

RL78/G1C

RENESAS MCU

R01DS0348EJ0120 Rev.1.20 Sep 30, 2016

Integrated USB Controller, True Low Power Platform (as low as 112.5 μA/MHz, and 0.61 μA for RTC + LVD), 2.4 V to 5.5 V Operation, 32 Kbyte Flash, 31 DMIPS at 24 MHz, for All USB Based Applications

OUTLINE 1.

1.1 Features

Ultra-Low Power Technology

- 2.4 V to 5.5 V operation from a single supply
- Stop (RAM retained): 0.23 μA, (LVD enabled): 0.31 μA
- Halt (RTC + LVD): 0.57 μA
- Supports snooze
- Operating: 71 μA/MHz

16-bit RL78 CPU Core

- Delivers 31 DMIPS at maximum operating frequency of 24 MHz
- Instruction Execution: 86% of instructions can be executed in 1 to 2 clock cycles
- CISC Architecture (Harvard) with 3-stage pipeline
- Multiply Signed & Unsigned: 16 x 16 to 32-bit result in 1 clock cycle
- MAC: 16 x 16 to 32-bit result in 2 clock cycles
- 16-bit barrel shifter for shift & rotate in 1 clock cycle
- 1-wire on-chip debug function

Code Flash Memory

- Density: 32 KB
- Block size: 1 KB
- · On-chip single voltage flash memory with protection from block erase/writing
- Self-programming with secure boot swap function and flash shield window function

Data Flash Memory

- Data Flash with background operation
- Data flash size: 2 KB
- Erase Cycles: 1 Million (typ.)
- Erase/programming voltage: 2.4 V to 5.5 V

- 5.5 KB size options
- Supports operands or instructions
- Back-up retention in all modes

High-speed On-chip Oscillator

- 24 MHz with +/- 1% accuracy over voltage (2.4 V to 5.5 V) and temperature (-20°C to +85°C)
- Pre-configured settings: 48 MHz, 24 MHz (TYP.)

Reset and Supply Management

- Power-on reset (POR) monitor/generator
- Low voltage detection (LVD) with 9 setting options (Interrupt and/or reset function)

- Complying with USB version 2.0, incorporating host/function controller
- Corresponding to full-speed transfer (12 Mbps) and low-speed (1.5 Mbps)
- Complying with Battery Charging Specification Revision 1.2
- Compliant with the 2.1A/1.0A charging mode prescribed in the Apple Inc. MFi specification in the USB power supply component specification Note

Direct Memory Access (DMA) Controller

- Up to 2 fully programmable channels
- Transfer unit: 8- or 16-bit

Multiple Communication Interfaces

- Up to 2 x I²C master
- Up to 1 x I²C multi-master
- Up to 2 x CSI (7-, 8-bit)
- Up to 1 x UART (7-, 8-, 9-bit)

Extended-Function Timers

- Multi-function 16-bit timer TAU: Up to 4 channels (remote control output available)
- Real-time clock (RTC): 1 channel (full calendar and alarm function with watch correction function)
- 12-bit interval timer: 1 channel
- 15 kHz watchdog timer: 1 channel (window function)

Rich Analog

- ADC: Up to 9 channels, 8/10-bit resolution, 2.1 μ s minimum conversion time
- Internal voltage reference (1.45 V)
- On-chip temperature sensor

Safety Features (IEC or UL 60730 compliance)

- Flash memory CRC calculation • RAM parity error check
- RAM write protection
- SFR write protection • Illegal memory access detection
- Clock stop/frequency detection
- ADC self-test
- I/O port read back function (echo)

General Purpose I/O

- 5 V tolerant, high-current (up to 20 mA per pin)
- Open-Drain, Internal Pull-up support

Operating Ambient Temperature

- Standard: -40°C to + 85°C
- Extended: -40°C to + 105°C

Package Type and Pin Count

- 32-pin plastic HWQFN (5 x 5)
- 32-pin plastic LQFP (7 x 7)
- 48-pin plastic LFQFP (7 x 7)
- 48-pin plastic HWQFN (7 x 7)

Note To use the Apple Inc. battery charging mode, you must join in Apple's Made for iPod/iPhone/iPad (MFi) licensing program. Before requesting this specification from Renesas Electronics, please join in the Apple's MFi licensing program.

ROM, RAM capacities

Flash ROM	Data flash	RAM	RL78	/G1C
			32-pin	48-pin
32 KB	2 KB	5.5 KB Note	R5F10JBC, R5F10KBC	R5F10JGC, R5F10KGC

Note This is about 4.5 KB when the self-programming function is used.

Remark The functions mounted depend on the product. See **1.6 Outline of Functions**.

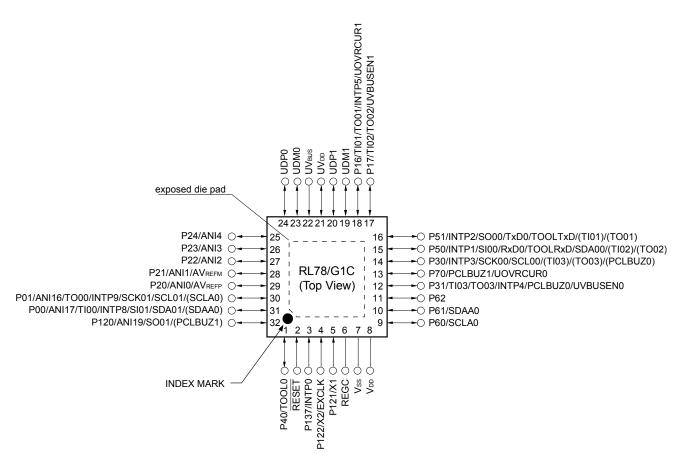
1.2 List of Part Numbers

Pin count	Package	USB Function	Fields of Application Note	Part Number
32 pins	32-pin plastic HWQFN	Host/Function controller	А	R5F10JBCANA#U0, R5F10JBCANA#W0
	(5 × 5 , 0.5 mm pitch)		G	R5F10JBCGNA#U0, R5F10JBCGNA#W0
		Function controller only	Α	R5F10KBCANA#U0, R5F10KBCANA#W0
			G	R5F10KBCGNA#U0, R5F10KBCGNA#W0
	32-pin plastic LQFP	Host/Function controller	Α	R5F10JBCAFP#V0, R5F10JBCAFP#X0
	(7 × 7 , 0.8 mm pitch)		G	R5F10JBCGFP#V0, R5F10JBCGFP#X0
		Function controller only	Α	R5F10KBCAFP#V0, R5F10KBCAFP#X0
			G	R5F10KBCGFP#V0, R5F10KBCGFP#X0
48 pins	48-pin plastic LFQFP	Host/Function controller	Α	R5F10JGCAFB#V0, R5F10JGCAFB#X0
	(7 × 7 , 0.5 mm pitch)		G	R5F10JGCGFB#V0, R5F10JGCGFB#X0
		Function controller only	Α	R5F10KGCAFB#V0, R5F10KGCAFB#X0s
			G	R5F10JGCANA#U0, R5F10JGCANA#W0
	48-pin plastic HWQFN	Host/Function controller	Α	R5F10JGCANA#U0, R5F10JGCANA#W0
	(7 × 7 , 0.5 mm pitch)		G	R5F10JGCGNA#U0, R5F10JGCGNA#W0
		Function controller only	Α	R5F10KGCANA#U0, R5F10KGCANA#W0
			G	R5F10KGCGNA#U0, R5F10KGCGNA#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G1C.

Caution The part number above is valid as of when this manual was issued. For the latest part number, see the web page of the target product on the Renesas Electronics website.

Figure 1-1. Part Number, Memory Size, and Package of RL78/G1C

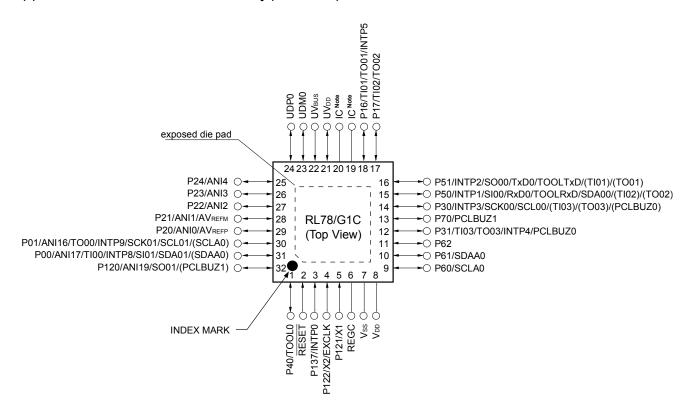

1.3 Pin Configuration (Top View)

1.3.1 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)

(1) USB function: Host/Function controller (R5F10JBC)

<R>


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

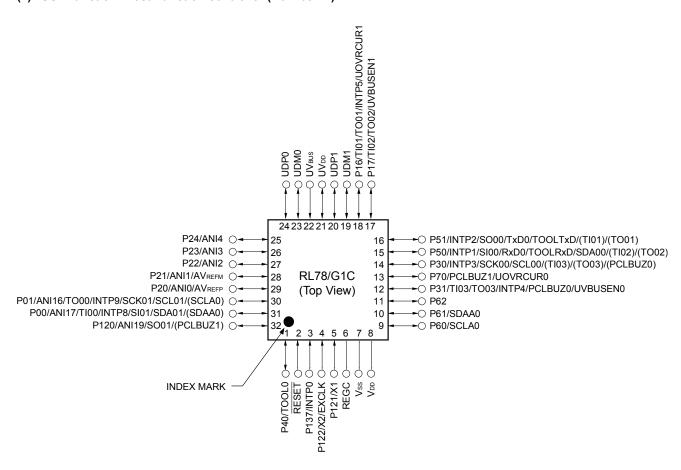
- 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

(2) USB function: Function controller only (R5F10KBC)

<R>

Note IC: Internal Connection Pin. Leave open.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

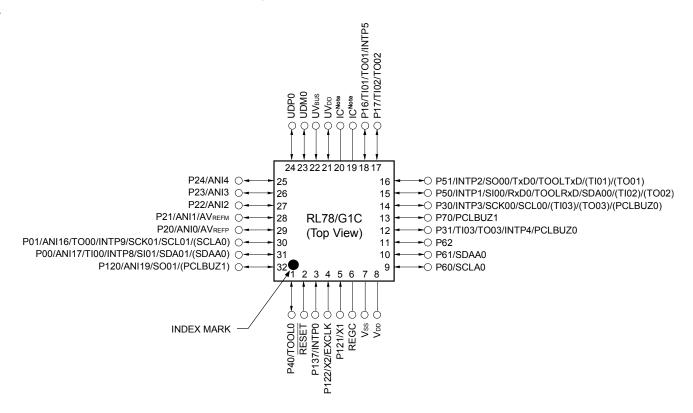

Remarks 1. For pin identification, see 1.4 Pin Identification.

- **2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

• 32-pin plastic LQFP (7 × 7 mm, 0.8 mm pitch)

(1) USB function: Host/Function controller (R5F10JBC)

<R>



Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

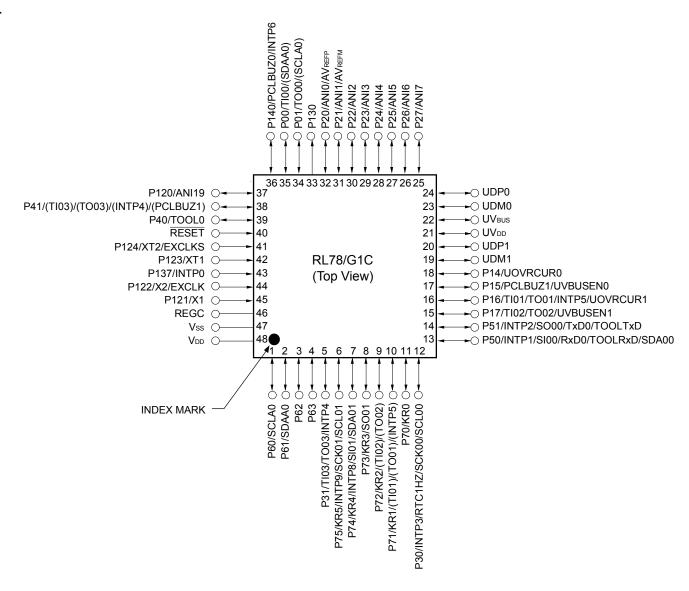
Remarks 1. For pin identification, see 1.4 Pin Identification.

(2) USB function: Function controller only (R5F10KBC)

<R>

Note IC: Internal Connection Pin Leave open.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

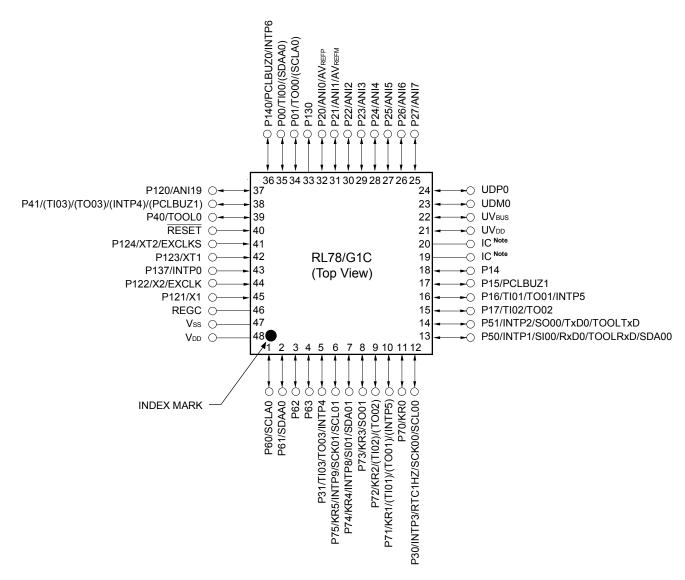

Remarks 1. For pin identification, see 1.4 Pin Identification.

1.3.2 48-pin products

• 48-pin plastic LFQFP (fine pitch) (7 × 7, 0.5 mm pitch)

(1) USB function: Host/Function controller (R5F10JGC)

<R>



Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

(2) USB function: Function controller only (R5F10KGC)

<R>

Note IC: Internal Connection Pin Leave open.

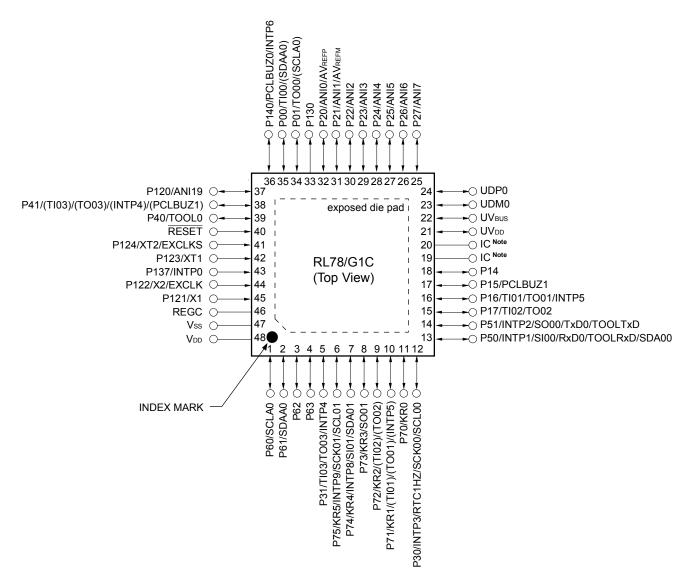
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

• 48-pin plastic WHQFN (7 × 7, 0.5 mm pitch)

(1) USB function: Host/Function controller (R5F10JGC)

<R>


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

(2) USB function: Function controller only (R5F10KGC)

<R>

Note IC: Internal Connection Pin Leave open.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).
 - 3. It is recommended to connect an exposed die pad to Vss.

1.4 Pin Identification

ANI0 to ANI7, ANI16, ANI17, ANI19: Analog Input

AVREFM: Analog Reference Voltage Minus
AVREFP: Analog Reference Voltage Plus

EXCLK: External Clock Input (Main System Clock)
EXCLKS: External Clock Input (Sub System Clock)

INTP0 to INTP6, INTP8, INTP9: External Interrupt Input

KR0 to KR5: Key Return P00, P01: Port 0 P14 to P17: Port 1 P20 to P27: Port 2 P30, P31: Port 3 P40, P41: Port 4 P50, P51: Port 5 P60 to P63: Port 6 P70 to P75: Port 7 P120 to P124: Port 12 Port 13 P130, P137: P140: Port 14

PCLBUZ0, PCLBUZ1: Programmable Clock Output/Buzzer Output

REGC: Regulator Capacitance

RESET: Reset

RTC1HZ: Real-time Clock Correction Clock (1 Hz) Output

RxD0: Receive Data

SCK00, SCK01: Serial Clock Input/Output
SCLA0, SCL00, SCL01: Serial Clock Input/Output
SDAA0, SDA00, SDA01: Serial Data Input/Output

SI00, SI01: Serial Data Input SO00, SO01: Serial Data Output

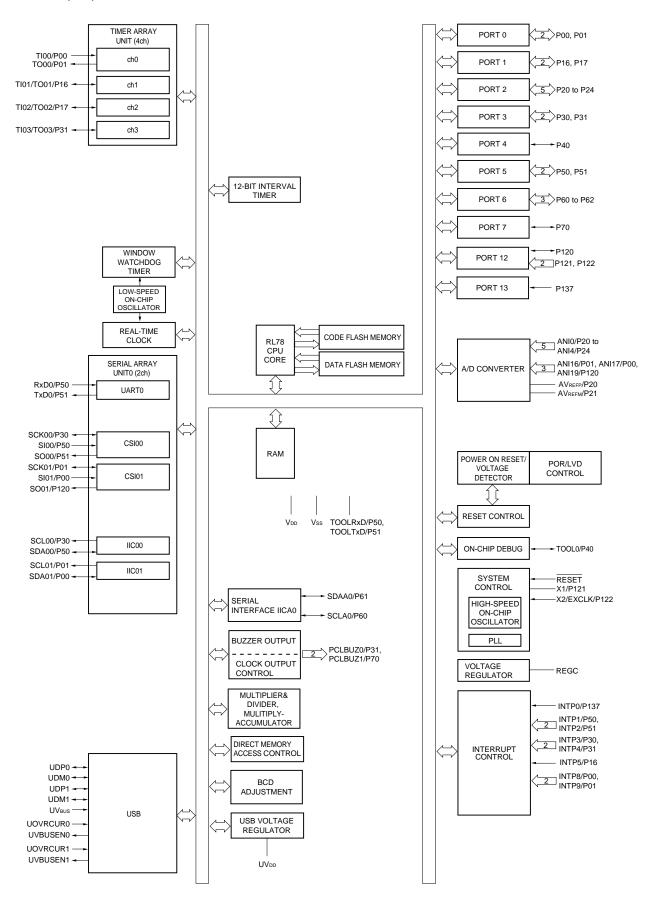
TI00 to TI03: Timer Input
TO00 to TO03: Timer Output

TOOL0: Data Input/Output for Tool

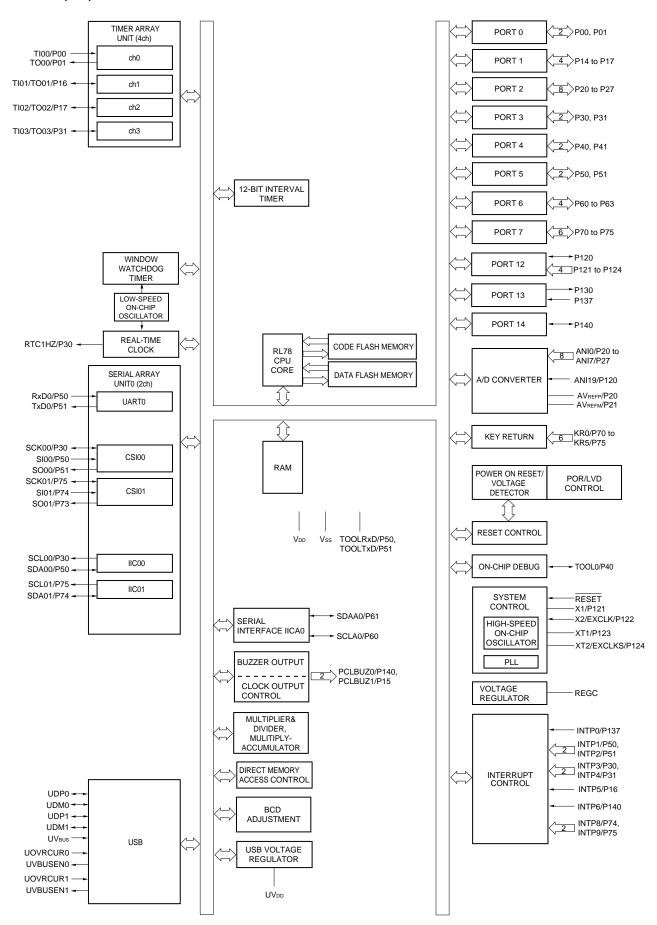
TOOLRxD, TOOLTxD: Data Input/Output for External Device

