input Swing - DIF_IN	$\mathrm{V}_{\text {SWING }}$	Differential value	300		1450	mV	1
Input Slew Rate - DIF_IN	$\mathrm{dV} / \mathrm{dt}$	Measured differentially	0.4		8	$\mathrm{~V} / \mathrm{ns}$	1,2
Input Leakage Current	I_{IN}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {IN }}=$ GND	-5		5	uA	
Input Duty Cycle	$\mathrm{d}_{\text {tin }}$	Measurement from differential wavefrom	45	50	55	$\%$	1
Input Jitter - Cycle to Cycle	$\mathrm{J}_{\text {DIFIn }}$	Differential Measurement	0		150	ps	1

[^0]
Electrical Characteristics-Input/Supply/Common Parameters-Normal Operating Conditions

$\mathrm{TA}=\mathrm{T}_{\text {AMB }}$; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx	Supply voltage for core and analog	1.425	1.5	1.575	V	
Ambient Operating Temperature	$\mathrm{T}_{\text {AMB }}$	Commmercial range	0	25	70	${ }^{\circ} \mathrm{C}$	1
		Industrial range	-40	25	85	${ }^{\circ} \mathrm{C}$	1
Input High Voltage	$\mathrm{V}_{\text {IH }}$	Single-ended inputs, except SMBus	$0.75 \mathrm{~V}_{\mathrm{DD}}$		$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Input Mid Voltage	$\mathrm{V}_{\text {IM }}$	Single-ended tri-level inputs ('_tri' suffix)	$0.4 \mathrm{~V}_{\mathrm{DD}}$		$0.6 \mathrm{~V}_{\mathrm{DD}}$	V	
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Single-ended inputs, except SMBus	-0.3		$0.25 \mathrm{~V}_{\mathrm{DD}}$	V	
Input Current	$\mathrm{I}_{\text {IN }}$	Single-ended inputs, $\mathrm{V}_{\text {IN }}=\mathrm{GND}, \mathrm{V}_{\text {IN }}=$ VDD	-5		5	uA	
	1 INP	Single-ended inputs $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$; Inputs with internal pull-up resistors $\mathrm{V}_{\text {IN }}=$ VDD; Inputs with internal pull-down resistors	-200		200	uA	
Input Frequency	$\mathrm{F}_{\text {ibyp }}$	Bypass mode	1		167	MHz	2
	$\mathrm{F}_{\text {ipll }}$	100MHz PLL mode	60	100.00	110	MHz	2
Pin Inductance	$\mathrm{L}_{\text {pin }}$				7	nH	1
Capacitance	$\mathrm{C}_{\text {IN }}$	Logic Inputs, except DIF_IN	1.5		5	pF	1
	$\mathrm{C}_{\text {INDIF,IN }}$	DIF_IN differential clock inputs	1.5		2.7	pF	1,5
	$\mathrm{C}_{\text {OUT }}$	Output pin capacitance			6	pF	1
Clk Stabilization	$\mathrm{T}_{\text {Stab }}$	From V_{DD} Power-Up and after input clock stabilization or de-assertion of PD\# to 1st clock			1	ms	1,2
Input SS Modulation Frequency PCle	$\mathrm{f}_{\text {MODINPCle }}$	Allowable Frequency for PCle Applications (Triangular Modulation)	30		33	kHz	
Input SS Modulation Frequency non-PCle	$\mathrm{f}_{\text {MODIN }}$	Allowable Frequency for non-PCle Applications (Triangular Modulation)	0		66	kHz	
OE\# Latency	$\mathrm{t}_{\text {Latoe }}$	DIF start after OE\# assertion DIF stop after OE\# deassertion	1		3	clocks	1,3
Tdrive_PD\#	$\mathrm{t}_{\text {DRVPD }}$	DIF output enable after PD\# de-assertion			300	us	1,3
Tfall	t_{F}	Fall time of single-ended control inputs			5	ns	2
Trise	t_{R}	Rise time of single-ended control inputs			5	ns	2
SMBus Input Low Voltage	$\mathrm{V}_{\text {ILSMB }}$				0.6	V	
SMBus Input High Voltage	$\mathrm{V}_{\text {IHSMB }}$	$\mathrm{V}_{\text {DDSMB }}=3.3 \mathrm{~V}$, see note 4 for $\mathrm{V}_{\text {DDSMB }}<3.3 \mathrm{~V}$	2.1		3.3	V	4
SMBus Output Low Voltage	$\mathrm{V}_{\text {OLSMB }}$	@ IPULLUP			0.4	V	
SMBus Sink Current	IpULLUP	@ V_{OL}	4			mA	
Nominal Bus Voltage	$\mathrm{V}_{\text {DDSMB }}$	Bus Voltage	1.425		3.3	V	
SCLK/SDATA Rise Time	$\mathrm{t}_{\text {RSMB }}$	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	$\mathrm{t}_{\text {FSMB }}$	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	$\mathrm{f}_{\text {MAXSMB }}$	Maximum SMBus operating frequency			400	kHz	6

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Control input must be monotonic from 20% to 80% of input swing.
${ }^{3}$ Time from deassertion until outputs are $>200 \mathrm{mV}$
${ }^{4}$ For $V_{\text {DDSMB }}<3.3 V, V_{\text {IHSMB }}>=0.8 x V_{\text {DDSMB }}$
${ }^{5}$ DIF_IN input
${ }^{6}$ The differential input clock must be running for the SMBus to be active

Electrical Characteristics-Low-Power HCSL Outputs

$\mathrm{TA}=\mathrm{T}_{\mathrm{AMB}}$; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	dV/dt	Scope averaging on, fast setting (100MHz)	1	2.4	3.5	V/ns	1,2,3
	$\mathrm{dV} / \mathrm{dt}$	Scope averaging on, slow setting (100MHz)	0.7	1.7	2.5	V/ns	1,2,3
Slew rate matching	$\Delta \mathrm{dV} / \mathrm{dt}$	Slew rate matching, Scope averaging on		9	20	\%	1,2,4
Voltage High	$\mathrm{V}_{\text {HIGH }}$	Statistical measurement on single-ended signal using oscilloscope math function. (Scope averaging on)	630	750	850	mV	7
Voltage Low	$V_{\text {Low }}$		-150	26	150		7
Max Voltage	Vmax	Measurement on single ended signal using absolute value. (Scope averaging off)		763	1150	mV	7
Min Voltage	V min		-300	22			7
Vswing	Vswing	Scope averaging off	300	1448		mV	1,2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	390	550	mV	1,5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		11	140	mV	1,6

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Measured from differential waveform
${ }^{3}$ Slew rate is measured through the Vswing voltage range centered around differential $0 V$. This results in $a+/-150 \mathrm{mV}$ window around differential OV.
${ }^{4}$ Matching applies to rising edge rate for Clock and falling edge rate for Clock\#. It is measured using a $+/-75 \mathrm{mV}$ window centered on the average cross point where Clock rising meets Clock\# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.
${ }^{5}$ Vcross is defined as voltage where Clock = Clock\# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock\# falling).
${ }^{6}$ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.
${ }^{7}$ At default SMBus settings.

Electrical Characteristics-Current Consumption

TA $=\mathrm{T}_{\text {AMB }}$; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	$\mathrm{I}_{\text {DDR }}$	VDDR @ 100MHz		4	6	mA	1
	$\mathrm{I}_{\text {DDDIG }}$	VDDIG, All outputs @ 100MHz		0.125	0.25	mA	1
	$\mathrm{I}_{\text {DDAO }}$	VDDA+VDDO, PLL Mode, All outputs @ 100MHz		25	30	mA	1
Powerdown Current	$\mathrm{I}_{\text {DDRPD }}$	VDDR, CKPWRGD_PD\# = 0		0.1	0.3	mA	1,2,3
	$\mathrm{I}_{\text {DDDIGPD }}$	VDDDIG, CKPWRGD_PD\# = 0		0.1	0.2	mA	1,2
	IDDAOPD	VDDA+VDDO, CKPWRGD_PD\# = 0		0.5	1	mA	1,2

[^1]
Electrical Characteristics-Output Duty Cycle, Jitter, Skew and PLL Characteristics