TxD0: Transmit Data
UDM0, UDM1, UDP0, UDP1: USB Input/Output

UOVRCUR0, UOVRCUR1: USB Input UVBUSEN0, UVBUSEN1: USB Output


UV_{DD}: USB Power Supply/USB Regulator Capacitance
UV_{BUS}: USB Input/USB Power Supply (USB Optional BC)

V_{DD}: Power Supply Vss: Ground


X1, X2: Crystal Oscillator (Main System Clock)
XT1, XT2: Crystal Oscillator (Subsystem Clock)

1.5 Block Diagram

1.5.1 32-pin products

1.5.2 48-pin products

1.6 Outline of Functions

[32-pin, 48-pin products]

(1/2)

	Item	32	-pin	48	3-pin		
		R5F10JBC	R5F10KBC	R5F10JGC	R5F10KGC		
Code flash	memory (KB)	32 KB		32 KB	•		
Data flash	memory (KB)	2 KB		2 KB			
RAM (KB)		5.5 KB Note 1		5.5 KB Note 1			
Memory sp	pace	1 MB		1			
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V)					
	High-speed on-chip oscillator	1 to 24 MHz (V _{DD} = 2.7 to 5.5 V), 1 to 16 MHz (V _{DD} = 2.4 to 5.5 V)					
	PLL clock	6, 12, 24 MHz Note 2 : V	/ _{DD} = 2.4 to 5.5 V				
Subsystem	ı clock		_	XT1 (crystal) oscillation 32.768 kHz (TYP.): V _{DD} = 2.4 to 5.5 V			
Low-speed	on-chip oscillator	On-chip oscillation (Wa 15 kHz (TYP.): V _{DD} = 2	_	clock/12-bit interval timer	clock)		
General-pu	urpose register	8 bits × 32 registers (8	bits × 8 registers × 4 ba	anks)			
Minimum ir	nstruction execution time	0.04167 μ s (High-speed on-chip oscillator: fhoco = 48 MHz /fih = 24 MHz operation)					
		0.04167 μs (PLL clock:	f _{PLL} = 48 MHz /f _{IH} = 24	MHz Note 2 operation)			
		0.05 μs (High-speed sy					
			_	30.5 μ s (Subsystem clooperation)	ock: fsuB = 32.768 kF		
Instruction	set	 Multiplication (8 bits 	or/logical operation (8/1 \times 8 bits)	6 bits) set, reset, test, and Boolea	n operation), etc.		
I/O port	Total	22		38			
	CMOS I/O	16 (N-ch O.D. I/O [VDD	withstand voltage]: 5)	28 (N-ch O.D. I/O [VDD	withstand voltage]: 6		
	CMOS input	3		5			
	CMOS output		_	1			
	N-ch open-drain I/O (6 V tolerance)	3		4			
Timer	16-bit timer	4 channel					
	Watchdog timer	1 channel					
	Real-time clock (RTC)	1 channel Note 3					
	12-bit Interval timer (IT)	1 channel					
	Timer output	4 channels (PWM output	ıt: 3) ^{Note 4}				
	RTC output	_		1			
				• 1 Hz (subsystem cloc	ck: fsuв = 32.768 kHz		

Notes 1. In the case of the $5.5~\mathrm{KB}$, this is about $4.5~\mathrm{KB}$ when the self-programming function is used.

- 2. In the PLL clock 48 MHz operation, the system clock is 2/4/8 dividing ratio.
- 3. In 32-pin products, this channel can only be used for the constant-period interrupt function based on the low-speed on-chip oscillator clock (fil.).
- **4.** The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves).

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(2/2)

	Item	32-p	nin .	10	(<i>212</i>) 3-pin
	item	R5F10JBC	R5F10KBC	R5F10JGC	R5F10KGC
Ola ale aceta			ROF TURBO		RSFTUNGC
Clock outp	ut/buzzer output	(Main system clock: fmain	= 24 MHz operation) Hz, 1.024 kHz, 2.048	kHz, 4.096 kHz, 8.192 kHz	
8/10-bit reso	olution A/D converter	8 channels		9 channels	
Serial interface		CSI: 2 channels/UART: 1	I channel/simplified I ²	² C: 2 channels	
	I ² C bus	1 channel			
USB	Host controller	2 channels	_	2 channels	_
	Function controller	1 channel			
Multiplier and divider/multiply-accumulator		 Multiplier: 16 bits × 16 bits = 32 bits (Unsigned or signed) Divider: 32 bits + 32 bits = 32 bits (Unsigned) Multiply-accumulator:16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 			
DMA contro	ller	2 channels			
Vectored	Internal	20		20	
interrupt sources	External	8		10	
Key interrup	t	-		6	
Reset		Reset by RESET pin Internal reset by watce Internal reset by powe Internal reset by volta Internal reset by illega Internal reset by RAM Internal reset by illega	er-on-reset ge detector al instruction executio 1 parity error	on ^{Note}	
Power-on-re	eset circuit	Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.)			
Voltage dete	ector	2.45 V to 4.06 V (9 stage	es)		
On-chip deb	ug function	Provided			
Power supp	ly voltage	V _{DD} = 2.4 to 5.5 V			
Operating a	mbient temperature	$T_A = -40 \text{ to } +85 ^{\circ}\text{C} \text{ (A: C)}$	onsumer applications	s), $T_A = -40 \text{ to } +105^{\circ}\text{C}$ (G:	Industrial application

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS (A: T_A = -40 to +85°C)

This chapter describes the electrical specifications for the products "A: Consumer applications ($T_A = -40$ to $+85^{\circ}$ C)".

The target products A: Consumer applications; $T_A = -40$ to $+85^{\circ}C$

R5F10JBCANA, R5F10JBCAFP, R5F10JGCANA, R5F10JGCAFB, R5F10KBCANA, R5F10KBCAFP, R5F10KGCANA, R5F10KGCAFB

G: Industrial applications ; when using T_A = -40 to +105°C specification products

at $T_A = -40$ to $+85^{\circ}$ C.

R5F10JBCGNA, R5F10JBCGFP, R5F10JGCGNA, R5F10JGCGFB, R5F10KBCGNA, R5F10KBCGFP, R5F10KGCGNA, R5F10KGCGFB

- Cautions 1. The RL78 microcontrollers has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.5 to +6.5	٧
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	٧
UV _{DD} pin input voltage	VIUVDD	UVDD	−0.3 to V _{DD} +0.3	٧
Input voltage	V ₁₁	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P70 to P75, P120 to P124, P137, P140, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
	V _{I2}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vıз	UDP0, UDM0, UDP1, UDM1	-0.3 to +6.5	V
	V _{I4}	UV _{BUS}	-0.3 to +6.5	V
Output voltage	V ₀₁	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P130, P140	-0.3 to V _{DD} +0.3 ^{Note 2}	V
	V _{O2}	UDP0, UDM0, UDP1, UDM1	-0.3 to +6.5	٧
Analog input voltage	V _{Al1}	ANI16, ANI17, ANI19	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 Notes 2, 3	V
	V _{Al2}	ANI0 to ANI7	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 Notes 2, 3	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AV_{REF} (+): The + side reference voltage of the A/D converter. This can be selected from AV_{REFP}, the internal reference voltage (1.45 V), and V_{DD}.
 - 3. Vss: Reference voltage

Absolute Maximum Ratings (TA = 25°C) (2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00, P01, P14 to P17, P30, P31,	-40	
			P40, P41, P50, P51, P70 to P75,		
			P120, P130, P140		
		Total of all pins	P00, P01, P40, P41, P120,	-7 0	mA
		–170 mA	P130, P140		
			P14 to P17, P30, P31,	-100	mA
			P50, P51, P70 to P75		
	Iон2	Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lol1	Per pin	P00, P01, P14 to P17, P30, P31,	40	mA
			P40, P41, P50, P51, P60 to P63,		
			P70 to P75, P120, P130, P140		
		Total of all pins	P00, P01, P40, P41, P120,	70	mA
		170 mA	P130, P140		
			P14 to P17, P30, P31,	100	mA
			P50, P51, P60 to P63, P70 to P75		
	lo _{L2}	Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	T _{stg}			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	2.4 V ≤ V _{DD} < 2.7 V	1.0		16.0	MHz
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fносо		1		48	MHz
High-speed on-chip oscillator		−20 to +85 °C	-1.0		+1.0	%
clock frequency accuracy		–40 to −20 °C	-1.5		+1.5	%
Low-speed on-chip oscillator clock frequency	fı∟			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

- **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.
 - **2.** This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

2.2.3 PLL oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

,		, ,				
Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
PLL input frequency Note	fellin	High-speed system clock	6.00		16.00	MHz
PLL output frequency Note	f _{PLL}			48.00		MHz
Lock up time		From PLL output enable to stabilization of the output frequency	40.00			μs
Interval time		From PLL stop to PLL re-operation setteing Wait time	4.00			μs
Setting wait time		From after PLL input clock stabilization and PLL setting is fixed to start setting Wait time required	1.00			μs

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$2.4~V \le V_{DD} \le 5.5~V$			-10.0 Note 2	mA
		P130, P140	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			-55.0	mA
			$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$			-10.0	mA
		(When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			-5.0	mA
		Total of P14 to P17, P30, P31,	$4.0~V \leq V_{DD} \leq 5.5~V$			-80.0	mA
		P50, P51, P70 to P75 (When duty \leq 70% Note 3)	2.7 V ≤ V _{DD} < 4.0 V			-19.0	mA
			2.4 V ≤ V _{DD} < 2.7 V			-10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$			-135.0	mA
	Іон2	Per pin for P20 to P27	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$			-0.1 ^{Not}	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	2.4 V ≤ V _{DD} ≤ 5.5 V			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).

- Total output current of pins = (IoH × 0.7)/(n × 0.01)
 - <Example> Where n = 80% and $I_{OH} = -10.0$ mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P01, P30, and P74 do not output high level in N-ch open-drain mode.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	I _{OL1}	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	2.4V ≤ V _{DD} ≤ 5.5 V			20.0 Note 2	mA
		Per pin for P60 to P63	$2.4 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			20.0 Note 2	mA
		Total of P00, P01, P40, P41, P120,	$4.0~V \leq V_{DD} \leq 5.5~V$			70.0	mA
		P130, P140 (When duty ≤ 70% ^{Note 3})	$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			15.0	mA
	(when duty \sime 70%)	$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$			9.0	mA	
		Total of P14 to P17, P30, P31, P50,	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}$			80.0	mA
		P51, P60 to P63, P70 to P75	2.7 V ≤ V _{DD} < 4.0 V			35.0	mA
		(When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			20.0	mA
		Total of all pins (When duty ≤ 70% Note 3)	$2.4 \text{V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$			150.0	mA
	lo _{L2}	Per pin for P20 to P27	$2.4 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	$2.4 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			5.0	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).

• Total output current of pins = (IoL × 0.7)/(n × 0.01)

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140	Normal input buffer	0.8V _{DD}		V _{DD}	V
	V _{IH2}	P00, P01, P30, P50	TTL input buffer $4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	2.2		V _{DD}	V
			TTL input buffer $3.3 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	2.0		V _{DD}	V
			TTL input buffer 2.4 V ≤ V _{DD} < 3.3 V	1.5		V _{DD}	V
	V _{IH3}	P20 to P27		0.7V _{DD}		V _{DD}	V
	V _{IH4}	P60 to P63		0.7V _{DD}		6.0	V
	V _{IH5}	P121 to P124, P137, EXCLK, EXCLK	0.8V _{DD}		V _{DD}	V	
Input voltage, low	V _{IL1}	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140	Normal input buffer	0		0.2V _{DD}	V
	V _{IL2}	P00, P01, P30, P50	TTL input buffer 4.0 V ≤ V _{DD} ≤ 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$	0		0.32	V
	V _{IL3}	P20 to P27		0		0.3V _{DD}	V
	V _{IL4}	P60 to P63		0		0.3V _{DD}	V
	V _{IL5}	P121 to P124, P137, EXCLK, EXCLK	(S, RESET	0		0.2V _{DD}	V

Caution The maximum value of V_{IH} of pins P00, P01, P30, and P74 is V_{DD}, even in the N-ch open-drain mode.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	1.3 0.7 0.6 0.4 0.4	Unit
Output voltage, high	Vон1	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -10.0 \text{ mA}$	V _{DD} –			V
			$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -3.0 \text{ mA}$	V _{DD} – 0.7			V
			$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -2.0 \text{ mA}$	V _{DD} – 0.6			V
		$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -1.5 \text{ mA}$	V _{DD} – 0.5			V	
	V _{OH2}	P20 to P27	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OH2}} = -100 \ \mu \text{ A}$	V _{DD} – 0.5			V
Output voltage, Vol	V _{OL1}	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 20.0 \text{ mA}$			1.3	V
			$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 8.5 \text{ mA}$			0.7	V
			$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 3.0 \text{ mA}$			0.6	V
			$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 1.5 \text{ mA}$			0.4	V
			$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 0.6 \text{ mA}$			0.4	V
	V _{OL2}	P20 to P27	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL2} = 400 \ \mu \text{ A}$			0.4	V
	V _{OL3}	P60 to P63	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 20.0 \text{ mA}$			2.0	V
			$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 5.0 \text{ mA}$			0.4	V
			$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 3.0 \text{ mA}$			0.4	V
			$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 2.0 \text{ mA}$			0.4	V

Caution P00, P01, P30, and P74 do not output high level in N-ch open-drain mode.

(Ta = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol	Condition	ons		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Іпн1	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P137, P140, RESET	$V_1 = V_{DD}$				1	μΑ
	Ілн2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μΑ
				In resonator connection			10	μΑ
Input leakage current, low	ILIL1	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P137, P140, RESET	V _I = V _{SS}				-1	μΑ
	ILIL2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up resistance	Ru	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140	Vı = Vss, lı	n input port	10	20	100	kΩ

2.3.2 Supply current characteristics

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit	
Supply	I _{DD1}	Operating	HS	f _{HOCO} = 48 MHz	Basic V _{DD} = 5.0 V			1.7		mA	
Current Note 1		mode	(High-speed main) mode	f _{IH} = 24 MHz Note 3	operation	V _{DD} = 3.0 V		1.7		mA	
			Note 6		Normal	V _{DD} = 5.0 V		3.7	5.5	mA	
					operation	V _{DD} = 3.0 V		3.7	5.5	mA	
				f _{HOCO} = 24 MHz Note 5	Nomal	V _{DD} = 5.0 V		2.3	3.2	mA	
				f _{IH} = 12 MHz Note 3	operation	V _{DD} = 3.0 V		2.3	3.2	mA	
				f _{HOCO} = 12 MHz Note 5	Normal	V _{DD} = 5.0 V		1.6	2.0	mA	
				f _{IH} = 6 MHz Note 3	operation	V _{DD} = 3.0 V		1.6	2.0	mA	
				fHOCO = 6 MHz Note	Normal	V _{DD} = 5.0 V		1.2	1.5	mA	
				f _{IH} = 3 MHz Note 3	operation	V _{DD} = 3.0 V		1.2	1.5	mA	
			HS	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.6	mA	
			(High-speed	V _{DD} = 5.0 V	operation	Resonator connection		3.2	4.8	mA	
			main) mode	f _{MX} = 20 MHz Note 2,	Normal	Square wave input		3.0	4.6	mA	
			V_{DD} = 3.0 V	operation	Resonator connection		3.2	4.8	mA		
			$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal operation	Square wave input		1.9	2.7	mA		
			V _{DD} = 5.0 V		Resonator connection		1.9	2.7	mA		
				f _{MX} = 10 MHz Note 2,	Normal operation	Square wave input		1.9	2.7	mA	
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.9	2.7	mA	
			HS (High-speed main) mode (PLL operation) Note 6	f _{PLL} = 48 MHz,	Nomal	V _{DD} = 5.0 V		4.0	5.9	mA	
				fclk = 24 MHz Note 2		V _{DD} = 3.0 V		4.0	5.9	mA	
				f _{PLL} = 48 MHz,		V _{DD} = 5.0 V		2.6	3.6	mA	
				fclk = 12 MHz Note 2		V _{DD} = 3.0 V		2.6	3.6	mA	
				f _{PLL} = 48 MHz,		V _{DD} = 5.0 V		1.9	2.4	mA	
				fclk = 6 MHz Note 2		V _{DD} = 3.0 V		1.9	2.4	mA	
				fsuB = 32.768 kHz	Normal	Resonator connection		4.1	4.9	μΑ	
				Note 4 $T_A = -40^{\circ}C$	operation	Square wave input		4.2	5.0	μΑ	
				f _{SUB} = 32.768 kHz Note 4	Normal	Square wave input		4.1	4.9	μΑ	
				T _A = +25°C	operation	Resonator connection		4.2	5.0	μΑ	
				fsub = 32.768 kHz	Normal	Square wave input	-	4.2	5.5	μΑ	
			Note 4 $T_A = +50^{\circ}C$	operation	Resonator connection		4.3	5.6	μΑ		
			f _{SUB} = 32.768 kHz	Normal	Square wave input		4.2	6.3	μΑ		
					Note 4 $T_{A} = +70^{\circ}C$	operation	Resonator connection		4.3	6.4	μΑ
				fsuB = 32.768 kHz	Normal	Square wave input		4.8	7.7	μA	
				Note 4	operation	Resonator connection		4.9	7.8	μA	
			T _A = +85°C						•		

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** When Operating frequency setting of option byte = 48 MHz. When fHOCO is divided by HOCODIV. When RDIV[1:0] = 00 (divided by 2: default).
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz}$ to 24 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz}$ to 16 MHz

- Remarks 1. fhoco: High-speed on-chip oscillator clock frequency (Max. 48 MHz)
 - **2.** f_{IH}: Main system clock source frequency obtained by dividing the high-speed on-chip oscillator clock by 2, 4, or 8 (Max. 24 MHz)
 - **3.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 4. fpll: PLL oscillation frequency
 - **5.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 6. fclk: CPU/peripheral hardware clock frequency
 - 7. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C.

(TA = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
	,	1101 T	HS	fhoco = 48 MHz	V - 50 V	IVIIIN.			
Supply current	IDD2 Note 2	HALT mode	нь (High-speed		$V_{DD} = 5.0 \text{ V}$ $V_{DD} = 3.0 \text{ V}$		0.67	1.25 1.25	mA mA
Note 1			main) mode	f _{HOCO} = 24 MHz Note 7	V _{DD} = 5.0 V		0.50	0.86	mA
			Note 9	f _{IH} = 12 MHz Note 4	V _{DD} = 3.0 V		0.50	0.86	mA
				f _{HOCO} = 12 MHz Note 7	V _{DD} = 5.0 V		0.41	0.67	mA
				f _{IH} = 6 MHz Note 4	V _{DD} = 3.0 V		0.41	0.67	mA
				f _{HOCO} = 6 MHz ^{Note 7}	V _{DD} = 5.0 V		0.37	0.58	mA
				f _{IH} = 3 MHz Note 4	V _{DD} = 3.0 V		0.37	0.58	mA
			HS	f _{MX} = 20 MHz Note 3,	Square wave input		0.28	1.00	mA
			(High-speed	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
			main) mode	f _{MX} = 20 MHz Note 3,	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 10 MHz Note 3,	Square wave input		0.19	0.60	mA
			V _{DD} = 5.0 V	Resonator connection		0.26	0.67	mA	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.19	0.60	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	0.67	mA
			HS	f _{PLL} = 48 MHz,	V _{DD} = 5.0 V		0.91	1.52	mA
		(High-speed	fclk = 24 MHz Note 3	V _{DD} = 3.0 V		0.91	1.52	mA	
			main) mode (PLL operation) Note 9	f _{PLL} = 48 MHz, f _{CLK} = 12 MHz Note 3	V _{DD} = 5.0 V		0.85	1.28	mA
					V _{DD} = 3.0 V		0.85	1.28	mA
				f _{PLL} = 48 MHz, f _{CLK} = 6 MHz Note 3	V _{DD} = 5.0 V		0.82	1.15	mA
					V _{DD} = 3.0 V		0.82	1.15	mA
			Subsystem clock operation	f _{SUB} = 32.768 kHz ^{Note 5} T _A = -40°C	Square wave input		0.25	0.57	μΑ
					Resonator connection		0.44	0.76	μА
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				T _A = +25°C	Resonator		0.49	0.76	μA
					connection				·
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.33	1.17	μΑ
				T _A = +50°C	Resonator connection		0.63	1.36	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.97	μΑ
				T _A = +70°C	Resonator connection		0.76	2.16	μА
			f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.97	3.37	μΑ	
				T _A = +85°C	Resonator connection		1.16	3.56	μΑ
	I _{DD3} Note 6	STOP	T _A = -40°C				0.18	0.50	μА
		mode Note 8	T _A = +25°C				0.23	0.50	μΑ
			T _A = +50°C				0.26	1.10	μА
			T _A = +70°C				0.29	1.90	μΑ
			T _A = +85°C				0.90	3.30	μA

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, USB 2.0 host/function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - **4.** When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **7.** When Operating frequency setting of option byte = 48 MHz. When fHOCO is divided by HOCODIV. When RDIV[1:0] = 00 (divided by 2: default).
 - **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
 - **9.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below

HS (high-speed main) mode: $2.7~V \le V_{DD} \le 5.5~V @ 1~MHz~to~24~MHz$ $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz~to~16~MHz$

- Remarks 1. fhoco: High-speed on-chip oscillator clock frequency (Max. 48 MHz)
 - 2. f_{IH}: Main system clock source frequency obtained by dividing the high-speed on-chip oscillator clock by 2, 4, or 8 (Max. 24 MHz)
 - **3.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 4. fpll: PLL oscillation frequency
 - **5.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 6. fclk: CPU/peripheral hardware clock frequency
 - 7. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C.

(Ta = -40 to $+85^{\circ}$ C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	IFIL Note 1				0.20		μΑ
RTC operating current	RTC Notes 1, 2, 3				0.02		μА
12-bit interval timer operating current	I _{IT} Notes 1, 2, 4				0.02		μΑ
Watchdog timer operating current	WDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μΑ
A/D converter	I _{ADC} Notes 1,	When conversion	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
operating current	6	at maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note				75.0		μΑ
Temperature sensor operating current	ITMPS Note 1				75.0		μА
LVD operating current	I _{LVD} Notes 1,				0.08		μΑ
Self-programming operating current	I _{FSP} Notes 1,				2.00	12.20	mA
BGO operating current	I _{BGO} Notes 1, 8				2.00	12.20	mA
SNOOZE operating	I _{SNOZ} Note 1	ADC operation	The mode is performed Note 10		0.50	1.06	mA
current			The A/D conversion operations are performed, Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	1.62	mA
		CSI operation			0.70	0.84	mA

(Notes and Remarks are listed on the next page.)

(Ta = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V) (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB operating current	lusBH Note 11	During USB communication operation under the following settings and conditions (V _{DD} = 5.0 V, T _A = +25°C): • The internal power supply for the USB is used. • X1 oscillation frequency (f _X) = 12 MHz, PLL oscillation frequency (f _{PLL}) = 48 MHz • The host controller (via two ports) is set to operate in full-speed mode with four pipes (end points) used simultaneously. (PIPE4: Bulk OUT transfer (64 bytes), PIPE5: Bulk IN transfer (64 bytes), PIPE6: Interrupt OUT transfer, PIPE7: Interrupt IN transfer). • The USB ports (two ports) are individually connected to a peripheral function via a 0.5 m USB cable.		9.0		mA
	lusBF Note 11	During USB communication operation under the following settings and conditions (VDD = 5.0 V, TA = +25°C): • The internal power supply for the USB is used. • X1 oscillation frequency (fx) = 12 MHz, PLL oscillation frequency (fPLL) = 48 MHz • The function controller is set to operate in full-speed mode with four pipes (end points) used simultaneously. (PIPE4: Bulk OUT transfer (64 bytes), PIPE5: Bulk IN transfer (64 bytes), PIPE6: Interrupt OUT transfer, PIPE7: Interrupt IN transfer). • The USB port (one port) is connected to the host device via a 0.5 m USB cable.		2.5		mA
	ISUSP Note 12	During suspended state under the following settings and conditions (V _{DD} = 5.0 V, T _A = +25°C): • The function controller is set to full-speed mode (the UDP0 pin is pulled up). • The internal power supply for the USB is used. • The system is set to STOP mode (When the high-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. When the watchdog timer is stopped.). • The USB port (one port) is connected to the host device via a 0.5 m USB cable.		240		μΑ

(Notes and Remarks are listed on the next page.)

Notes 1. Current flowing to VDD.

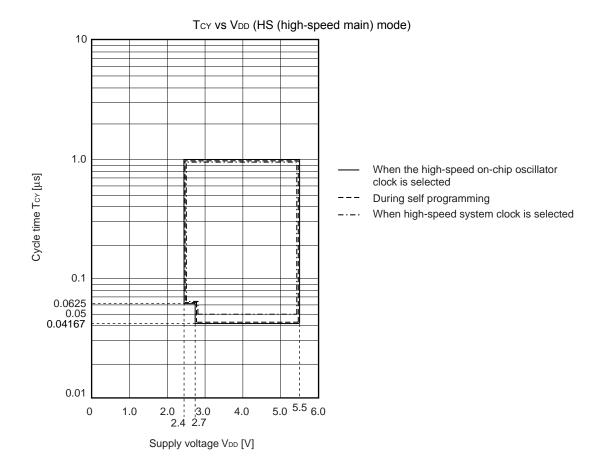
- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of the RL78/G1C is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode.
- 11. Current consumed only by the USB module and the internal power supply for the USB.
- **12.** Includes the current supplied from the pull-up resistor of the UDP0 pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

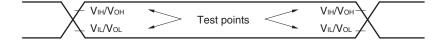
- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is TA = 25°C

2.4 AC Characteristics

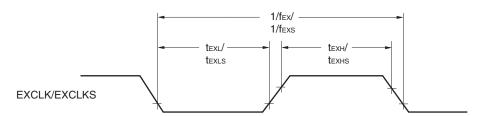
2.4.1 Basic operation

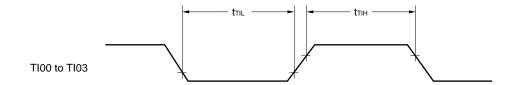

(TA = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

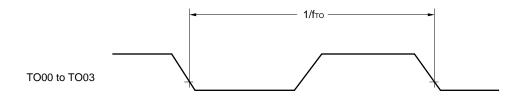
Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	system (Hig		$2.7 \text{ V} \leq \text{V}_{DD} \leq$ gh-speed 5.5 V	0.04167		1	μs
		clock (fmain) operation	main) mode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
		Subsystem coperation	lock (fsuв)	2.4 V ≤ V _{DD} ≤ 5.5 V	28.5	30.5	31.3	μs
		In the self programmin	HS (High-speed	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.04167		1	μs
		g mode	main) mode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
External system clock frequency	fex	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			1.0		20.0	MHz
		2.4 V ≤ V _{DD} <	2.7 V		1.0		16.0	MHz
	fexs				32		35	kHz
External system clock input	texh, texl	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			24			ns
high-level width, low-level width		2.4 V ≤ V _{DD} < 2.7 V			30			ns
	texhs, texhs				13.7			μs
TI00 to TI03 input high-level width, low-level width	tтін, tті∟				1/fмск+10			ns
TO00 to TO03 output frequency	f то	High-speed r	nain 4.0 V	≤ V _{DD} ≤ 5.5 V			12	MHz
		mode	2.7 V	2.7 V ≤ V _{DD} < 4.0 V			8	MHz
			2.4 V	2.4 V ≤ V _{DD} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	High-speed r	nain 4.0 V	≤ V _{DD} ≤ 5.5 V			16	MHz
frequency		mode	2.7 V :	≤ V _{DD} < 4.0 V			8	MHz
			2.4 V	2.4 V ≤ V _{DD} < 2.7 V			4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INT	,	≤ V _{DD} ≤ 5.5 V	1			μs
Key interrupt input low-level width	tkr	KR0 to KR5	2.4 V	≤ V _{DD} ≤ 5.5 V	250			ns
RESET low-level width	trsL				10			μs


Remark fmck: Timer array unit operation clock frequency

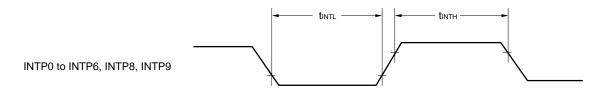
(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 3))


Minimum Instruction Execution Time during Main System Clock Operation

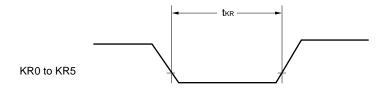

AC Timing Test Points

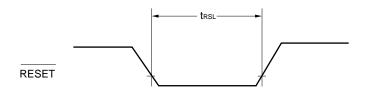


External System Clock Timing



TI/TO Timing




Interrupt Request Input Timing

Key Interrupt Input Timing

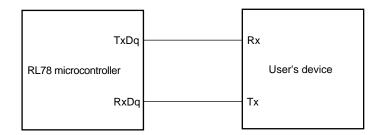
RESET Input Timing

2.5 Peripheral Functions Characteristics

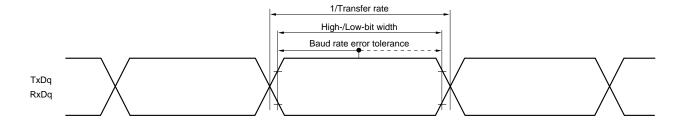
2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (dedicated baud rate generator output) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	nbol Conditions		TYP.	MAX.	Unit
Transfer rate					fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note			4.0	Mbps


Note The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)


16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 5)

2. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCKp cycle time	t KCY1	tkcy1 ≥ 2/fclk	$2.7~V \leq V_{DD} \leq 5.5~V$	83.3			ns
SCKp high-/low-level width	t кн1,	4.0 V ≤ V _{DD} ≤	5.5 V	tkcy1/2 - 7			ns
	t KL1	2.7 V ≤ V _{DD} ≤	5.5 V	tксү1/2 - 10			ns
SIp setup time (to SCKp↑) Note 1	tsıĸı	4.0 V ≤ V _{DD} ≤	5.5 V	23			ns
		2.7 V ≤ V _{DD} ≤	5.5 V	33			ns
SIp hold time (from SCKp↑) Note 2	t KSI1	2.7 V ≤ V _{DD} ≤	5.5 V	10			ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 20 pF ^{Note}	3			10	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. This specification is valid only when CSI00's peripheral I/O redirect function is not used.

- 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 3, 5)
- 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00))

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	167			ns
			$2.4~V \leq V_{DD} \leq 5.5~V$	250			ns
SCKp high-/low-level width	t кн1,	4.0 V ≤ V _{DD} ≤	5.5 V	tkcy1/2 - 12			ns
	t KL1	$2.7~V \leq V_{DD} \leq$	5.5 V	tkcy1/2 - 18			ns
		2.4 V ≤ V _{DD} ≤	5.5 V	tkcy1/2 - 38			ns
SIp setup time (to SCKp↑) Note 1	tsıĸı	4.0 V ≤ V _{DD} ≤	5.5 V	44			ns
		2.7 V ≤ V _{DD} ≤	5.5 V	44			ns
		2.4 V ≤ V _{DD} ≤	5.5 V	75			ns
SIp hold time (from SCKp↑) Note 2	t KSI1			19			ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF ^{Note}	4			25	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

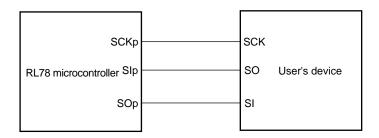
Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 0, 3, 5, 7)
 - 2. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00, 01))

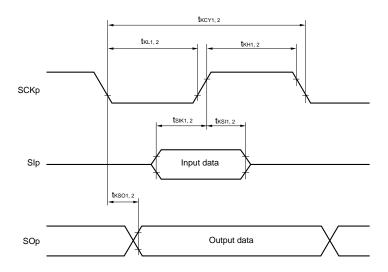
(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
SCKp cycle time Note 5	tkcy2	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	20 MHz < fмск	8/fмск			ns
			fмск ≤ 20 MHz	6/ƒмск			ns
		$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	16 MHz < fмск	8/fмск			ns
			fмcк ≤ 16 MHz	6/ƒмск			ns
		$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		6/fмск and 500			ns
SCKp high-/low-level width	t _{KH2} ,	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		tксү2/2 – 7			ns
	t KL2	$2.7 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$		tkcy2/2 - 8			ns
		$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		tксу2/2 — 18			ns
SIp setup time	tsik2	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		1/fмск+20			ns
(to SCKp↑) Note 1		$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		1/fмск+30			ns
SIp hold time	tksi2	$2.7~V \leq V_{DD} \leq 5.5~V$	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$				ns
(from SCKp↑) Note 2		2.4 V ≤ V _{DD} ≤ 5.5 V		1/fмск+31			ns
Delay time from SCKp↓ to	t KSO2	C = 30 pF Note 4	$2.7~V \leq V_{DD} \leq 5.5~V$			2/fмск+44	ns
SOp output Note 3			$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			2/fмск+75	ns

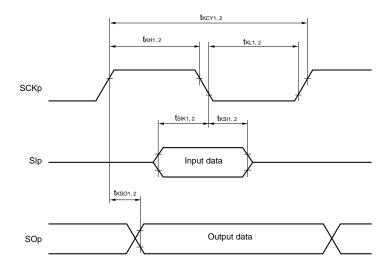
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 0, 3, 5, 7)
 - 2. fmck: Serial array unit operation clock frequency


 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

 n: Channel number (mn = 00, 01))


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

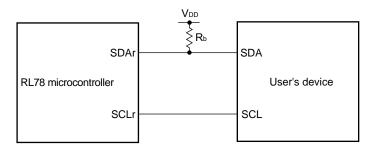
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01)

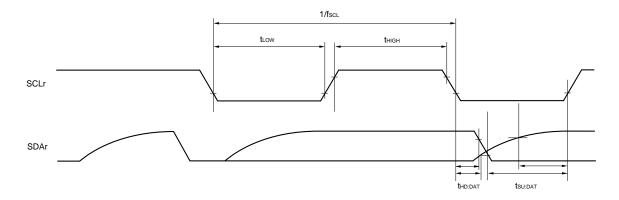
2. m: Unit number, n: Channel number (mn = 00, 01)

(5) During communication at same potential (simplified I^2C mode) (T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V},$		1000 Note 1	kHz
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$		400 Note 1	kHz
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V},$		300 Note 1	kHz
		C_b = 100 pF, R_b = 5 k Ω			
Hold time when SCLr = "L"	tLow	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$	475		ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq V_{DD} \leq 5.5~V,$	1150		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V},$	1550		ns
		C_b = 100 pF, R_b = 5 k Ω			
Hold time when SCLr = "H"	t HIGH	$2.7 \text{ V} \leq V_{DD} \leq 5.5 \text{ V},$	475		ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq V_{DD} \leq 5.5~V,$	1150		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V},$	1550		ns
		C_b = 100 pF, R_b = 5 k Ω			
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq V_{DD} \leq 5.5 \text{ V},$	1/f _{MCK} + 85 Note 2		ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	Note 2		
		$2.4~V \leq V_{DD} \leq 5.5~V,$	1/f _{MCK} + 145 Note 2		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	Note 2		
		$2.4 \text{ V} \le V_{DD} \le 2.7 \text{ V},$	1/f _{MCK} + 230 Note 2		ns
		C_b = 100 pF, R_b = 5 k Ω	Note 2		
Data hold time (transmission)	thd:dat	$2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V},$	0	305	ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq V_{DD} \leq 5.5~V,$	0	355	ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V},$	0	405	ns
		C_b = 100 pF, R_b = 5 k Ω			


Notes 1. The value must also be equal to or less than fmck/4.

2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".


Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Caution and Remarks are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remarks 1. $R_b[\Omega]$:Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance

- **2.** r: IIC number (r = 00, 01), g: PIM number (g = 5), h: POM number (h = 3, 5)
- 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01)

(6) Communication at different potential (2.5 V, 3 V) (UART mode) (1/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \ 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \ V_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditio	ons	MIN.	TYP.	MAX.	Unit
Transfer rate		reception	$4.0~V \leq V_{DD} \leq 5.5~V,$				fmck/6 ^{Note 1}	bps
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate fmck = fclk Note 2			4.0	Mbps
			$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V},$				fmck/6 ^{Note 1}	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate fmck = fclk Note 2			4.0	Mbps
			$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V},$				fmck/6 ^{Note 1}	bps
			$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$			4.0	Mbps

Notes 1. Use it with VDD≥Vb.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage

- **2.** q: UART number (q = 0), g: PIM and POM number (g = 5)
- 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00)

(6) Communication at different potential (2.5 V, 3 V) (UART mode) (2/2) ($T_A = -40$ to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Condit	ions	MIN.	TYP.	MAX.	Unit
Transfer rate		transmission	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V},$				Note 1	bps
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$			2.8 Note 2	Mbps
			2.7 V ≤ V _{DD} < 4.0 V				Note 3	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$			1.2 Note 4	Mbps
			2.4 V ≤ V _{DD} < 3.3 V				Notes 5, 6	bps
			$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate			0.43 Note 7	Mbps
				$C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$				

Notes 1. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{ln } (1-\frac{2.2}{V_b})\} \times 3} \text{ [bps]}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \text{ [%]}$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

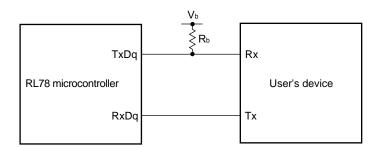
$$\label{eq:maximum transfer rate} \begin{aligned} & \frac{1}{\{-C_b \times R_b \times \text{ln } (1-\frac{2.0}{V_b})\} \times 3} \end{aligned} \text{ [bps]}$$

$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \text{In}$$
Baud rate error (theoretical value) =
$$\frac{(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $V_{DD} \ge V_b$.

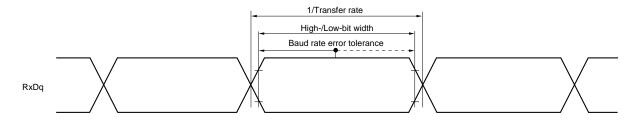
Notes 6. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.


Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** $R_b[\Omega]$:Communication line (TxDq) pull-up resistance, $C_b[F]$: Communication line (TxDq) load capacitance, $V_b[V]$: Communication line voltage
 - **2.** q: UART number (q = 0), g: PIM and POM number (g = 5)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00))

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkcy1	tксү1 ≥ 2/f cLk	$ \begin{aligned} &4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{aligned} $	200			ns
			$ \begin{aligned} 2.7 & \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 & \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	300			ns
SCKp high-level width	t кн1	4.0 V ≤ V _{DD} ≤	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$	tkcy1/2 - 50			ns
		C _b = 20 pF, R	_b = 1.4 kΩ				
		2.7 V ≤ V _{DD} <	$4.0 \text{ V}, 2.3 \text{ V} \le V_b \le 2.7 \text{ V},$	tkcy1/2 -			ns
		C _b = 20 pF, R	_b = 2.7 kΩ	120			
SCKp low-level width	t KL1	$4.0 \text{ V} \leq \text{V}_{DD} \leq$	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$	tkcy1/2 - 7			ns
		C _b = 20 pF, R	b = 1.4 kΩ				
		2.7 V ≤ V _{DD} <	$4.0 \text{ V}, 2.3 \text{ V} \le V_b \le 2.7 \text{ V},$	tkcy1/2 - 10			ns
		C _b = 20 pF, R	$_{b}$ = 2.7 k Ω				
SIp setup time	tsıĸ1	4.0 V ≤ V _{DD} ≤	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$	58			ns
(to SCKp↑) ^{Note 1}		C _b = 20 pF, R	_b = 1.4 kΩ				
		2.7 V ≤ V _{DD} <	$4.0 \ V, \ 2.3 \ V \le V_b \le 2.7 \ V,$	121			ns
		C _b = 20 pF, R	$_{b}$ = 2.7 k Ω				
SIp hold time	t KSI1	4.0 V ≤ V _{DD} ≤	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$	10			ns
(from SCKp↑) Note 1		C _b = 20 pF, R	_b = 1.4 kΩ				
		2.7 V ≤ V _{DD} <	4.0 V, 2.3 V ≤ V _b ≤ 2.7 V,	10			ns
		C _b = 20 pF, R	$_{\rm b}$ = 2.7 k Ω				
Delay time from SCKp↓ to	t KSO1	4.0 V ≤ V _{DD} ≤	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$			60	ns
SOp output Note 1		C _b = 20 pF, R	_b = 1.4 kΩ				
		2.7 V ≤ V _{DD} <	4.0 V, 2.3 V ≤ V _b ≤ 2.7 V,			130	ns
		C _b = 20 pF, R	$_{\rm b}$ = 2.7 k Ω				
SIp setup time	tsık1	4.0 V ≤ V _{DD} ≤	5.5 V, 2.7 V ≤ V _b ≤ 4.0 V,	23			ns
(to SCKp↓) Note 2		C _b = 20 pF, R	_b = 1.4 kΩ				
		2.7 V ≤ V _{DD} <	4.0 V, 2.3 V ≤ V _b ≤ 2.7 V,	33			ns
		C _b = 20 pF, R	$_{b}$ = 2.7 k Ω				
SIp hold time	t _{KSI1}	4.0 V ≤ V _{DD} ≤	5.5 V, 2.7 V ≤ V _b ≤ 4.0 V,	10			ns
(from SCKp↓) Note 2		C _b = 20 pF, R	_b = 1.4 kΩ				
		2.7 V ≤ V _{DD} <	4.0 V, 2.3 V ≤ V _b ≤ 2.7 V,	10			ns
		$C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$					
Delay time from SCKp↑ to	tkso1	4.0 V ≤ V _{DD} ≤	5.5 V, 2.7 V ≤ V _b ≤ 4.0 V,			10	ns
SOp output Note 2		C _b = 20 pF, R	_b = 1.4 kΩ				
		2.7 V ≤ V _{DD} <	4.0 V, 2.3 V ≤ V _b ≤ 2.7 V,			10	ns
		C _b = 20 pF, R	_b = 2.7 kΩ				

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

(Caution and Remark are listed on the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00)
 - 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

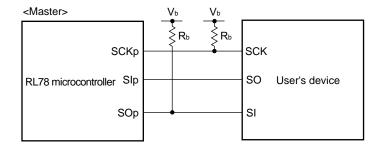
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$\begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega \end{aligned}$	300			ns
			$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	500			ns
			$2.4 \ V \leq V_{DD} < 3.3 \ V,$ $2.4 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega$	1150			ns
SCKp high-level width	t _{KH1}	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$		tkcy1/2 - 75			ns
		C _b = 30 pF, F	$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		tксу1/2 — 170			ns
			$2.4 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V},$ $C_b = 30 \text{ pF}, \ R_b = 5.5 \text{ k}\Omega$				ns
SCKp low-level width	t _{KL1}	4.0 V ≤ V _{DD} ≤ C _b = 30 pF, F	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V},$ $\text{R}_{\text{b}} = 1.4 \text{ k}\Omega$	tксү1/2 – 12			ns
		2.7 V ≤ V _{DD} <	< 4.0 V, 2.3 V ≤ V _b ≤ 2.7 V,	tксү1/2 – 18			ns
		C _b = 30 pF, F	$R_b = 2.7 \text{ k}\Omega$				
		2.4 V ≤ V _{DD} <	< 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V,	tkcy1/2 - 50			ns
		C _b = 30 pF, F	$R_b = 5.5 \text{ k}\Omega$				

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vpd tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. Use it with $V_{DD} \ge V_b$.