$T A=T_{\text {AMB }}$; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
PLL Bandwidth	BW	-3dB point in High BW Mode (100MHz)	2.3	3.6	4.7	MHz	1,5
		-3dB point in Low BW Mode (100MHz)	1	1.6	2.5	MHz	1,5
PLL Jitter Peaking	$\mathrm{t}_{\text {JPEAK }}$	Peak Pass band Gain (100MHz)		1.3	2.5	dB	1
Duty Cycle	t_{DC}	Measured differentially, PLL Mode	45	50	55	\%	1
Duty Cycle Distortion	$t_{\text {DCD }}$	Measured differentially, Bypass Mode @100MHz	-1	-0.6	0	\%	1,3
Skew, Input to Output	$\mathrm{t}_{\text {pdBYP }}$	Bypass Mode, $\mathrm{V}_{\mathrm{T}}=50 \%$	3400	4301	5200	ps	1
	$\mathrm{t}_{\mathrm{pdPLL}}$	PLL Mode $\mathrm{V}_{\mathrm{T}}=50 \%$	0	50	150	ps	1,4
Skew, Output to Output	$\mathrm{t}_{\text {sk3 }}$	$\mathrm{V}_{\mathrm{T}}=50 \%$		37	50	ps	1,4
Jitter, Cycle to cycle	$\mathrm{t}_{\text {jcyc-cyc }}$	PLL mode		24	50	ps	1,2
		Additive Jitter in Bypass Mode		0.1	5	ps	1,2

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Measured from differential waveform
${ }^{3}$ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.
${ }^{4}$ All outputs at default slew rate
${ }^{5}$ The MIN/TYP/MAX values of each BW setting track each other, i.e., Low BW MAX will never occur with Hi BW MIN.

Electrical Characteristics-Phase Jitter Parameters

$\mathrm{TA}=\mathrm{T}_{\text {AMB }}$; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	INDUSTRY LIMIT	UNITS	Notes
Phase Jitter, PLL Mode	$\mathrm{t}_{\text {jphPCleG1 }}$	PCle Gen 1		30	58	86	ps (p-p)	1,2,3,5
	$\mathrm{t}_{\text {jphPCleG2 }}$	PCle Gen 2 Lo Band $10 \mathrm{kHz}<\mathrm{f}<1.5 \mathrm{MHz}$		0.9	1.4	3	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,3,5
		PCle Gen 2 High Band $1.5 \mathrm{MHz}<\mathrm{f}<$ Nyquist (50 MHz)		2.1	2.6	3.1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,3,5
	$\mathrm{t}_{\text {jphPCleG3Co }}$ m	PCle Gen 3 Common Clock Architecture (PLL BW of $2-4$ or $2-5 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz}$)		0.5	0.6	1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,3,5
	$\mathrm{t}_{\text {jphPCleG3SRn }} \mid$ s	PCle Gen 3 Separate Reference No Spread (SRnS) (PLL BW of $2-4$ or $2-5 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz}$)		0.5	0.6	0.7	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,3,5
Additive Phase Jitter, Bypass Mode	$\mathrm{t}_{\text {jphPCleG1 }}$	PCle Gen 1		0.1	5	N/A	ps (p-p)	1,2,3,5
	$\mathrm{t}_{\text {jphPCleG2 }}$	PCle Gen 2 Lo Band $10 \mathrm{kHz}<\mathrm{f}<1.5 \mathrm{MHz}$		0.1	0.5	N/A	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	$\begin{gathered} \hline 1,2,3,4, \\ 5 \\ \hline \end{gathered}$
		PCle Gen 2 High Band $1.5 \mathrm{MHz}<\mathrm{f}<$ Nyquist (50 MHz)		0.1	0.3	N/A	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,3,4
	$\mathrm{t}_{\text {jphPCleG3 }}$	PCle Gen 3 (PLL BW of $2-4$ or $2-5 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz}$)		0.2	0.3	N/A	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,3,4
	$\mathrm{t}_{\text {jph125M0 }}$	$125 \mathrm{MHz}, 1.5 \mathrm{MHz}$ to $10 \mathrm{MHz},-20 \mathrm{~dB} /$ decade rollover $<1.5 \mathrm{MHz},-40 \mathrm{db} /$ decade rolloff $>10 \mathrm{MHz}$		200	300	N/A	$\begin{gathered} \mathrm{fs} \\ (\mathrm{rms}) \end{gathered}$	1,6
	$\mathrm{t}_{\text {jph125M1 }}$	$125 \mathrm{MHz}, 12 \mathrm{KHz}$ to $20 \mathrm{MHz},-20 \mathrm{~dB} /$ decade rollover < $1.5 \mathrm{MHz},-40 \mathrm{db} /$ decade rolloff $>10 \mathrm{MHz}$		313	350	N/A	$\begin{gathered} \mathrm{fs} \\ (\mathrm{rms}) \end{gathered}$	1,6

[^2]
Additive Phase Jitter Plot: 125M (12kHz to 20MHz)

Agilent E5052A Signal Source Analyzer

General SMBus Serial Interface Information

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte \mathbf{N} through Byte $\mathrm{N}+\mathrm{X}-1$
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

Index Block Write Operation		
Controller (Host)		IDT (Slave/Receiver)
T	starT bit	
Slave Address		
WR	WRite	
		ACK
Beginning Byte $=\mathrm{N}$		
		ACK
Data Byte Count = X		
		ACK
Beginning Byte N		
		ACK
0		
0		0
0		0
		0
Byte N+X-1		
		ACK
P	stoP bit	

Note: SMBus Address is Latched on SADR pin.