(Remarks are listed two pages after the next page.)

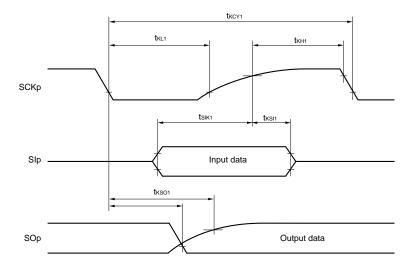
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

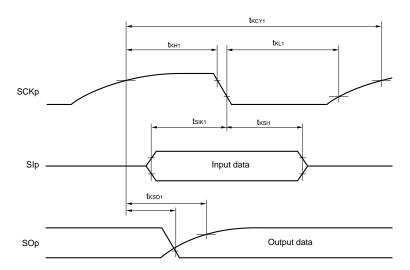

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SIp setup time	tsıĸ1	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	81			ns
(to SCKp↑) Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	177			ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4 \text{ V} \le V_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}^{\text{Note 3}},$	479			ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
SIp hold time	t _{KSI1}	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	19			ns
(from SCKp↑) Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	19			ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Note 3}},$	19			ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
Delay time from SCKp↓ to	tkso1	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V},$			100	ns
SOp output Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$			195	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4 \text{ V} \le V_{DD} \le 3.3 \text{ V}, \ 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}^{\text{Note 3}},$			483	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
SIp setup time	tsıĸ1	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	44			ns
(to SCKp↓) Note 2		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V},$	44			ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 3}},$	110			ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
SIp hold time	tksi1	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	19			ns
(from SCKp↓) Note 2		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V},$	19			ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 3}},$	19			ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
Delay time from SCKp↑ to	tkso1	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$			25	ns
SOp output Note 2		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$			25	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4 \text{ V} \le V_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}^{\text{Note 3}},$			25	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				

(Notes, Cautions and Remarks are listed on the next page.)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3 Use it with $V_{DD} \ge V_b$.


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)



- **Remarks 1.** $R_b[\Omega]$:Communication line (SCKp, SOp) pull-up resistance, $C_b[F]$: Communication line (SCKp, SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

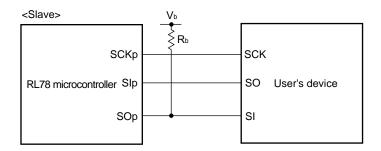
- **Remarks 1.** p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)
 - **2.** CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

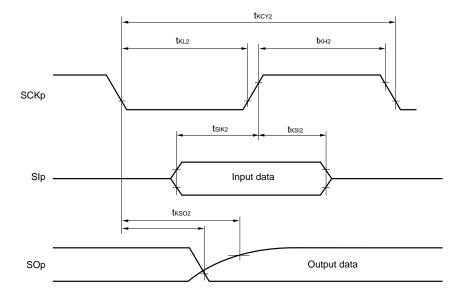
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time Note 1	tkcy2	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	12/fмск			ns
		$2.7 V \le V_b \le 4.0 V$	8 MHz < fмcк ≤ 20 MHz	10/fмск			ns
			4 MHz < f _{MCK} ≤ 8 MHz	8/fмск			ns
			fмcк ≤ 4 MHz	6/ƒмск			ns
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	16/fмск			ns
		$2.3 V \le V_b \le 2.7 V$	16 MHz < f _{MCK} ≤ 20 MHz	14/fмск			ns
			8 MHz < f _{MCK} ≤ 16 MHz	12/fмск			ns
			4 MHz < f _{MCK} ≤8 MHz	8/fмск			ns
			fmck ≤4 MHz	6/fмск			ns
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	36/fмск			ns
		$1.6 \ V \! \leq \! V_b \! \leq \! 2.0 \ V^{\text{Note}}$	16 MHz < fмck ≤ 20 MHz	32/fмск			ns
		2	8 MHz < f _{MCK} ≤ 16 MHz	26/fмск			ns
			4 MHz < f _{MCK} ≤8 MHz	16/f мск			ns
			fmck ≤4 MHz	10/fмск			ns
SCKp high-/low-level width	t _{KH2} ,	$4.0~V \le V_{DD} \le 5.5~V$	$V_{b} \leq V_{b} \leq 4.0 \text{ V}$	tkcy2/2 – 12			ns
		2.7 V ≤ V _{DD} < 4.0 V	$V_{1}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V}$	tkcy2/2 – 18			ns
		2.4 V ≤ V _{DD} < 3.3 V	$V_{1}, 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}^{\text{Note 2}}$	tkcy2/2 – 50			ns
SIp setup time (to SCKp↑) Note 3	tsık2	4.0 V ≤ V _{DD} ≤ 5.5 V	$V_{1}, 2.7 \text{ V} \le V_{b} \le 4.0 \text{ V}$	1/fмск + 20			ns
		2.7 V ≤ V _{DD} < 4.0 V	$V_{1}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V}$	1/fмск + 20			ns
		2.4 V ≤ V _{DD} < 3.3 V	$V_{1}, 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}^{\text{Note 2}}$	1/fмск + 30			ns
SIp hold time (from SCKp↑) Note 4	tksi2			1/fмcк + 31			ns
Delay time from SCKp↓ to	t KSO2	4.0 V ≤ V _{DD} ≤ 5.5 V	$V_{1}, 2.7 \text{ V} \le V_{b} \le 4.0 \text{ V},$			2/fмск +	ns
SOp output Note 5		C _b = 30 pF, R _b = 1.	4 kΩ			120	
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	$V_{1}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V},$			2/f _{MCK} +	ns
		$C_b = 30 \text{ pF}, R_b = 2.$	7 kΩ			214	
		2.4 V ≤ V _{DD} < 3.3 V	V , 1.6 $V \le V_b \le 2.0 \ V^{\text{Note 2}}$,			2/fмск +	ns
		$C_b = 30 \text{ pF}, R_b = 5.$	5 kΩ			573	

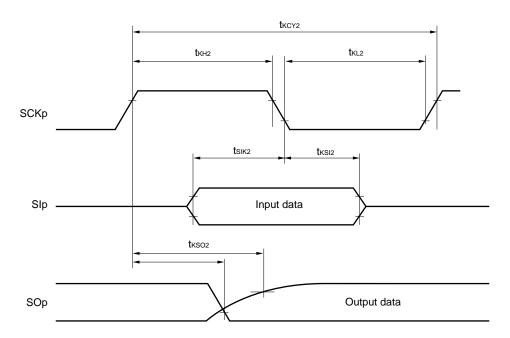
Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


- 2. Use it with $V_{DD} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

(Caution and Remarks are listed on the next page.)


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)



- **Remarks 1.** $R_b[\Omega]$:Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)

2. CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

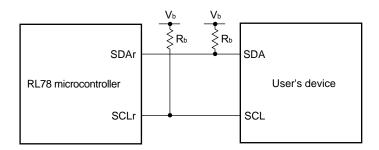
(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2) (T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$\label{eq:controller} \begin{split} 4.0 \ V & \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V & \leq V_b \leq 4.0 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		1000 Note 1	kHz
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_b < 2.7 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		1000 Note 1	kHz
		$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.8 \ k\Omega \end{aligned} $		400 Note 1	kHz
		$\begin{aligned} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} < 2.7 \ V, \\ C_{b} &= 100 \ pF, \ R_{b} = 2.7 \ k \Omega \end{aligned}$		400 Note 1	kHz
		$\begin{split} 2.4 \ V &\leq V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		300 Note 1	kHz
Hold time when SCLr = "L"	t Low	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_{b} \leq 4.0 \ V, \\ C_{b} &= 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{aligned} $	475		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_b < 2.7 \text{ V}, \\ C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega $	475		ns
		$\begin{aligned} &4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned}$	1150		ns
		$\begin{aligned} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_b < 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	1150		ns
		$\begin{split} 2.4 \ V &\leq V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_{b} \leq 2.0 \ V^{Note2}, \\ C_{b} &= 100 \ pF, \ R_{b} = 5.5 \ k\Omega \end{split}$	1550		ns
Hold time when SCLr = "H"	tнівн	$\begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	245		ns
		$\begin{aligned} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} < 2.7 \ V, \\ C_{b} &= 50 \ pF, \ R_{b} = 2.7 \ k \Omega \end{aligned}$	200		ns
		$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.8 \ k\Omega \end{aligned} $	675		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_b < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	600		ns
		$\begin{split} 2.4 \ V &\leq V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_{b} \leq 2.0 \ V^{Note2}, \\ C_{b} &= 100 \ pF, \ R_{b} = 5.5 \ k\Omega \end{split}$	610		ns

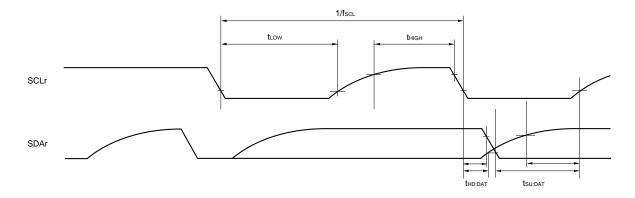
(Notes, Caution and Remarks are listed on the next page.)

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2) (T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Data setup time (reception)	tsu:dat	$ \begin{aligned} 4.0 & \ V \le V_{DD} \le 5.5 \ V, \\ 2.7 & \ V \le V_b \le 4.0 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1/f _{MCK} + 135 Note 3		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_b < 2.7 \text{ V}, \\ C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega $	1/f _{MCK} + 135 Note 3		ns
		$ \begin{aligned} &4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $	1/f _{MCK} + 190 Note 3		ns
		$ \begin{aligned} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_b < 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1/f _{MCK} + 190 Note 3		ns
		$ \begin{cases} 2.4 \; \text{V} \leq \text{V}_{\text{DD}} < 3.3 \; \text{V}, \\ 1.6 \; \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \; \text{V}^{\text{Notes 2}}, \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 5.5 \; \text{k}\Omega \end{cases} $	1/f _{MCK} + 190 Note 3		ns
Data hold time (transmission)	thd:dat	$ \begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} & = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned} $	0	305	ns
		$ \begin{aligned} 2.7 & \ V \le V_{DD} < 4.0 \ V, \\ 2.3 & \ V \le V_b < 2.7 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	0	305	ns
		$ \begin{aligned} &4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $	0	355	ns
		$ \begin{aligned} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} < 2.7 \ V, \\ C_{b} &= 100 \ pF, \ R_{b} = 2.7 \ k \Omega \end{aligned} $	0	355	ns
		$ \begin{array}{c} 2.4 \; V \leq V_{DD} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array} $	0	405	ns


Notes 1. The value must also be equal to or less than fmck/4.

- 2. Use it with $V_{DD} \ge V_b$.
- 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".


Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- Remarks 1. $R_b[\Omega]$:Communication line (SDAr, SCLr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance, $V_b[V]$: Communication line voltage
 - 2. r: IIC number (r = 00), g: PIM, POM number (g = 0, 3, 5, 7)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00)

2.5.2 Serial interface IICA

(1) I²C standard mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Condit	ions	HS (high-spe	ed main) mode	Unit
				MIN.	MAX.	
SCLA0 clock frequency	fscL	Standard mode: fclk≥ 1	$2.7~V \leq V_{DD} \leq 5.5~V$	0	100	kHz
		MHz	$2.4~V \leq V_{DD} \leq 5.5~V$	0	100	kHz
Setup time of restart condition	tsu:sta	$2.7~V \leq V_{DD} \leq 5.5~V$		4.7		μs
		$2.4~V \leq V_{DD} \leq 5.5~V$		4.7		μs
Hold time ^{Note 1}	thd:sta	$2.7~V \leq V_{DD} \leq 5.5~V$		4.0		μs
		$2.4~V \leq V_{DD} \leq 5.5~V$		4.0		μs
Hold time when SCLA0 = "L"	tLOW	$2.7~V \leq V_{DD} \leq 5.5~V$		4.7		μs
		$2.4~V \leq V_{DD} \leq 5.5~V$		4.7		μs
Hold time when SCLA0 = "H"	t HIGH	$2.7~V \leq V_{DD} \leq 5.5~V$		4.0		μs
		$2.4~V \leq V_{DD} \leq 5.5~V$		4.0		μs
Data setup time (reception)	tsu:dat	$2.7~V \leq V_{DD} \leq 5.5~V$		250		μs
		$2.4~V \leq V_{DD} \leq 5.5~V$		250		μs
Data hold time	thd:dat	$2.7~V \leq V_{DD} \leq 5.5~V$		0	3.45	μs
(transmission)Note 2		$2.4~V \leq V_{DD} \leq 5.5~V$		0	3.45	μs
Setup time of stop condition	tsu:sto	$2.7~V \leq V_{DD} \leq 5.5~V$		4.0		μs
		2.4 V ≤ V _{DD} ≤ 5.5 V		4.0		μs
Bus-free time	t BUF	$2.7~V \leq V_{DD} \leq 5.5~V$		4.7		μS
		2.4 V ≤ V _{DD} ≤ 5.5 V		4.7		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 1 (PIOR1) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

(2) I²C fast mode

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Condi	tions	HS (high-spe	ed main) Mode	Unit
				MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk ≥ 3.5	$2.7~V \leq V_{DD} \leq 5.5~V$	0	400	kHz
		MHz $2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		0	400	kHz
Setup time of restart condition	tsu:sta	$2.7~V \leq V_{DD} \leq 5.5~V$		0.6		μ s
		$2.4~V \leq V_{DD} \leq 5.5~V$		0.6		μ s
Hold time ^{Note 1}	t hd:sta	$2.7~V \leq V_{DD} \leq 5.5~V$		0.6		μ s
		$2.4~V \leq V_{DD} \leq 5.5~V$		0.6		μ s
Hold time when SCLA0 = "L"	tLOW	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1.3		μs
		$2.4~V \leq V_{DD} \leq 5.5~V$	1.3		μ s	
Hold time when SCLA0 = "H"	t HIGH	$2.7~V \leq V_{DD} \leq 5.5~V$		0.6		μs
		$2.4~V \leq V_{DD} \leq 5.5~V$		0.6		μs
Data setup time (reception)	tsu:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		100		ns
		2.4 V ≤ V _{DD} ≤ 5.5 V		100		ns
Data hold time	thd:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0	0.9	μs
(transmission) ^{Note 2}		$2.4~V \leq V_{DD} \leq 5.5~V$		0	0.9	μs
Setup time of stop condition	t su:sтo	$2.7~V \leq V_{DD} \leq 5.5~V$		0.6		μs
		$2.4~V \leq V_{DD} \leq 5.5~V$		0.6		μs
Bus-free time	t BUF	$2.7~V \leq V_{DD} \leq 5.5~V$		1.3		μs
		$2.4~V \leq V_{DD} \leq 5.5~V$		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Caution The values in the above table are applied even when bit 1 (PIOR1) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

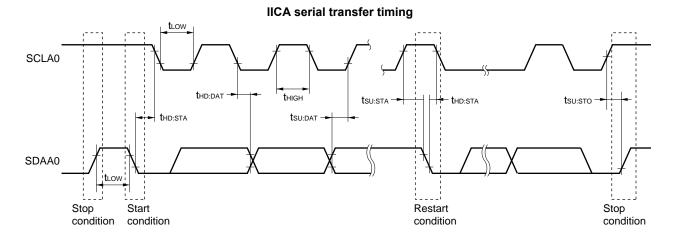
Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

^{2.} The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

(3) I²C fast mode plus

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Condit	ions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus:	$2.7~V \leq V_{DD} \leq 5.5~V$	0	1000	kHz
		fclk≥ 10 MHz				
Setup time of restart condition	tsu:sta	$2.7~V \leq V_{DD} \leq 5.5~V$		0.26		μs
Hold time ^{Note 1}	thd:STA	$2.7~V \leq V_{DD} \leq 5.5~V$		0.26		μs
Hold time when SCLA0 = "L"	tLow	$2.7~V \leq V_{DD} \leq 5.5~V$		0.5		μs
Hold time when SCLA0 = "H"	t HIGH	$2.7~V \leq V_{DD} \leq 5.5~V$		0.26		μs
Data setup time (reception)	tsu:dat	$2.7~V \leq V_{DD} \leq 5.5~V$		50		ns
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$		0	0.45	μs
Setup time of stop condition	tsu:sto	2.7 V ≤ V _{DD} ≤ 5.5 V		0.26		μs
Bus-free time	t BUF	$2.7~V \leq V_{DD} \leq 5.5~V$		0.5		μs


Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 1 (PIOR1) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: $C_b = 120 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

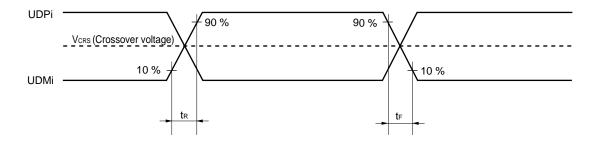
2.5.3 USB

(1) Electrical specifications

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 3.0 \text{ V} \le UV_{DD} \le 3.6 \text{ V}, 3.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UV _{DD} UV _{DD} input voltage characteristic		UV _{DD}	V_{DD} = 3.0 to 5.5 V, PXXCON = 1, VDDUSEB = 0 (UV _{DD} \leq V _{DD})	3.0	3.3	3.6	V
	UV _{DD} output voltage characteristic	UV _{DD}	V _{DD} = 4.0 to 5.5 V, PXXCON = VDDUSEB = 1	3.0	3.3	3.6	V
UV _{BUS}	UV _{BUS} input voltage characteristic	UV _{BUS}	Function	4.35 (4.02 ^{Note})	5.00	5.25	V
			Host	4.75	5.00	5.25	V

Note Value of instantaneous voltage


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 3.0 \text{ V} \le UV_{DD} \le 3.6 \text{ V}, 3.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Par	ameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDPi/UDMi	Input volt	tage	VIH		2.0			V
pins input characteristic			VIL				0.8	V
(FS/LS receiver)		Difference input sensitivity		UDP voltage – UDM voltage	0.2			V
	Difference common mode range		Vсм		0.8		2.5	V
UDPi/UDMi	Output vo	oltage	Vон	Ioн = -200 μA	2.8		3.6	V
pins output characteristic (FS driver)			Vol	IoL = 2.4 mA	0		0.3	V
	Transi-ti	Rising	t FR	Rising: From 10% to 90 % of	4		20	ns
` ,	on time	Falling	trf	amplitude, Falling: From 90% to 10 % of	4		20	ns
	Matching (TFR/TFF)		VFRFM	amplitude, CL = 50 pF	90		111.1	%
	Crossove	er voltage	VFCRS		1.3		2.0	V
UDPi/UDMi	Output Impedance		ZDRV	UV _{DD} voltage = 3.3 V, Pin voltage = 1.65 V	28		44	Ω
UDPi/UDMi pins output characteristic	Output vo	oltage	Vон		2.8		3.6	V
			VoL		0		0.3	V
(LS driver)	Transi-ti	Rising	t LR	Rising: From 10% to 90 % of	75		300	ns
	on time Fa	Falling	t LF	amplitude, Falling: From 90% to 10 % of	75		300	ns
	Matching Note		VLTFM	amplitude, CL = 200 to 600 pF	80		125	%
	Crossover voltage		VLCRS	When the host controller function is selected: The UDMi pin (i = 0, 1) is pulled up via 1.5 k Ω . When the function controller function is selected: The UDP0 and UDM0 pins are individually pulled down via 15 k Ω	1.3		2.0	V
UDPi/UDMi	Pull-dow	n resistor	R _{PD}		14.25		24.80	kΩ
pins pull-up, pull-down	Pull-up resistor	Idle	Rpui		0.9		1.575	kΩ
	(i = 0 only)	Recep-t ion	RPUA		1.425		3.09	kΩ
UV _{BUS}	UV _{BUS} puresistor	ill-down	Rvbus	UV _{BUS} voltage = 5.5 V		1000		kΩ
	UV _{BUS} in	out	VIH		3.20			V
	voltage		VIL				0.8	V

Note Excludes the first signal transition from the idle state.