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count $=X$
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte \mathbf{X} (if $X_{(H)}$ was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Index Block Read Operation			
Controller (Host)			IDT (Slave/Receiver)
T	starT bit		
Slave Address			
WR	WRite		
			ACK
Beginning Byte $=\mathrm{N}$			
			ACK
RT	Repeat starT		
Slave Address			
RD	ReaD		
			ACK
			Data Byte Count=X
ACK			
			Beginning Byte N
ACK			
			0
	0		0
0			0
0			
			Byte $\mathrm{N}+\mathrm{X}-1$
N	Not acknowledge		
P	stoP bit		

SMBus Table: Output Enable Register ${ }^{1}$

Byte 0	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					1
Bit 6	DIF OE3	Output Enable	RW	Low/Low	Enabled	1
Bit 5	DIF OE2	Output Enable	RW	Low/Low	Enabled	1
Bit 4	Reserved					1
Bit 3	DIF OE1	Output Enable	RW	Low/Low	Enabled	1
Bit 2	Reserved					1
Bit 1	DIF OE0	Output Enable	RW	Low/Low	Enabled	1
Bit 0	Reserved					1

1. A low on these bits will overide the OE\# pin and force the differential output Low/Low

SMBus Table: PLL Operating Mode and Output Amplitude Control Register

Byte 1	Name	Control Function	Type	0	1	Default
Bit 7	PLLMODERB1	PLL Mode Readback Bit 1	R	See PLL Operating Mode Table		Latch
Bit 6	PLLMODERB0	PLL Mode Readback Bit 0	R			Latch
Bit 5	PLLMODE_SWCNTRL	Enable SW control of PLL Mode	RW	```Values in B1[7:6] set PLL Mode```	Values in B1[4:3] set PLL Mode	0
Bit 4	PLLMODE1	PLL Mode Control Bit 1	RW ${ }^{1}$	See PLL Operating Mode Table		0
Bit 3	PLLMODE0	PLL Mode Control Bit 0	RW ${ }^{1}$			0
Bit 2	Reserved					1
Bit 1	AMPLITUDE 1	Controls Output Amplitude	RW	$00=0.55 \mathrm{~V}$	$01=0.65 \mathrm{~V}$	1
Bit 0	AMPLITUDE 0		RW	$10=0.75 \mathrm{~V}$	$11=0.85 \mathrm{~V}$	0

1. B1[5] must be set to a 1 for these bits to have any effect on the part.

SMBus Table: DIF Slew Rate Control Register

Byte 2	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					1
Bit 6	SLEWRATESEL DIF3	Slew Rate Selection	RW	Slow Setting	Fast Setting	1
Bit 5	SLEWRATESEL DIF2	Slew Rate Selection	RW	Slow Setting	Fast Setting	1
Bit 4	Reserved					1
Bit 3	SLEWRATESEL DIF1	Slew Rate Selection	RW	Slow Setting	Fast Setting	1
Bit 2	Reserved					1
Bit 1	SLEWRATESEL DIF0	Slew Rate Selection	RW	Slow Setting	Fast Setting	1
Bit 0	Reserved					1

SMBus Table: Frequency Select Control Register

Byte 3	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					1
Bit 6	Reserved					1
Bit 5	Reserved					0
Bit 4	Reserved					0
Bit 3	Reserved					0
Bit 2	Reserved					1
Bit 1	Reserved					1
Bit 0	SLEWRATESEL FB	Adjust Slew Rate of FB	RW	Slow Setting	Fast Setting	1

Byte 4 is Reserved and reads back 'hFF

SMBus Table: Revision and Vendor ID Register

Byte 5	Name	Control Function	Type	0	Default
Bit 7	RID3	Revision ID	R		0
Bit 6	RID2		R		0
Bit 5	RID1		R		0
Bit 4	RID0		R		0
Bit 3	VID3	VENDOR ID	R		0
Bit 2	VID2		R		0
Bit 1	VID1		R		0
Bit 0	VID0		R		1