Remark i = 0, 1

Timing of UDPi and UDMi

(2) BC standard

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 3.0 \text{ V} \le U\text{V}_{DD} \le 3.6 \text{ V}, 3.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB standard BC1.2	UDPi sink current	IDP_SINK		25		175	μΑ
	UDMi sink current	IDM_SINK		25		175	μΑ
BC1.2	DCD source current	IDP_SRC		7		13	μΑ
	Dedicated charging port resistor	RDCP_DAT	0 V < UDP/UDM voltage < 1.0 V			200	Ω
	Data detection voltage	VDAT_REF		0.25		0.4	V
	UDPi source voltage	V _{DP_SRC}	Output current 250 μA	0.5		0.7	V
	UDMi source voltage	V _{DM_SRC}	Output current 250 μA	0.5		0.7	V

Remark i = 0, 1

(3) BC option standard (Host)

 $(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, \ 4.75 \text{ V} \leq \text{UV}_{\text{BUS}} \leq 5.25 \text{ V}, \ 3.0 \text{ V} \leq \text{UV}_{\text{DD}} \leq 3.6 \text{ V}, \ 2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \ \text{Vss} = 0 \text{ V})$

Par	Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDPi output	VDSELi	1000	V _{P20}		38	40	42	% UV _{BUS}
voltage	[3:0]	1001	V _{P27}		51.6	53.6	55.6	% UV _{BUS}
(UV _{BUS} divider ratio)	(i = 0, 1)	1010	V _{P20}		38	40	42	% UV _{BUS}
•VDOUEi = 1		1100	V P33		60	66	72	% UV _{BUS}
UDMi output	VDSELi	1000	V _{M20}		38	40	42	% UV _{BUS}
voltage	[3:0]	1001	V _{M20}		38	40	42	% UV _{BUS}
(UV _{BUS} divider ratio)	(i = 0, 1)	1010	V _{M27}		51.6	53.6	55.6	% UV _{BUS}
• VDOUEi = 1		1100	Vмзз		60	66	72	% UV _{BUS}
UDPi	VDSELi	1000	VHDETP_UP0	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
comparing voltage Note 1	[3:0]		VHDETP_DWN0	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
voltage (UV _{BUS} divider	(i = 0, 1)	1001	VHDETP_UP1	The rise of pin voltage detection voltage	60.5			% UV _{BUS}
ratio)			VHDETP_DWN1	The fall of pin voltage detection voltage			45.0	% UV _{BUS}
•VDOUEi = 1		1010	VHDETP_UP2	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
• CUSDETEi = 1			VHDETP_DWN2	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
UDMi	VDSELi	1000	VHDETM_UP0	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
comparing voltage Note 1	[3:0]	_	VHDETM_DWN0	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
voltage (UV _{BUS} divider	(i = 0, 1)	1001	VHDETM_UP1	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
ratio)			VHDETM_DWN1	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
•VDOUEi = 1		1010	VHDETM_UP2	The rise of pin voltage detection voltage	60.5			% UV _{BUS}
• CUSDETEi = 1			VHDETM_DWN2	The fall of pin voltage detection voltage			45.0	% UV _{BUS}
UDPi pull-up de	etection	1000	RHDET_PULL	In full-speed mode, the power supply			1.575	kΩ
Note 2		1001		voltage range of pull-up resistors				
the full speed f	unction	1010		connected to the USB function module is between 3.0 V and 3.6 V.				
UDMi pull-up d	,	1000	RHDET_PULL	In low-speed mode, the power supply			1.575	kΩ
Note 2	0.000	1001	- 1.132.7_1.022	voltage range of pull-up resistors				
	Connect detection with he low-speed (pull-up			connected to the USB function module is between 3.0 V and 3.6 V.				
UDMi sink curr		1000	HDET_SINK		25			μΑ
detection Note 2	2	1001	1					,
the BC1.2 port	able	1010	1					
device (sink re	อเรเบเ)							

- **Notes 1.** If the voltage output from UDPi or UDMi (i = 0, 1) exceeds the range of the MAX and MIN values prescribed in this specification, DPCUSDETi (bit 8) and DMCUSDETi (bit 9) of the USBBCOPTi register are set to 1.
 - 2. If the pull-up resistance or sink current prescribed in this specification is applied to UDPi or UDMi (i = 0, 1), DPCUSDETi (bit 8) and DMCUSDETi (bit 9) of the USBBCOPTi register are set to 1.

Remark i = 0, 1

(4) BC option standard (Function)

 $(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, \ 4.35 \text{ V} \leq \text{UV}_{\text{BUS}} \leq 5.25 \text{ V}, \ 3.0 \text{ V} \leq \text{UV}_{\text{DD}} \leq 3.6 \text{ V}, \ 2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \ \text{Vss} = 0 \text{ V})$

Par	ameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDPi/UDMi	VDSELi	0000	V _{DDET0}		27	32	37	% UV _{BUS}
input reference voltage	[3:0]	0001	V _{DDET1}		29	34	39	% UV _{BUS}
	(i = 0)	0010	V _{DDET2}		32	37	42	% UV _{BUS}
(UV _{BUS} divider		0011	V _{DDET3}		35	40	45	% UV _{BUS}
ratio)		0100	VDDET4		38	43	48	% UV _{BUS}
• VDOUEi = 0		0101	V _{DDET5}		41	46	51	% UV _{BUS}
(i = 0))	0	0110	VDDET6		44	49	54	% UV _{BUS}
		0111	V _{DDET7}		47	52	57	% UV _{BUS}
		1000	V _{DDET8}		51	56	61	% UV _{BUS}
		1001	VDDET9		55	60	65	% UV _{BUS}
		1010	VDDET10		59	64	69	% UV _{BUS}
		1011	VDDET11		63	68	73	% UV _{BUS}
		1100	V _{DDET12}		67	72	77	% UV _{BUS}
		1101	VDDET13		71	76	81	% UV _{BUS}
		1110	VDDET14		75	80	85	% UV _{BUS}
		1111	VDDET15		79	84	89	% UV _{BUS}

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel		Reference Voltage	
	Reference voltage (+) = AVREFP Reference voltage (-) =	Reference voltage (+) = VDD	Reference voltage (+) = VBGR Reference voltage (-) =
	AVREFM	Reference voltage (–) = Vss	AVREFM
ANI0 to ANI7	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).
ANI16, ANI17, ANI19	Refer to 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		_

(1) When AV_{REF (+)} = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI2 to ANI7, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 2.4 V \leq AV_{REFP} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFM} = 0 V)

Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	2.4 V ≤ VDD ≤ 5.5 V		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	2.125		39	μs
		Target pin: ANI2 to ANI7	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	3.1875		39	μs
		AINIT	$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	17		39	μs
		10-bit resolution	$3.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	2.375		39	μs
		Target pin: Internal	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AVREFP = VDD Note 3	$2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP = VDD Note 3	$2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI7		0		AVREFP	V
	Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (highmode)		ŭ		V _{BGR} Note 4		V
			mperature sensor output voltage 4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) ode)		/ _{TMPS25} Note	4	V

(Notes are listed on the next page.)

- Notes 1. Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows.

 Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

 Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

 Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 - 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16, ANI17, ANI19

(TA = -40 to $+85^{\circ}$ C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	2.4 V ≤ VDD ≤ 5.5 V		1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target ANI pin :	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	3.1875		39	μs
		ANI16, ANI17, ANI19	2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AVREFP = VDD Note 3	2.4 V ≤ VDD ≤ 5.5 V			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AV _{REFP} = V _{DD} Note 3	2.4 V ≤ VDD ≤ 5.5 V			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AVREFP = VDD Note 3	$2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP = VDD Note 3	2.4 V ≤ VDD ≤ 5.5 V			±2.00	LSB
Analog input voltage	VAIN	ANI16, ANI17, ANI19		0		AVREFP and VDD	V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

(3) Reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), Reference voltage (-) = V_{SS} (ADREFM = 0), target ANI pin : ANI0 to ANI7, ANI16, ANI17, ANI19, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = V_{DD}, \text{Reference voltage (-)} = V_{SS})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Notes 1, 2	AINL	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	2.125		39	μs
		Target ANI pin :	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
		ANI0 to ANI7, ANI16, ANI17, ANI19	$2.4~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$	17		39	μs
		Target ANI pin : Internal	$3.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	2.375		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±0.60	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI7, ANI16, ANI17, ANI19		0		V_{DD}	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (I mode)	high-speed main)	V _{BGR} Note 3			V
		Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (I mode)	· ·	V _{TMPS25} Note 3		V	

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When Reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), Reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0 to ANI7, ANI16, ANI17, ANI19

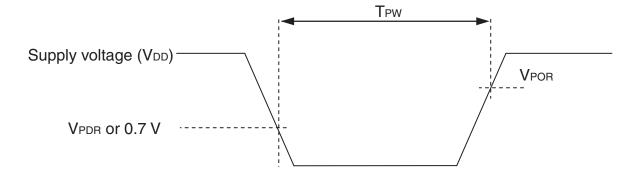
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = V_{BGR}^{Note 3}, \text{ Reference voltage (-)} = AV_{REFM}^{Note 4} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res				8		Bit
Conversion time	tconv	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±1.0	LSB
Analog input voltage	VAIN			0		V _{BGR} Note 3	V

- Notes 1. Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
 - 4. When reference voltage (-) = Vss, the MAX. values are as follows.
 Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.
 Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.
 Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

2.6.2 Temperature sensor/internal reference voltage characteristics

(TA = -40 to $+85^{\circ}$ C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, T _A = +25°C		1.05		٧
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

2.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	V _{PDR}	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width Note	T _{PW}		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR} . This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock (f_{MAIN}) is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(Ta = -40 to +85°C, V_{PDR} \leq V_{DD} \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	V _{LVD0}	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		V _{LVD1}	Power supply rise time	3.68	3.75	3.82	٧
			Power supply fall time	3.60	3.67	3.74	>
		V _{LVD2}	Power supply rise time	3.07	3.13	3.19	٧
			Power supply fall time	3.00	3.06	3.12	V
		V _{LVD3}	Power supply rise time	2.96	3.02	3.08	>
			Power supply fall time	2.90	2.96	3.02	>
		V _{LVD4}	Power supply rise time	2.86	2.92	2.97	٧
			Power supply fall time	2.80	2.86	2.91	V
		V _{LVD5}	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		V _{LVD6}	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		V _{LVD7}	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		V _{LVD8}	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
Minimum pulse width		tuw		300			μS
Detection d	elay time	t LD				300	μS

LVD Detection Voltage of Interrupt & Reset Mode

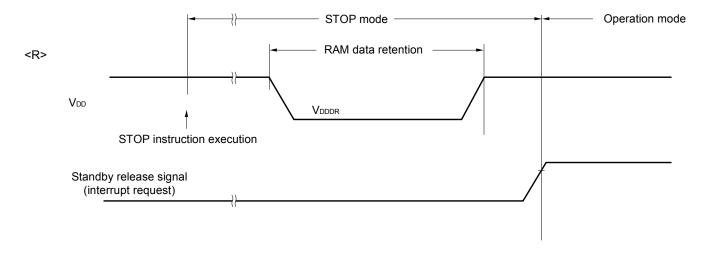
(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Cond	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDC0	VPOC	C2, VPOC1, VPOC0 =	0, 1, 0, falling reset voltage	2.40	2.45	2.50	V
mode	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
\	V _{LVDC3}	VLVDC3		Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	V _{LVDD0}	VPOC	VPOC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage			2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	V _{LVDD2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
VLVDD3				Falling interrupt voltage	2.90	2.96	3.02	V
	V _{LVDD3}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	Svdd				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 30.4 AC Characteristics.

<R> 2.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

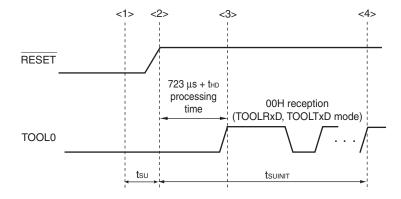
2.8 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	CPU/peripheral hardware clock frequency	fclk	$2.4 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	1		24	MHz
<r></r>	Number of code flash rewrites	Cerwr	Retaining years: 20 years T _A = +85°C	1,000			Times
<r></r>	Number of data flash rewrites Notes 1, 2, 3		Retaining years: 1 year T _A = +25°C		1,000,000		
<r></r>			Retaining years: 5 years T _A = +85°C	100,000			
<r></r>			Retaining years: 20 years T _A = +85°C	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library.
 - **3.** These specifications show the characteristics of the flash memory and the results obtained from Renesas Electronics reliability testing.

2.9 Dedicated Flash Memory Programmer Communication (UART)


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing Specs for Switching Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuіліт	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must end before the external reset ends.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.

tsu: How long from when the TOOL0 pin is placed at the low level until an external reset ends

thd: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (excluding the processing time of the firmware to control the flash memory)

3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)

This chapter describes the electrical specifications for the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)".

The target products

G: Industrial applications ; $T_A = -40 \text{ to } +105^{\circ}\text{C}$

R5F10JBCGNA, R5F10JBCGFP, R5F10JGCGNA, R5F10JGCGFB, R5F10KBCGNA, R5F10KBCGFP, R5F10KGCGNA, R5F10KGCGFB

- Cautions 1. The RL78 microcontrollers has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product.
 - 3. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to $+105^{\circ}C$. Derating is the systematic reduction of load for the sake of improved reliability.

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$)" and the products "A: Consumer applications".

Parameter	Appl	ication
	A: Consumer applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
High-speed on-chip oscillator clock accuracy	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ $\pm 1.0\%$ T _A = -20 to +85°C $\pm 1.5\%$ T _A = -40 to -20°C	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ $\pm 2.0\%$ T _A = +85 to +105°C $\pm 1.0\%$ T _A = -20 to +85°C $\pm 1.5\%$ T _A = -40 to -20°C
Serial array unit	UART CSI: fclk/2 (supporting 16 Mbps), fclk/4 Simplified I ² C communication	UART CSI: fclk/4 Simplified I ² C communication
IICA	Normal mode Fast mode Fast mode plus	Normal mode Fast mode

Remark The electrical characteristics of the products G: Industrial applications ($T_A = -40 \text{ to } +105^{\circ}\text{C}$) are different from those of the products "A: Consumer applications". For details, refer to **3.1** to **3.10**.

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	٧
UV _{DD} pin input voltage	VIUVDD	UV _{DD}	−0.3 to V _{DD} +0.3	٧
Input voltage	Vıı	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P70 to P75, P120 to P124, P137, P140, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	٧
	V _{I2}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	٧
	Vıз	UDP0, UDM0, UDP1, UDM1	-0.3 to +6.5	V
	V _{I4}	UV _{BUS}	-0.3 to +6.5	V
Output voltage	V ₀₁	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P130, P140	-0.3 to V _{DD} +0.3 ^{Note 2}	<
	V _{O2}	UDP0, UDM0, UDP1, UDM1	-0.3 to +6.5	V
Analog input voltage	V _{Al1}	ANI16, ANI17, ANI19	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 Notes 2, 3	٧
	V _{Al2}	ANI0 to ANI7	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 Notes 2, 3	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AV_{REF} (+): The + side reference voltage of the A/D converter. This can be selected from AV_{REFP}, the internal reference voltage (1.45 V), and V_{DD}.
 - 3. Vss: Reference voltage

Absolute Maximum Ratings (TA = 25°C) (2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00, P01, P14 to P17, P30, P31,	-40	mA
			P40, P41, P50, P51, P70 to P75,		
			P120, P130, P140		
		Total of all pins	P00, P01, P40, P41, P120,	-70	mA
		–170 mA	P130, P140		
			P14 to P17, P30, P31,	-100	mA
			P50, P51, P70 to P75		
	I _{OH2}	Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lo _{L1}	Per pin	P00, P01, P14 to P17, P30, P31,	40	mA
			P40, P41, P50, P51, P60 to P63,		
			P70 to P75, P120, P130, P140		
		Total of all pins	P00, P01, P40, P41, P120,	70	mA
		170 mA	P130, P140		
			P14 to P17, P30, P31,	100	mA
			P50, P51, P60 to P63, P70 to P75		
	lol2	Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +105	°C
temperature		In flash memory	In flash memory programming mode		
Storage temperature	T _{stg}			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
Note	Ceramic resonator/	2.7 V ≤ V _{DD} ≤ 5.5 V	1.0		20.0	MHz
	crystal resonator	2.4 V ≤ V _{DD} < 2.7 V	1.0		16.0	MHz
XT1 clock oscillation frequency (fxr) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

3.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fносо		1		48	MHz
High-speed on-chip oscillator clock frequency accuracy		−20 to +85 °C	-1.0		+1.0	%
		–40 to −20 °C	-1.5		+1.5	%
		+85 to +105 °C	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

3.2.3 PLL oscillator characteristics

(Ta = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
PLL input frequency Note	fellin	High-speed system clock	6.00		16.00	MHz
PLL output frequency Note	f _{PLL}			48.00		MHz
Lock up time		From PLL output enable to stabilization of the output frequency	40.00			μs
Interval time		From PLL stop to PLL re-operation setteing Wait time	4.00			μs
Setting wait time		From after PLL input clock stabilization and PLL setting is fixed to start setting Wait time required	1.00			μs

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	2.4 V ≤ V _{DD} ≤ 5.5 V			-3.0 Note	mA
		Total of P00, P01, P40, P41, P120,	$4.0 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$			-30.0	mA
		P130, P140	$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			-10.0	mA
		(When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			-5.0	mA
		P50, P51, P70 to P75 (When duty ≤ 70% Note 3)	$4.0~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			-30.0	mA
			2.7 V ≤ V _{DD} < 4.0 V			-19.0	mA
			2.4 V ≤ V _{DD} < 2.7 V			-10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$			-60.0	mA
	10н2	Per pin for P20 to P27	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$			-0.1 ^{Note}	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).

- Total output current of pins = (I_{OH} × 0.7)/(n × 0.01)
 - <Example> Where n = 80% and $I_{OH} = -10.0$ mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P01, P30, and P74 do not output high level in N-ch open-drain mode.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	I _{OL1}	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$2.4 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			8.5 Note 2	mA
		Per pin for P60 to P63	$2.4 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			15.0 Note 2	mA
		Total of P00, P01, P40, P41, P120,	$4.0~V \leq V_{DD} \leq 5.5~V$			40.0	mA
		P130, P140	$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			15.0	mA
		(When duty ≤ 70% Note 3)	$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$			9.0	mA
		P51, P60 to P63, P70 to P75	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			40.0	mA
			2.7 V ≤ V _{DD} < 4.0 V			35.0	mA
		(When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			20.0	mA
		Total of all pins (When duty ≤ 70% Note 3)	2.4V ≤ V _{DD} ≤ 5.5 V			80.0	mA
	lo _{L2}	Per pin for P20 to P27	$2.4 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			5.0	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - 3. Specification under conditions where the duty factor ≤ 70%.
 The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).
 - Total output current of pins = (IoL × 0.7)/(n × 0.01)
 - <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

(Ta = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140	Normal input buffer	0.8V _{DD}		V _{DD}	V
	V _{IH2}	P00, P01, P30, P50	TTL input buffer 4.0 V ≤ V _{DD} ≤ 5.5 V	2.2		V _{DD}	V
			TTL input buffer $3.3 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	2.0		V _{DD}	V
			TTL input buffer $2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$	1.5		V _{DD}	V
	V _{IH3}	P20 to P27		0.7V _{DD}		V _{DD}	٧
	V _{IH4}	P60 to P63		0.7V _{DD}		6.0	V
	V _{IH5}	P121 to P124, P137, EXCLK, EXCLK	(S, RESET	0.8V _{DD}		V _{DD}	V
Input voltage, low	VIL1	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140	Normal input buffer	0		0.2V _{DD}	V
	VIL2	P00, P01, P30, P50	TTL input buffer 4.0 V ≤ V _{DD} ≤ 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$	0		0.32	V
	V _{IL3}	P20 to P27		0		0.3V _{DD}	V
	V _{IL4}	P60 to P63		0		0.3V _{DD}	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	(S, RESET	0		0.2V _{DD}	V

Caution The maximum value of V_{IH} of pins P00, P01, P30, and P74 is V_{DD}, even in the N-ch open-drain mode.

(Ta = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -3.0 \text{ mA}$	V _{DD} - 0.7			>
		P120, P130, P140	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OH1}} = -2.0 \text{ mA}$	V _{DD} - 0.6			V
			$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -1.5 \text{ mA}$	V _{DD} - 0.5			V
	V _{OH2}	P20 to P27	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $\text{I}_{\text{OH2}} = -100 \ \mu \text{ A}$	V _{DD} - 0.5			V
Output voltage, low	V _{OL1}	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 8.5 \text{ mA}$			0.7	V
		P120, P130, P140	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 3.0 \text{ mA}$			0.6	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL1}} = 1.5 \text{ mA}$			0.4	V
			$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 0.6 \text{ mA}$			0.4	V
	V _{OL2}	P20 to P27	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL2} = 400 \ \mu \text{ A}$			0.4	V
	Vol3	P60 to P63	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 15.0 \text{ mA}$			2.0	V
			$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 5.0 \text{ mA}$			0.4	V
			$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 3.0 \text{ mA}$			0.4	V
			$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 2.0 \text{ mA}$			0.4	V

Caution P00, P01, P30, and P74 do not output high level in N-ch open-drain mode.

(Ta = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P137, P140, RESET	$V_1 = V_{DD}$				1	μΑ
	ILIH2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μА
				In resonator connection			10	μΑ
Input leakage current, low	ILIL1	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P137, P140, RESET	V _I = V _{SS}				–1	μΑ
	ILIL2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up resistance	Ru	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140	Vı = Vss, lı	n input port	10	20	100	kΩ

3.3.2 Supply current characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit												
Supply	I _{DD1}	Operating	HS	fHOCO = 48 MHz	Basic	V _{DD} = 5.0 V		1.7		mA												
current Note 1		mode	(High-speed main)	f _{IH} = 24 MHz Note 3	operation	V _{DD} = 3.0 V		1.7		mA												
			modffe Note 6		Normal	V _{DD} = 5.0 V		3.7	5.8	mA												
					operation	V _{DD} = 3.0 V		3.7	5.8	mA												
				f _{HOCO} = 24 MHz Note 5	Nomal	V _{DD} = 5.0 V		2.3	3.4	mA												
				f _{IH} = 12 MHz Note 3	operation	V _{DD} = 3.0 V		2.3	3.4	mA												
				fHOCO = 12 MHz Note 5	Nomal	V _{DD} = 5.0 V		1.6	2.2	mA												
				f _{IH} = 6 MHz Note 3	operation	V _{DD} = 3.0 V		1.6	2.2	mA												
				fHOCO = 6 MHz Note	Nomal	V _{DD} = 5.0 V		1.2	1.6	mA												
				f _{IH} = 3 MHz Note 3	operation	V _{DD} = 3.0 V		1.2	1.6	mA												
			HS	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.9	mA												
			main) mode - Note 6	(High-speed main) mode $V_{DD} = 5.0 \text{ V}$		operation	Resonator connection		3.2	5.0	mA											
				f _{MX} = 20 MHz Note 2,	Nomal	Square wave input		3.0	4.9	mA												
				$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		3.2	5.0	mA												
				f _{MX} = 10 MHz Note 2,	Normal	Square wave input		1.9	2.9	mA												
				V _{DD} = 5.0 V	operation	Resonator connection		1.9	2.9	mA												
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Nomal	Square wave input		1.9	2.9	mA												
			$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		1.9	2.9	mA													
			fpll = 48 MHz,	Nomal	V _{DD} = 5.0 V		4.0	6.3	mA													
			main) mode (PLL operation) 1		f _{CLK} = 24 MHz Note 2	operation	V _{DD} = 3.0 V		4.0	6.3	mA											
				(PLL operation)	(PLL operation)	f _{PLL} = 48 MHz,	Nomal	V _{DD} = 5.0 V		2.6	3.9	mA										
						fclk = 12 MHz Note 2	operation	V _{DD} = 3.0 V		2.6	3.9	mA										
										f _{PLL} = 48 MHz,	Nomal	V _{DD} = 5.0 V		1.9	2.7	mA						
				fclk = 6 MHz Note 2	operation	V _{DD} = 3.0 V		1.9	2.7	mA												
			Subsystem	fsuB = 32.768 kHz	Nomal	Resonator connection		4.1	4.9	μΑ												
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Square wave input		4.2	5.0	μΑ												
				f _{SUB} = 32.768 kHz Note 4	Nomal	Square wave input		4.1	4.9	μΑ												
				T _A = +25°C	operation	Resonator connection		4.2	5.0	μΑ												
				f _{SUB} = 32.768 kHz	Nomal	Square wave input		4.2	5.5	μΑ												
				Note 4 T _A = +50°C	operation	Resonator connection		4.3	5.6	μΑ												
				f _{SUB} = 32.768 kHz	Nomal	Square wave input		4.2	6.3	μΑ												
				Note 4	operation	Resonator connection		4.3	6.4	μA												
				T _A = +70°C						·												
			fsuB = 32.768 kHz	Nomal	Square wave input		4.8	7.7	μΑ													
		Not					Note	Note	Note 4	Note	No	No	Note	Note	Note	Not	Note 4 T _A = +85°C	operation	Resonator connection		4.9	7.8
				fsuB = 32.768 kHz	Nomal	Square wave input		6.9	19.7	μA												
				Note 4	operation	Resonator connection		7.0	19.8	μA												
				T _A = +105°C																		

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** When Operating frequency setting of option byte = 48 MHz. When fHOCO is divided by HOCODIV. When RDIV[1:0] = 00 (divided by 2: default).
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz}$ to 24 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz}$ to 16 MHz

- Remarks 1. fhoco: High-speed on-chip oscillator clock frequency (Max. 48 MHz)
 - **2.** f_{IH}: Main system clock source frequency obtained by dividing the high-speed on-chip oscillator clock by 2, 4, or 8 (Max. 24 MHz)
 - **3.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 4. fpll: PLL oscillation frequency
 - 5. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 6. fclk: CPU/peripheral hardware clock frequency
 - 7. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C.

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

(2/2)

		•		,					•
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	HS	f _{HOCO} = 48 MHz	V _{DD} = 5.0 V		0.67	2.25	mA
current Note 1	Note 2	mode		f _{IH} = 24 MHz Note 4	V _{DD} = 3.0 V		0.67	2.25	mA
1010 1			main) mode	f _{HOCO} = 24 MHz Note 7	V _{DD} = 5.0 V		0.50	1.55	mA
				f _{IH} = 12 MHz Note 4	V _{DD} = 3.0 V		0.50	1.55	mA
				fHOCO = 12 MHz Note 7	V _{DD} = 5.0 V		0.41	1.21	mA
				f _{IH} = 6 MHz Note 4	V _{DD} = 3.0 V		0.41	1.21	mA
				fHOCO = 6 MHz Note 7	V _{DD} = 5.0 V		0.37	1.05	mA
				f _{IH} = 3 MHz Note 4	V _{DD} = 3.0 V		0.37	1.05	mA
			HS	f _{MX} = 20 MHz Note 3,	Square wave input		0.28	1.90	mA
			(High-speed		Resonator connection		0.45	2.00	mA
			main) mode	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.90	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	2.00	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	1.02	mA
				$V_{DD} = 5.0 \text{ V}$	Resonator connection		0.26	1.10	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	1.02	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	1.10	mA
			HS	f _{PLL} = 48 MHz,	V _{DD} = 5.0 V		0.91	2.74	mA
	(Hig		fclk = 24 MHz Note 3	V _{DD} = 3.0 V		0.91	2.74	mA	
			I/DII	f _{PLL} = 48 MHz,	V _{DD} = 5.0 V		0.85	2.31	mA
			operation)	fclk = 12 MHz Note 3	V _{DD} = 3.0 V		0.85	2.31	mA
			Note 9	f _{PLL} = 48 MHz,	V _{DD} = 5.0 V		0.82	2.07	mA
				fclk = 6 MHz Note 3	V _{DD} = 3.0 V		0.82	2.07	mA
			Subsystem	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μА
			clock	T _A = -40°C	Resonator connection		0.44	0.76	μΑ
			operation	fsuB = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μΑ
				T _A = +25°C	Resonator connection		0.49	0.76	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.33	1.17	μΑ
				T _A = +50°C	Resonator connection		0.63	1.36	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.97	μΑ
				T _A = +70°C	Resonator connection		0.76	2.16	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.97	3.37	μΑ
				T _A = +85°C	Resonator connection		1.16	3.56	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		3.01	15.37	μΑ
				T _A = +105°C	Resonator connection		3.20	15.56	μΑ
	IDD3 ^{Note 6}	STOP	T _A = -40°C		•		0.18	0.50	μΑ
		mode Note 8	T _A = +25°C				0.23	0.50	μΑ
			T _A = +50°C				0.26	1.10	μА
			T _A = +70°C				0.29	1.90	μΑ
			T _A = +85°C				0.90	3.30	μΑ
			T _A = +105°C				2.94	15.30	μΑ

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, USB2.0 host/function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **7.** When Operating frequency setting of option byte = 48 MHz. When fHOCO is divided by HOCODIV. When RDIV[1:0] = 00 (divided by 2: default).
 - **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
 - **9.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below

HS (high-speed main) mode: $2.7~V \le V_{DD} \le 5.5~V @ 1~MHz~to~24~MHz$ $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz~to~16~MHz$

- Remarks 1. fhoco: High-speed on-chip oscillator clock frequency (Max. 48 MHz)
 - **2.** f_{IH}: Main system clock source frequency obtained by dividing the high-speed on-chip oscillator clock by 2, 4, or 8 (Max. 24 MHz)
 - **3.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 4. fpll: PLL oscillation frequency
 - **5.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 6. fclk: CPU/peripheral hardware clock frequency
 - 7. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C.

(Ta = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	IFIL Note 1				0.20		μΑ
RTC operating current	IRTC Notes 1, 2, 3				0.02		μА
12-bit interval timer operating current	I _{IT} Notes 1, 2, 4				0.02		μΑ
Watchdog timer operating current	WDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μΑ
A/D converter	I _{ADC} Notes 1,	When conversion	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.8	mA
operating current	6	at maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.5	8.0	mA
A/D converter reference voltage current	ADREF Note				75.0		μΑ
Temperature sensor operating current	ITMPS Note 1				75.0		μΑ
LVD operating current	I _{LVD} Notes 1,				0.08		μΑ
Self-programming operating current	I _{FSP} Notes 1,				2.00	12.30	mA
BGO operating current	I _{BGO} Notes 1, 8				2.00	12.30	mA
SNOOZE operating	Isnoz Note 1	ADC operation	The mode is performed Note 10		0.80	1.97	mA
current			The A/D conversion operations are performed, Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	3.00	mA
		CSI operation			0.70	1.56	mA

(Notes and Remarks are listed on the next page.)

(Ta = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V) (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB operating current	IUSBH Note 11	 During USB communication operation under the following settings and conditions (V_{DD} = 5.0 V, T_A = +25°C): The internal power supply for the USB is used. X1 oscillation frequency (f_X) = 12 MHz, PLL oscillation frequency (f_{PLL}) = 48 MHz The host controller (via two ports) is set to operate in full-speed mode with four pipes (end points) used simultaneously. (PIPE4: Bulk OUT transfer (64 bytes), PIPE5: Bulk IN transfer (64 bytes), PIPE6: Interrupt OUT transfer, PIPE7: Interrupt IN transfer). The USB ports (two ports) are individually connected to a peripheral function via a 0.5 m USB cable. 		9.0		mA
	IUSBF Note 11	During USB communication operation under the following settings and conditions (V _{DD} = 5.0 V, T _A = +25°C): • The internal power supply for the USB is used. • X1 oscillation frequency (f _X) = 12 MHz, PLL oscillation frequency (f _{PLL}) = 48 MHz • The function controller is set to operate in full-speed mode with four pipes (end points) used simultaneously. (PIPE4: Bulk OUT transfer (64 bytes), PIPE5: Bulk IN transfer (64 bytes), PIPE6: Interrupt OUT transfer, PIPE7: Interrupt IN transfer). • The USB port (one port) is connected to the host device via a 0.5 m USB cable.		2.5		mA
	Isusp Note 12	 During suspended state under the following settings and conditions (V_{DD} = 5.0 V, T_A = +25°C): The function controller is set to full-speed mode (the UDP0 pin is pulled up). The internal power supply for the USB is used. The system is set to STOP mode (When the high-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. When the watchdog timer is stopped.). The USB port (one port) is connected to the host device via a 0.5 m USB cable. 		240		μΑ

(Notes and Remarks are listed on the next page.)

Notes 1. Current flowing to VDD.

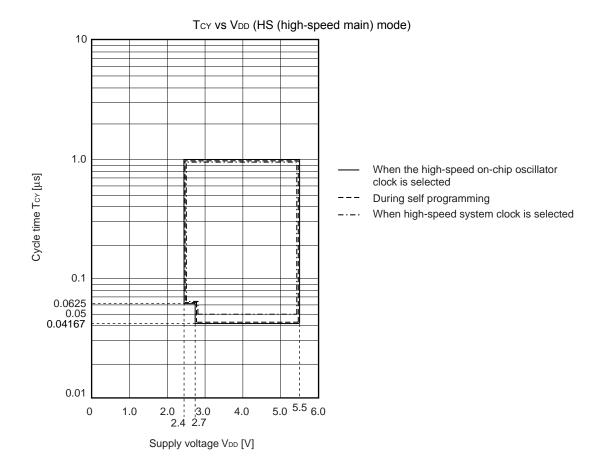
- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of the RL78/G1C is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode.
- 11. Current consumed only by the USB module and the internal power supply for the USB.
- **12.** Includes the current supplied from the pull-up resistor of the UDP0 pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

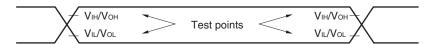
- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- **4.** Temperature condition of the TYP. value is T_A = 25°C

3.4 AC Characteristics

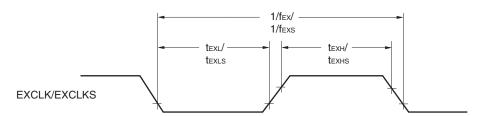
3.4.1 Basic operation

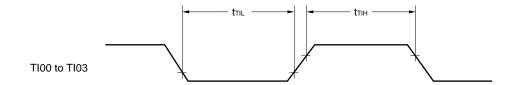

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

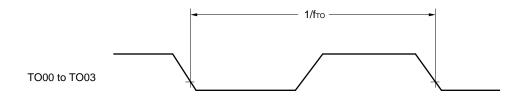
Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсч	system (High-speed 5.5 V		0.04167		1	μs	
		clock (fmain) operation	main) mode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
		Subsystem cl operation	ock (fsuв)	2.4 V ≤ V _{DD} ≤ 5.5 V	28.5	30.5	31.3	μs
		In the self programmin	HS (High-speed	2.7 V ≤ V _{DD} ≤ 5.5 V	0.04167		1	μs
		g mode	main) mode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
External system clock frequency	fex	2.7 V ≤ V _{DD} ≤	5.5 V		1.0		20.0	MHz
		2.4 V ≤ V _{DD} <	2.7 V		1.0		16.0	MHz
	fexs				32		35	kHz
External system clock input	texh, texl	2.7 V ≤ V _{DD} ≤	5.5 V		24			ns
high-level width, low-level width		2.4 V ≤ V _{DD} <	2.7 V		30			ns
	texhs, texhs				13.7			μs
TI00 to TI03 input high-level width, low-level width	tтін, tті∟				1/fмск+10			ns
TO00 to TO03 output frequency	fто	High-speed n	nain 4.0 V	≤ V _{DD} ≤ 5.5 V			12	MHz
		mode	2.7 V	≤ V _{DD} < 4.0 V			8	MHz
			2.4 V	≤ V _{DD} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	High-speed n	nain 4.0 V	≤ V _{DD} ≤ 5.5 V			16	MHz
frequency		mode	2.7 V	≤ V _{DD} < 4.0 V			8	MHz
			2.4 V :	≤ V _{DD} < 2.7 V			4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INT		≤ V _{DD} ≤ 5.5 V	1			μs
Key interrupt input low-level width	t kR	KR0 to KR5	2.4 V	≤ V _{DD} ≤ 5.5 V	250			ns
RESET low-level width	trsL				10			μs


Remark fmck: Timer array unit operation clock frequency

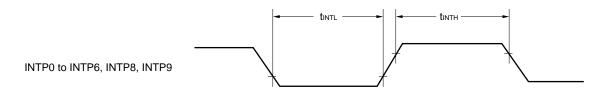
(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 3))


Minimum Instruction Execution Time during Main System Clock Operation

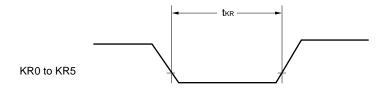

AC Timing Test Points

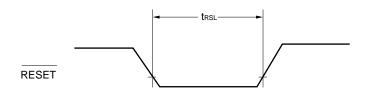


External System Clock Timing



TI/TO Timing




Interrupt Request Input Timing

Key Interrupt Input Timing

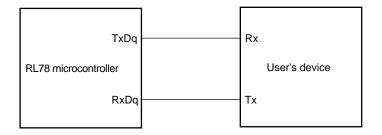
RESET Input Timing

3.5 Peripheral Functions Characteristics

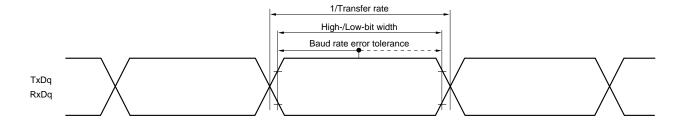
3.5.1 Serial array unit

(1) During communication at same potential (UART mode) (dedicated baud rate generator output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					fмск/12	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note			2.0	Mbps


Note The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)


16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 5)

2. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$2.7~V \leq V_{DD} \leq 5.5~V$	250			ns
			$2.4~V \leq V_{DD} \leq 5.5~V$	500			ns
SCKp high-/low-level width	t кн1,	$4.0~V \leq V_{DD} \leq$	5.5 V	tkcy1/2 - 24			ns
	t KL1	$2.7~V \leq V_{DD} \leq$	5.5 V	tkcy1/2 - 36			ns
		2.4 V ≤ V _{DD} ≤	5.5 V	tkcy1/2 - 76			ns
SIp setup time (to SCKp↑) Note 1	tsıĸı	4.0 V ≤ V _{DD} ≤	5.5 V	66			ns
		$2.7~V \leq V_{DD} \leq$	5.5 V	66			ns
		$2.4~V \leq V_{DD} \leq$	2.4 V ≤ V _{DD} ≤ 5.5 V				ns
SIp hold time (from SCKp↑) Note 2	tksi1			38			ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF ^{Note}	4			50	ns

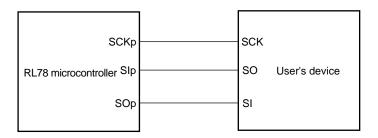
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

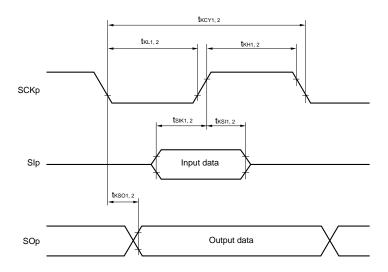
- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 0, 3, 5, 7)
 - 2. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00, 01))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

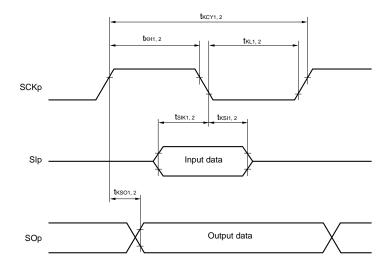
Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
SCKp cycle time Note 5	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V$	20 MHz < f _{MCK}	16/fмск			ns
			fмcк ≤ 20 MHz	12/fмск			ns
		$2.7 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$	16 MHz < fмск	16/f мск			ns
			fмcк ≤ 16 MHz	12/fмск			ns
		$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$		12/fмск and 1000			ns
SCKp high-/low-level width	tkH2,			tксү2/2 – 14			ns
				tксү2/2 – 16			ns
		$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$		tксү2/2 – 36			ns
SIp setup time	tsik2	$2.7~V \leq V_{DD} \leq 5.5~V$		1/fмск+40			ns
(to SCKp↑) Note 1		$2.4~V \leq V_{DD} \leq 5.5~V$		1/fмск+60			ns
SIp hold time			2.7 V ≤ V _{DD} ≤ 5.5 V				ns
(from SCKp↑) Note 2		$2.4 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$		1/fмск+62		2/fмcк+66	ns
Delay time from SCKp↓ to	tkso2	C = 30 pF Note 4	$2.7 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$			2/fмск+66	ns
SOp output Note 3			$2.4 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$			2/fмск+113	ns


- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).