SMBus Table: Device Type/Device ID

Byte 6	Name	Control Function	Type	0 0 1	Default
Bit 7	Device Type1	Device Type	R	$\begin{gathered} 00 \text { = FGx, } 01=\mathrm{DBx} \text { ZDB/FOB, } \\ 10=\mathrm{DMx}, 11=\mathrm{DBx} \text { FOB } \end{gathered}$	0
Bit 6	Device Type0		R		1
Bit 5	Device ID5	Device ID	R	000100 binary or 04 hex	0
Bit 4	Device ID4		R		0
Bit 3	Device ID3		R		0
Bit 2	Device ID2		R		1
Bit 1	Device ID1		R		0
Bit 0	Device ID0		R		0

SMBus Table: Byte Count Register

Byte 7	Name	Control Function	Type	0	1	Default
Bit 7		Reserved				0
Bit 6		Reserved				0
Bit 5		Reserved				0
Bit 4	BC4	Byte Count Programming	RW	Writing to this register will configure how many bytes will be read back, default is $=8$ bytes.		0
Bit 3	BC3		RW			1
Bit 2	BC2		RW			0
Bit 1	BC1		RW			0
Bit 0	BC0		RW			0

Marking Diagrams

Notes:

1. "LOT" is the lot sequence number.
2. "COO" denotes country of origin.
3. YYWW is the last two digits of the year and week that the part was assembled.
4. Line 2: truncated part number
5. "L" denotes RoHS compliant package.
6. "I" denotes industrial temperature range device.

Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
Thermal Resistance	$\theta_{\text {Jc }}$	Junction to Case	NLG32	42	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	θ_{Jb}	Junction to Base		2.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JAO }}$	Junction to Air, still air		39	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JA1 }}$	Junction to Air, $1 \mathrm{~m} / \mathrm{s}$ air flow		33	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JA3 }}$	Junction to Air, $3 \mathrm{~m} / \mathrm{s}$ air flow		28	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JA5 }}$	Junction to Air, $5 \mathrm{~m} / \mathrm{s}$ air flow		27	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1

${ }^{1}$ ePad soldered to board

Package Outline and Package Dimensions (NLG32) - use EPAD Option 1

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DBU0441AKLF	Trays	32-pin VFQFPN	0 to $+70^{\circ} \mathrm{C}$
9DBU0441AKLFT	Tape and Reel	32-pin VFQFPN	0 to $+70^{\circ} \mathrm{C}$
9DBU0441AKILF	Trays	32-pin VFQFPN	-40 to $+85^{\circ} \mathrm{C}$
9DBU0441AKILFT	Tape and Reel	32-pin VFQFPN	-40 to $+85^{\circ} \mathrm{C}$

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.
" A " is the device revision designator (will not correlate with the datasheet revision).

Revision History

Rev.	Initiator	Issue Date	Description	Page \#
A	RDW	$7 / 14 / 2014$	1. Updated electrical tables with char data. 2. Added an additive phase jitter plot. 3. Added 12 kHz to 20MHz additive phase jitter spec. 4. Updated Amplitude control bit descriptions in Byte 1.	Various
B	RDW	$9 / 19 / 2014$	Updated SMBus Input High/Low parameters conditions, MAX values, and footnotes.	6
C	RDW	$4 / 17 / 2015$	1. Updated pin out and pin descriptions to show ePad on package connected to ground. 2. Updated front page text to standard format for these devices. Added explicit bullet indicated Spread Spectrum compatibility. 3. Updated Clock Input Parameters table to be consistent with PCle Vswing parameter. 4. Minor updates to front page text for family consistency. 5. Add note about tpad to Power Connections table.	$1-5$

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

[^0]: ${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
 ${ }^{2}$ Slew rate measured through $+/-75 \mathrm{mV}$ window centered around differential zero

[^1]: ${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
 ${ }^{2}$ Input clock stopped.
 ${ }^{3}$ In bypass mode, the PLL is off and IDDAO is $\sim 50 \%$ of this value.

[^2]: ${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
 ${ }^{2}$ See http://www.pcisig.com for complete specs
 ${ }^{3}$ Sample size of at least 100 K cycles. This figures extrapolates to $108 \mathrm{ps} \mathrm{pk}-\mathrm{pk} @ 1 \mathrm{M}$ cycles for a BER of 1-12.
 ${ }^{4}$ For RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = SQRT[(total jitter)^2 - (input jitter)^2]
 ${ }^{5}$ Driven by 9FGU0831 or equivalent
 ${ }^{6}$ Rohde\&Schartz SMA100