- Remarks 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 0, 3, 5, 7)
 - 2. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

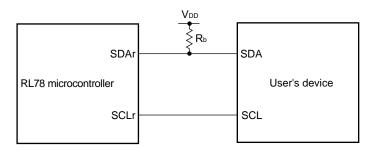
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01)

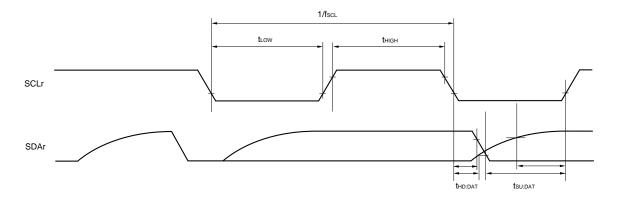
2. m: Unit number, n: Channel number (mn = 00, 01)

(4) During communication at same potential (simplified I^2C mode) $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$		400 Note 1	kHz
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$		100 Note 1	kHz
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Hold time when SCLr = "L"	t LOW	$2.7 \text{ V} \leq V_{DD} \leq 5.5 \text{ V},$	1200		ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq V_{DD} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Hold time when SCLr = "H"	t HIGH	$2.7 \text{ V} \leq V_{DD} \leq 5.5 \text{ V},$	1200		ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq V_{DD} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq V_{DD} \leq 5.5 \text{ V},$	1/f _{MCK} + 220 Note 2		ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	Note 2		
		$2.4~V \leq V_{DD} \leq 5.5~V,$	1/f _{MCK} + 580 Note 2		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	Note 2		
Data hold time (transmission)	thd:dat	$2.7~V \leq V_{DD} \leq 5.5~V,$	0	770	ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$	0	1420	ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			


Notes 1. The value must also be equal to or less than fmck/4.

2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".


Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Caution and Remarks are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- Remarks 1. $R_b[\Omega]$:Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 01), g: PIM number (g = 5), h: POM number (h = 3, 5)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01)

(5) Communication at different potential (2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions				MAX.	Unit
Transfer rate		reception	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$				fMCK/12 Note 1	bps
				Theoretical value of the maximum transfer rate fclk = 24 MHz, fmck = fclk Note 2			2.0	Mbps
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$				fmck/12 Note 1	bps
							2.0	Mbps
			$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$				fmck/12 Note 1	bps
				Theoretical value of the maximum transfer rate fclk = 24 MHz, fmck = fclk Note 2			2.0	Mbps

Notes 1. Use it with V_{DD}≥V_b.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V) 16 MHz (2.4 V \leq VDD \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vpd tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For Vih and Vil, see the DC characteristics with TTL input buffer selected

- Remarks 1. V_b[V]: Communication line voltage
 - 2. q: UART number (q = 0), g: PIM and POM number (g = 5)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00)

(5) Communication at different potential (2.5 V, 3 V) (UART mode) (2/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditi	ons	MIN.	TYP.	MAX.	Unit
Transfer rate		transmission	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V},$				Note 1	bps
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate			2.6 Note 2	Mbps
				$C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$				
			$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V},$				Note 3	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate			1.2 Note 4	Mbps
				$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$				
			$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V},$				Notes	bps
			$1.6 \text{ V} \le V_b \le 2.0 \text{ V}$				5, 6	
				Theoretical value of the maximum transfer rate			0.43 Note 7	Mbps
				$C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$				

Notes 1. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

$$\label{eq:maximum transfer rate} \begin{split} & \frac{1}{ \{ -C_b \times R_b \times ln \ (1 - \frac{2.2}{V_b}) \} \times 3} \end{split} \ [bps] \end{split}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \text{ [%]}$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

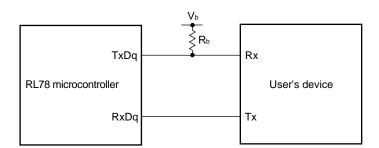
$$\label{eq:maximum transfer rate} \begin{aligned} & \frac{1}{\{-C_b \times R_b \times \text{ln } (1-\frac{2.0}{V_b})\} \times 3} \end{aligned} \text{ [bps]}$$

$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \text{In}$$
Baud rate error (theoretical value) =
$$\frac{(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

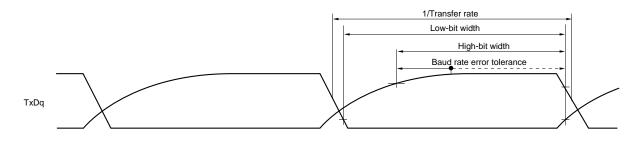
- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $V_{DD} \ge V_b$.

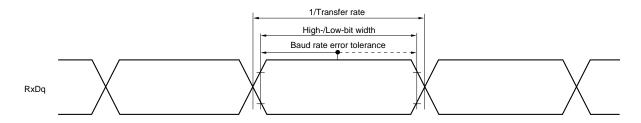
Notes 6. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.


Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** $R_b[\Omega]$:Communication line (TxDq) pull-up resistance, $C_b[F]$: Communication line (TxDq) load capacitance, $V_b[V]$: Communication line voltage
 - **2.** q: UART number (q = 0), g: PIM and POM number (g = 5)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00))

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

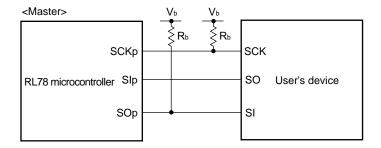
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$\begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_{b} \leq 4.0 \ V, \\ C_{b} &= 30 \ pF, \ R_{b} = 1.4 \ k\Omega \end{aligned}$	600			ns
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	1000			ns
			$2.4 \ V \le V_{DD} < 3.3 \ V,$ $2.4 \ V \le V_b \le 2.0 \ V,$ $C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega$	2300			ns
SCKp high-level width	t _{KH1}	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 1.4 \text{ k}\Omega$		tксү1/2 — 150			ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b}$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		tксү1/2 – 340			ns
		2.4 V ≤ V _{DD} < C _b = 30 pF, F	$< 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V},$ $R_b = 5.5 \text{ k}Ω$	tксү1/2 — 916			ns
SCKp low-level width	t _{KL1}	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$		tkcy1/2 - 24			ns
		2.7 V ≤ V _{DD} < C _b = 30 pF, F	$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $R_b = 2.7 \text{ k}Ω$	tксү1/2 — 36			ns
		$2.4 \text{ V} \le \text{V}_{DD} \le C_b = 30 \text{ pF}, \text{ F}$	$< 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V},$ $R_b = 5.5 \text{ k}Ω$	tkcy1/2 - 100			ns

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. Use it with $V_{DD} \ge V_b$.

(Remarks are listed two pages after the next page.)

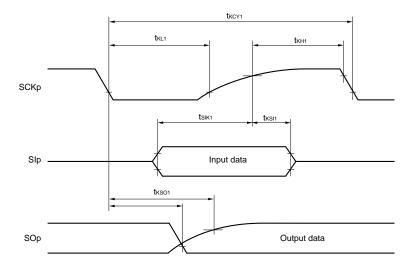
(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2)

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

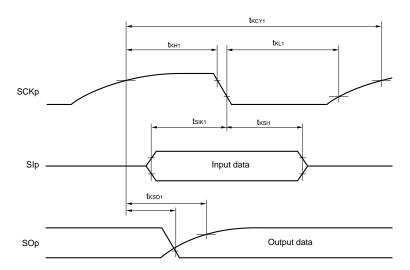

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SIp setup time	tsıĸ1	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V},$	162			ns
(to SCKp↑) Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	354			ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4 \text{ V} \le V_{DD} < 3.3 \text{ V}, \ 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}^{\text{Note 3}},$	958			ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
SIp hold time	t KSI1	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V},$	38			ns
(from SCKp↑) Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	38			ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Note 3}},$	38			ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
Delay time from SCKp↓ to	tkso1	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V},$			200	ns
SOp output Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$			390	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Note 3}},$			966	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
SIp setup time	tsıĸı	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	88			ns
(to SCKp↓) Note 2		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	88			ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Note 3}},$	220			ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
SIp hold time	t KSI1	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V},$	38			ns
(from SCKp↓) Note 2		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	38			ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Note 3}},$	38			ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
Delay time from SCKp↑ to	tkso1	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$			50	ns
SOp output Note 2		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$			50	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V^{\text{Note 3}},$			50	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				

(Notes, Cautions and Remarks are listed on the next page.)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3 Use it with $V_{DD} \ge V_b$.


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)



- **Remarks 1.** $R_b[\Omega]$:Communication line (SCKp, SOp) pull-up resistance, $C_b[F]$: Communication line (SCKp, SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)

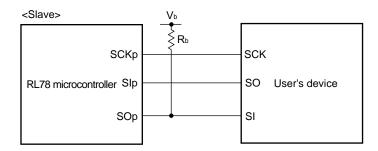
2. CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

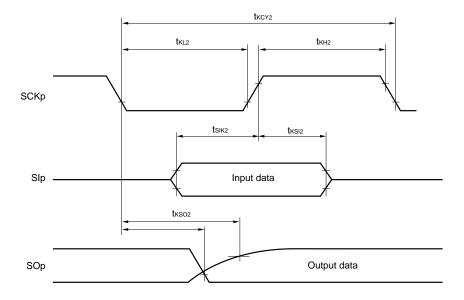
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time Note 1	tkcy2	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	24/fмск			ns
		$2.7 \text{ V} \le V_b \le 4.0 \text{ V}$	8 MHz < fмcк ≤ 20 MHz	20/fмск			ns
			4 MHz < f _{MCK} ≤8 MHz	16/fмск			ns
			fmck ≤4 MHz	12/fмск			ns
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	32/fмск			ns
		$2.3 V \le V_b \le 2.7 V$	16 MHz < f _{MCK} ≤ 20 MHz	28/fмск			ns
			8 MHz < f _{MCK} ≤ 16 MHz	24/fмск			ns
			4 MHz < f _{MCK} ≤8 MHz	16/f мск			ns
			fmck ≤4 MHz	12/fмск			ns
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	72/fмск			ns
		2 8	16 MHz < fмck ≤ 20 MHz	64/fмск			ns
			8 MHz < f _{MCK} ≤ 16 MHz	52/fмск			ns
			4 MHz < f _{MCK} ≤8 MHz	32/fмск			ns
			fmck ≤4 MHz	20/fмск			ns
SCKp high-/low-level width	tkH2,	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	$V_{b} \leq V_{b} \leq 4.0 \text{ V}$	tkcy2/2 – 24			ns
		2.7 V ≤ V _{DD} < 4.0 V	$V_{1}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V}$	tkcy2/2 - 36			ns
		2.4 V ≤ V _{DD} < 3.3 V	$V_{1}, 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}^{\text{Note 2}}$	tkcy2/2 – 100			ns
SIp setup time (to SCKp↑) Note 3	tsık2	4.0 V ≤ V _{DD} ≤ 5.5 V	$V_{1}, 2.7 \text{ V} \le V_{b} \le 4.0 \text{ V}$	1/fмск + 40			ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	$V_{1}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V}$	1/fмск + 40			ns
		2.4 V ≤ V _{DD} < 3.3 V	$V_{1}, 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}^{\text{Note 2}}$	1/f _{MCK} + 60			ns
SIp hold time (from SCKp↑) Note 4	tksi2			1/fmck + 62			ns
Delay time from SCKp↓ to	tkso2	4.0 V ≤ V _{DD} ≤ 5.5 V	$V_{1}, 2.7 \text{ V} \le V_{b} \le 4.0 \text{ V},$			2/fмск +	ns
SOp output Note 5		C _b = 30 pF, R _b = 1.	4 kΩ			240	
		2.7 V ≤ V _{DD} < 4.0 V	$V_{1}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V},$			2/fмск +	ns
		C _b = 30 pF, R _b = 2.	7 kΩ			428	
		2.4 V ≤ V _{DD} < 3.3 V	$V_{b} = 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}^{\text{Note 2}},$			2/fмск +	ns
		C _b = 30 pF, R _b = 5.	5 kΩ			1146	

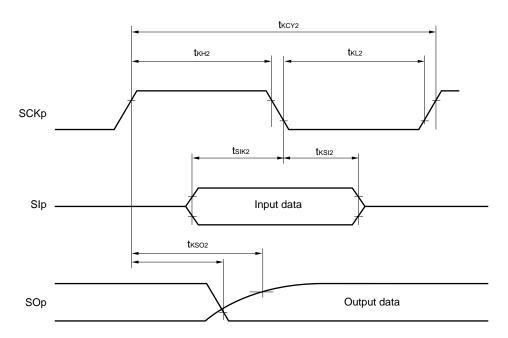
Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


- **2.** Use it with $V_{DD} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

(Caution and Remarks are listed on the next page.)


Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)



- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)

2. CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

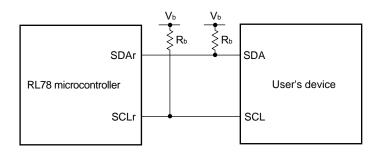
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$ 4.0 \ V \le V_{DD} \le 5.5 \ V, $ $ 2.7 \ V \le V_b \le 4.0 \ V, $ $ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega $		400 Note 1	kHz
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_b < 2.7 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		400 Note 1	kHz
		$\begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$		100 Note 1	kHz
		$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_b < 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		100 Note 1	kHz
		$\begin{split} 2.4 \ V &\leq V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{split}$		100 Note 1	kHz
Hold time when SCLr = "L"	t Low	$ \begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned} $	1200		ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b < 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega $	1200		ns
		$\begin{aligned} 4.0 & \ V \le V_{DD} \le 5.5 \ V, \\ 2.7 & \ V \le V_b \le 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{aligned}$	4600		ns
		$\begin{aligned} 2.7 & \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}, \\ 2.3 & \text{V} \leq \text{V}_{\text{b}} < 2.7 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$	4600		ns
		$\begin{split} 2.4 \ V &\leq V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	4650		ns
Hold time when SCLr = "H"	tнівн	$\begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	620		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_b < 2.7 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	500		ns
		$\begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$	2700		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_b < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	2400		ns
		$\begin{split} 2.4 \ V &\leq V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	1830		ns

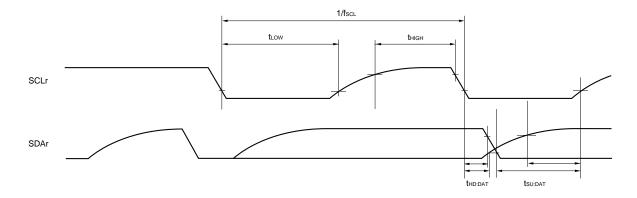
(Notes, Caution and Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Data setup time (reception)	tsu:dat	$ \begin{aligned} 4.0 & \ V \le V_{DD} \le 5.5 \ V, \\ 2.7 & \ V \le V_b \le 4.0 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1/f _{MCK} + 340 Note 3		ns
		$ \begin{aligned} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} < 2.7 \ V, \\ C_{b} &= 50 \ pF, \ R_{b} = 2.7 \ k \Omega \end{aligned} $	1/f _{MCK} + 340 ^{Note 3}		ns
		$\begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$	1/f _{MCK} + 760 Note 3		ns
		$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_b < 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	1/f _{MCK} + 760 Note 3		ns
		$ \begin{aligned} 2.4 & \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \\ 1.6 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Notes 2}}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	1/f _{MCK} + 570 Note 3		ns
Data hold time (transmission)	thd:dat	$\begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} & = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$	0	770	ns
		$ \begin{aligned} 2.7 & \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 & \ V \leq V_b < 2.7 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	0	770	ns
		$ \begin{aligned} &4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $	0	1420	ns
		$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} < 2.7 \ V, \\ C_{b} &= 100 \ pF, \ R_{b} = 2.7 \ k \Omega \end{split}$	0	1420	ns
		$ \begin{aligned} &2.4 \; V \leq V_{DD} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ &C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{aligned} $	0	1215	ns


Notes 1. The value must also be equal to or less than fmck/4.

- 2. Use it with $V_{DD} \ge V_b$.
- 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".


Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

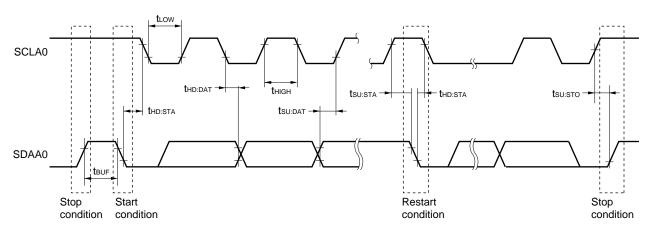
Simplified I²C mode serial transfer timing (during communication at different potential)

- Remarks 1. $R_b[\Omega]$:Communication line (SDAr, SCLr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance, $V_b[V]$: Communication line voltage
 - 2. r: IIC number (r = 00), g: PIM, POM number (g = 0, 3, 5, 7)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00)

3.5.2 Serial interface IICA

	/T . =	= _40 1	to +105°	241	/ < Vpp	< 55V	Vss = 0 V)
-	(IA-	40 (10 + 105 1	J, Z.4 1	<i>ו</i> ש ע ע ע	· ≥ 5.5 v.	. VSS — U VI

Parameter	Symbol	Conditions	HS (h	HS (high-speed main) Mode			Unit
				ndard ode	Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fcLK ≥ 3.5 MHz	_	_	0	400	kHz
		Standard mode: fcLk ≥ 1 MHz	0	100	_	_	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	t BUF		4.7		1.3		μS


- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of $t_{HD:DAT}$ is during normal transfer and a wait state is inserted in the \overline{ACK} (acknowledge) timing.

Caution The values in the above table are applied even when bit 1 (PIOR1) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

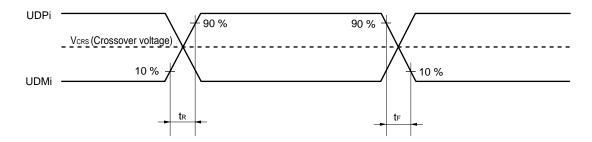
3.5.3 USB

(1) Electrical specifications

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 3.0 \text{ V} \le UV_{DD} \le 3.6 \text{ V}, 3.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

	Parameter	Symbol Conditions		MIN.	TYP.	MAX.	Unit
UV _{DD}	UV _{DD} input voltage characteristic	UV _{DD} = 3.0 to 5.5 V, PXXCON = VDDUSEB = 0 (UV _{DD} \leq V _{DD})		3.0	3.3	3.6	V
	UV _{DD} output voltage characteristic	UV _{DD}	V _{DD} = 4.0 to 5.5 V, PXXCON = VDDUSEB = 1	3.0	3.3	3.6	V
UV _{BUS}	UV _{BUS} input voltage characteristic	UV _{BUS}	Function	4.35 (4.02 ^{Note})	5.00	5.25	V
			Host	4.75	5.00	5.25	V

Note Value of instantaneous voltage


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 3.0 \text{ V} \le UV_{DD} \le 3.6 \text{ V}, 3.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Par	ameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDPi/UDMi	Input volt	tage	VIH		2.0			V
pins input characteristic			VIL				0.8	V
(FS/LS receiver)	Difference sensitivity		VDI	UDP voltage – UDM voltage	0.2			V
	Difference common range	-	Vсм		0.8		2.5	V
UDPi/UDMi	Output vo	oltage	Vон	Ioн = -200 μA	2.8		3.6	V
pins output characteristic			Vol	IoL = 2.4 mA	0		0.3	V
(FS driver)	Transi-ti	Rising	t FR	Rising: From 10% to 90 % of	4		20	ns
,	on time	Falling	t FF	amplitude, Falling: From 90% to 10 % of	4		20	ns
	Matching (TFR/TFF)		VFRFM	amplitude, CL = 50 pF	90		111.1	%
	Crossover voltage		VFCRS]	1.3		2.0	V
LIDD://LIDA	Output Impedance		ZDRV	UV _{DD} voltage = 3.3 V, Pin voltage = 1.65 V	28		44	Ω
UDPi/UDMi pins output characteristic	Output vo	oltage	Vон		2.8		3.6	V
			Vol		0		0.3	V
(LS driver)	Transi-ti on time	Rising	t LR	Rising: From 10% to 90 % of amplitude, Falling: From 90% to 10 % of	75		300	ns
		Falling	t LF		75		300	ns
	Matching (TFR/TFF) Note		VLTFM	amplitude, CL = 200 to 600 pF	80		125	%
	Crossover voltage		VLCRS	When the host controller function is selected: The UDMi pin (i = 0, 1) is pulled up via 1.5 k Ω . When the function controller function is selected: The UDP0 and UDM0 pins are individually pulled down via 15 k Ω	1.3		2.0	V
UDPi/UDMi	Pull-dow	n resistor	R _{PD}		14.25		24.80	kΩ
pins pull-up, pull-down	Pull-up resistor	Idle	Rpui		0.9		1.575	kΩ
	(i = 0 only)	Recep-t ion	RPUA		1.425		3.09	kΩ
UV _{BUS}	UV _{BUS} puresistor	ill-down	Rvbus	UV _{BUS} voltage = 5.5 V		1000		kΩ
	UV _{BUS} in	out	VIH		3.20			V
	voltage		VIL				0.8	V

Note Excludes the first signal transition from the idle state.

Remark i = 0, 1

Timing of UDPi and UDMi

(2) BC standard

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 3.0 \text{ V} \le U\text{V}_{DD} \le 3.6 \text{ V}, 3.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB	UDPi sink current	IDP_SINK		25		175	μΑ
standard BC1.2	UDMi sink current	IDM_SINK		25		175	μΑ
	DCD source current	IDP_SRC		7		13	μΑ
	Dedicated charging port resistor	RDCP_DAT	0 V < UDP/UDM voltage < 1.0 V			200	Ω
	Data detection voltage	VDAT_REF		0.25		0.4	V
	UDPi source voltage	V _{DP_SRC}	Output current 250 μA	0.5		0.7	V
	UDMi source voltage	V _{DM_SRC}	Output current 250 μA	0.5		0.7	V

Remark i = 0, 1

(3) BC option standard (Host)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 4.75 \text{ V} \le UV_{\text{BUS}} \le 5.25 \text{ V}, 3.0 \text{ V} \le UV_{\text{DD}} \le 3.6 \text{ V}, 2.4 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

				,	ı		·	
Par	ameter	1	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDPi output	VDSELi	1000	V _{P20}		38	40	42	% UV _{BUS}
voltage (UV _{BUS} divider	[3:0]	1001	V _{P27}		51.6	53.6	55.6	% UV _{BUS}
ratio)	(i = 0, 1)	1010	V _{P20}		38	40	42	% UV _{BUS}
•VDOUEi = 1		1100	V P33		60	66	72	% UV _{BUS}
UDMi output	VDSELi	1000	V _{M20}		38	40	42	% UV _{BUS}
voltage	[3:0]	1001	V _{M20}		38	40	42	% UV _{BUS}
(UV _{BUS} divider ratio)	(i = 0, 1)	1010	V _{M27}		51.6	53.6	55.6	% UV _{BUS}
•VDOUEi = 1		1100	Vмзз		60	66	72	% UV _{BUS}
UDPi	VDSELi	1000	VHDETP_UP0	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
comparing voltage Note 1	[3:0]		VHDETP_DWN0	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
voltage (i = 0, 1) (UV _{BUS} divider	1001	VHDETP_UP1	The rise of pin voltage detection voltage	60.5			% UV _{BUS}	
ratio)			VHDETP_DWN1	The fall of pin voltage detection voltage			45.0	% UV _{BUS}
•VDOUEi = 1		1010	VHDETP_UP2	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
• CUSDETEi = 1			VHDETP_DWN2	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
UDMi		1000	VHDETM_UP0	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
comparing voltage Note 1	[3:0] (i = 0, 1)		VHDETM_DWN0	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
Voltage (UV _{BUS} divider		(i = 0, 1) 1001	VHDETM_UP1	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
ratio)			VHDETM_DWN1	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
•VDOUEi = 1		1010	VHDETM_UP2	The rise of pin voltage detection voltage	60.5			% UV _{BUS}
• CUSDETEi = 1			VHDETM_DWN2	The fall of pin voltage detection voltage			45.0	% UV _{BUS}
UDPi pull-up de	etection	1000	RHDET_PULL	In full-speed mode, the power supply			1.575	kΩ
Note 2		1001		voltage range of pull-up resistors				
Connect detect the full speed f		1010		connected to the USB function module is between 3.0 V and 3.6 V.				
(pull-up resisto								
UDMi pull-up d	etection	1000	RHDET_PULL	In low-speed mode, the power supply			1.575	kΩ
Note 2		1001		voltage range of pull-up resistors				
	Connect detection with the low-speed (pull-up			connected to the USB function module is between 3.0 V and 3.6 V.				
resistor)	(ruii up							
UDMi sink curr	ent	1000	HDET_SINK		25			μΑ
detection Note 2		1001						
Connect detect the BC1.2 port		1010						
device (sink re								
, · · · ·	,						l .	1

- **Notes 1.** If the voltage output from UDPi or UDMi (i = 0, 1) exceeds the range of the MAX and MIN values prescribed in this specification, DPCUSDETi (bit 8) and DMCUSDETi (bit 9) of the USBBCOPTi register are set to 1.
 - 2. If the pull-up resistance or sink current prescribed in this specification is applied to UDPi or UDMi (i = 0, 1), DPCUSDETi (bit 8) and DMCUSDETi (bit 9) of the USBBCOPTi register are set to 1.

Remark i = 0, 1

(4) BC option standard (Function)

 $(\text{Ta} = -40 \text{ to} +105^{\circ}\text{C}, \ 4.35 \text{ V} \leq \text{UV}_{\text{BUS}} \leq 5.25 \text{ V}, \ 3.0 \text{ V} \leq \text{UV}_{\text{DD}} \leq 3.6 \text{ V}, \ 2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \ \text{Vss} = 0 \text{ V})$

Par	ameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDPi/UDMi	VDSELi	0000	V _{DDET0}		27	32	37	% UV _{BUS}
input reference voltage	[3:0]	0001	V _{DDET1}		29	34	39	% UV _{BUS}
	(i = 0)	0010	V _{DDET2}		32	37	42	% UV _{BUS}
(UV _{BUS} divider		0011	V _{DDET3}		35	40	45	% UV _{BUS}
ratio)		0100	V _{DDET4}		38	43	48	% UV _{BUS}
• VDOUEi = 0		0101	V _{DDET5}		41	46	51	% UV _{BUS}
(i = 0))		0110	V _{DDET6}		44	49	54	% UV _{BUS}
		0111	V _{DDET7}		47	52	57	% UV _{BUS}
		1000	V _{DDET8}		51	56	61	% UV _{BUS}
		1001	V _{DDET9}		55	60	65	% UV _{BUS}
		1010	VDDET10		59	64	69	% UV _{BUS}
		1011	V _{DDET11}		63	68	73	% UV _{BUS}
		1100	V _{DDET12}		67	72	77	% UV _{BUS}
		1101	VDDET13		71	76	81	% UV _{BUS}
		1110	VDDET14		75	80	85	% UV _{BUS}
		1111	V _{DDET15}		79	84	89	% UV _{BUS}

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel	Reference Voltage						
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = VSS	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM				
ANI0 to ANI7	Refer to 3.6.1 (1) .	Refer to 3.6.1 (3).	Refer to 3.6.1 (4).				
ANI16, ANI17, ANI19	Refer to 3.6.1 (2).						
Internal reference voltage Temperature sensor output voltage	Refer to 3.6.1 (1) .		_				

(1) When AV_{REF (+)} = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI2 to ANI7, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	2.4 V ≤ AV _{REFP} ≤ 5.5 V		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	3.6 V ≤ VDD ≤ 5.5 V	2.125		39	μs
		Target pin: ANI2 to ANI7	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	3.1875		39	μs
		ANIT	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	17		39	μs
		10-bit resolution	$3.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	2.375		39	μs
		Target pin: Internal	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AVREFP = VDD Note 3	2.4 V ≤ AVREFP ≤ 5.5 V			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AVREFP = VDD Note 3	2.4 V ≤ AV _{REFP} ≤ 5.5 V			±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AVREFP = VDD Note 3	2.4 V ≤ AVREFP ≤ 5.5 V			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP = VDD Note 3	2.4 V ≤ AVREFP ≤ 5.5 V			±1.5	LSB
Analog input voltage	Vain	ANI2 to ANI7		0		AVREFP	V
		Internal reference volt (2.4 V \leq VDD \leq 5.5 V, mode)	tage HS (high-speed main)	V _{BGR} Note 4			V
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		V _{TMPS25} Note 4			V

(Notes are listed on the next page.)

- Notes 1. Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows.

 Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

 Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

 Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 - 4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16, ANI17, ANI19

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	2.4 V ≤ AV _{REFP} ≤ 5.5 V		1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target ANI pin :	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
		ANI16, ANI17, ANI19	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AV _{REFP} = V _{DD} Note 3	2.4 V ≤ AV _{REFP} ≤ 5.5 V			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} Note 3	2.4 V ≤ AV _{REFP} ≤ 5.5 V			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±2.0	LSB
Analog input voltage	VAIN	ANI16, ANI17, ANI19		0		AVREFP and VDD	V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

(3) Reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), Reference voltage (-) = V_{SS} (ADREFM = 0), target ANI pin : ANI0 to ANI7, ANI16, ANI17, ANI19, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{DD}, \text{Reference voltage (-)} = \text{Vss})$

Parameter	Symbol	Condition	ons	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Notes 1, 2	AINL	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	2.125		39	μs
		Target ANI pin :	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
		ANI0 to ANI7, ANI16, ANI17, ANI19	$2.4~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$	17		39	μs
		10-bit resolution	$3.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	2.375		39	μs
		Target ANI pin : Internal	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±0.60	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	2.4 V ≤ VDD ≤ 5.5 V			±2.0	LSB
Analog input voltage	Vain	ANI0 to ANI7, ANI16, ANI	17, ANI19	0		V _{DD}	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (I mode)		V			
		Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (I mode)	\	V			

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When Reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), Reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0 to ANI7, ANI16, ANI17, ANI19

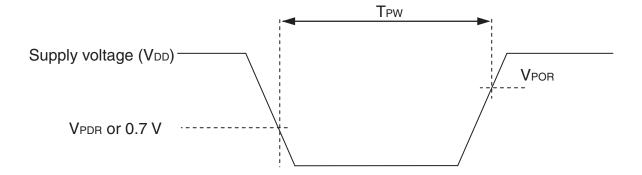
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = V_{BGR}^{Note 3}, \text{Reference voltage (-)} = AV_{REFM}^{Note 4} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	Res				8		Bit
Conversion time	tconv	8-bit resolution	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			±1.0	LSB
Analog input voltage	Vain			0		V _{BGR} Note 3	V

- Notes 1. Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.
 - 4. When reference voltage (-) = Vss, the MAX. values are as follows.
 Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.
 Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.
 Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.6.2 Temperature sensor/internal reference voltage characteristics

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

3.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	V _{PDR}	Power supply fall time	1.44	1.50	1.56	٧
Minimum pulse width Note	T _{PW}		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR} . This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock (f_{MAIN}) is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(Ta = -40 to +105°C, VpDr \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	V _{LVD0}	Power supply rise time	3.90	4.06	4.22	V
voltage			Power supply fall time	3.83	3.98	4.13	V
		V _{LVD1}	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		V _{LVD2}	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		V _{LVD3}	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		V _{LVD4}	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		V _{LVD5}	Power supply rise time	2.70	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		V _{LVD6}	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		V _{LVD7}	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pu	ulse width	tLW		300			μs
Detection d	elay time	t LD				300	μs

LVD Detection Voltage of Interrupt & Reset Mode

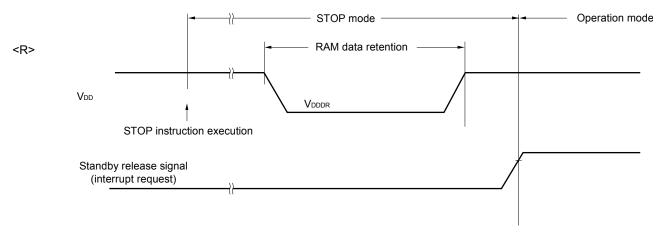
(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Cond	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	V _{LVDD0}	VPOC	2, VPOC1, VPOC0 =	2.64	2.75	2.86	V	
mode	V _{LVDD1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	٧
				Falling interrupt voltage	2.75	2.86	2.97	V
	V _{LVDD2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	٧
	V _{LVDD3}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

<R> 3.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		1.44 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

3.8 Flash Memory Programming Characteristics

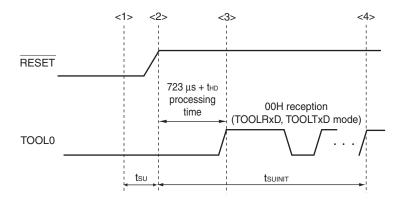
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	CPU/peripheral hardware clock frequency	fclk	2.4 V ≤ VDD ≤ 5.5 V	1		24	MHz
<r></r>	Number of code flash rewrites	Cerwr	Retaining years: 20 years T _A = +85°C Note 4	1,000			Times
<r></r>	Number of data flash rewrites Notes 1, 2, 3		Retaining years: 1 year T _A = +25°C Note 4		1,000,000		
<r></r>			Retaining years: 5 years T _A = +85°C Note 4	100,000			
<r></r>			Retaining years: 20 years T _A = +85°C Note 4	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library.
 - **3.** These specifications show the characteristics of the flash memory and the results obtained from Renesas Electronics reliability testing.
 - **4.** This temperature is the average value at which data are retained.

3.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

<R>

3.10 Timing Specs for Switching Flash Memory Programming Modes

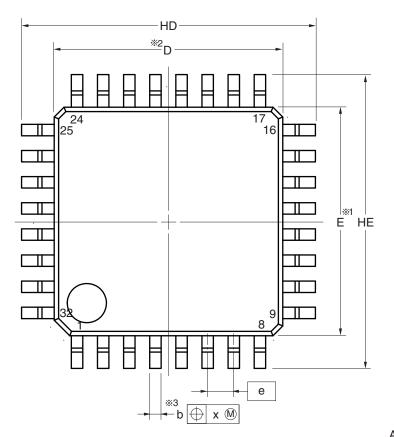
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

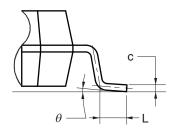
- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

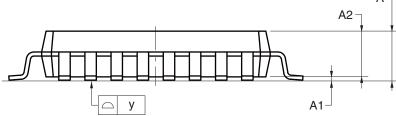
Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.

tsu: How long from when the TOOL0 pin is placed at the low level until an external reset ends


thd: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (excluding the processing time of the firmware to control the flash memory)

4. PACKAGE DRAWINGS

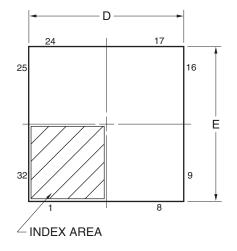

32-pin Products 4.1


R5F10JBCAFP, R5F10KBCAFP R5F10JBCGFP, R5F10KBCGFP

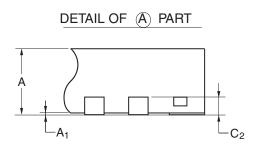
JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

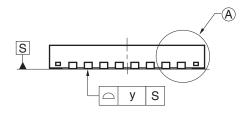
detail of lead end

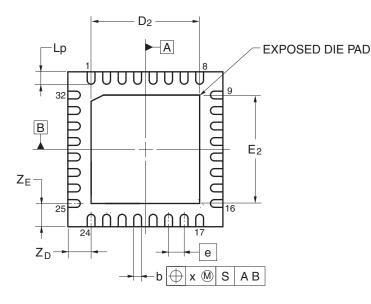
	(UNIT:mm
ITEM	DIMENSIONS
D	7.00±0.10
Е	7.00±0.10
HD	9.00±0.20
HE	9.00±0.20
Α	1.70 MAX.
A1	0.10±0.10
A2	1.40
b	$0.37{\pm}0.05$
С	0.145±0.055
L	0.50±0.20
θ	0° to 8°
е	0.80
х	0.20
у	0.10

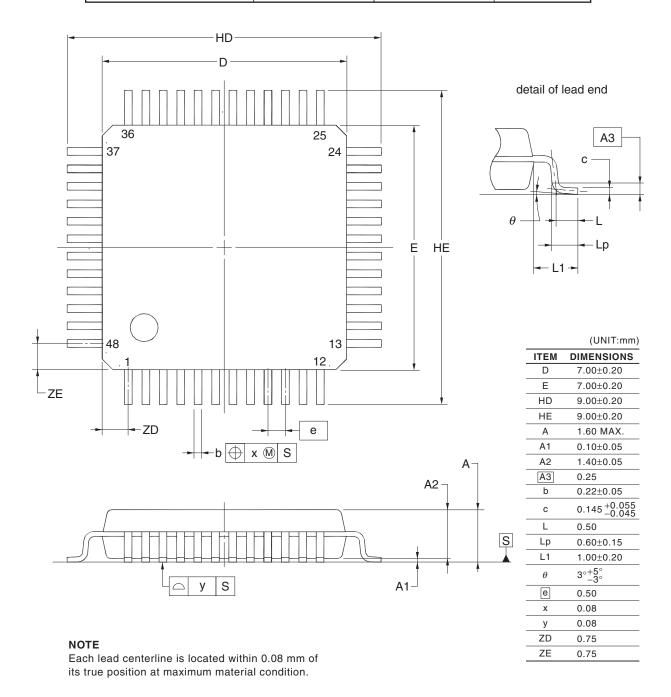

NOTE

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "%3" does not include trim offset.


R5F10JBCANA, R5F10KBCANA R5F10JBCGNA, R5F10KBCGNA




JEITA Package code	RENESAS code	Previous code	MASS (TYP.)[g]
P-HWQFN32-5x5-0.50	PWQN0032KB-A	P32K8-50-3B4-5	0.06

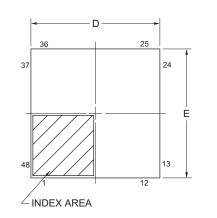

Referance	Dimension in Millimeters		
Symbol	Min	Nom	Max
D	4.95	5.00	5.05
Е	4.95	5.00	5.05
Α			0.80
A ₁	0.00		
b	0.18	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50
Х			0.05
у			0.05
Z _D		0.75	
Z _E		0.75	
C ₂	0.15	0.20	0.25
D ₂		3.50	
E ₂		3.50	

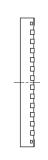
©2013 Renesas Electronics Corporation. All rights reserved.

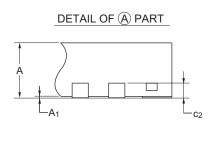
4.2 48-pin Products

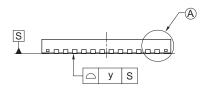
R5F10JGCAFB, R5F10KGCAFB R5F10JGCGFB, R5F10KGCGFB

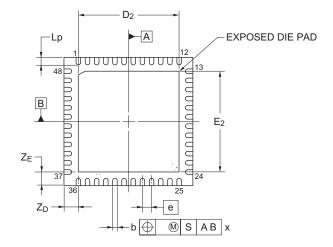
JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16


©2012 Renesas Electronics Corporation. All rights reserved.


R5F10JGCANA, R5F10KGCANA R5F10JGCGNA, R5F10KGCGNA


<R>


JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
P-HWQFN48-7x7-0.50	PWQN0048KB-A	48PJN-A P48K8-50-5B4-7	0.13


Unit: mm

Reference	Dimensions in millimeters			
Symbol	Min	Nom	Max	
D	6.95	7.00	7.05	
E	6.95	7.00	7.05	
Α	1	-	0.80	
A ₁	0.00	_	_	
b	0.18	0.25	0.30	
е		0.50	_	
Lp	0.30	0.40	0.50	
х	l	-	0.05	
У		_	0.05	
Z_{D}		0.75	_	
Z_{E}		0.75	_	
C ₂	0.15	0.20	0.25	
D ₂	_	5.50	_	
E ₂		5.50		

© 2015 Renesas Electronics Corporation. All rights reserved.

Revision History

RL78/G1A Data Sheet

			Description		
Rev.	Date	Page	Summary		
0.01	Sep 20, 2012	-	First Edition issued		
1.00	Aug 08, 2013	Throughout	Deletion of the bar over SCK and SCKxx		
			Renaming of fext to fexs		
			Renaming of interval timer (unit) to 12-bit interval timer		
			Addition of products for G: Industrial applications (T_A = -40 to +105 °C)		
		1	Change of 1.1 Features		
		2	Change of 1.2 List of Part Numbers		
		3	Modification of Figure 1-1. Part Number, Memory Size, and Package of RL78/G1C		
		4, 5	Addition of remark to 1.3 Pin Configuration (Top View)		
		15, 16	Change of 1.6 Outline of Functions		
		17 to 76	Addition of a whole chapter		
		77 to 131	Addition of a whole chapter		
		132	Addition of products for G: Industrial applications ($T_A = -40$ to +105 °C)		
1.10	Nov 15, 2013	77	Caution 3 added.		
		79	Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted.		
1.20	Sep 30, 2016	4 to 7	Modification of pin configuration in 1.3.1 32-pin products		
		8 to 11	Modification of pin configuration in 1.3.2 48-pin products		
		15	Modification of description of main system clock in 1.6 Outline of Functions		
		74	Modification of title of 2.7 RAM Data Retention Characteristics and figure		
		74	Modification of table of 2.8 Flash Memory Programming Characteristics		
		129	Modification of title of 3.7 RAM Data Retention Characteristics and figure		
		129	Modification of table of 3.8 Flash Memory Programming Characteristics and addition of Note 4		
		132	Change of figure in 4.1 32-pin Products		
		134	Change of figure in 4.2 48-pin Products		

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza. No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Treireads Electronics from Knotig Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyllux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B. Menara Amcorp, Amco

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141