True low-power platform ($58.3 \mu \mathrm{~A} / \mathrm{MHz}$, and $0.64 \mu \mathrm{~A}$ for operation with only LVD) for the general-purpose applications, with $1.6-\mathrm{V}$ to $5.5-\mathrm{V}$ operation, 16 -Kbyte code flash memory, and 33 DMIPS at 24 MHz

1. OUTLINE

1.1 Features

Ultra-low power consumption technology

- $\mathrm{VDD}=1.6 \mathrm{~V}$ to 5.5 V
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core
 - CISC architecture with 3-stage pipeline

- Minimum instruction execution time: Can be changed from high speed ($0.04167 \mu \mathrm{~s}$: @ 24 MHz operation with high-speed on-chip oscillator) to ultra-low speed ($66.6 \mu \mathrm{~s}$: @ 15 kHz operation with low-speed on-chip oscillator clock)
- Multiply/divide/multiply \& accumulate instructions are supported.
- Address space: 1 Mbytes
- General-purpose registers: (8-bit register $\times 8$) \times 4 banks
- On-chip RAM: 1.5 Kbytes

Code flash memory

- Code flash memory: 16 Kbytes
- Block size: 1 Kbytes
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

Data flash memory

- Data flash memory: 2 Kbytes
- Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: VDD $=1.8$ to 5.5 V

High-speed on-chip oscillator

- Select from $48 \mathrm{MHz}, 24 \mathrm{MHz}, 16 \mathrm{MHz}, 12 \mathrm{MHz}$, $8 \mathrm{MHz}, 6 \mathrm{MHz}, 4 \mathrm{MHz}, 3 \mathrm{MHz}, 2 \mathrm{MHz}$, and 1 MHz
- High accuracy: $\pm 1.0 \%$ (VDD $=1.8$ to $5.5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=-$ 20 to $+85^{\circ} \mathrm{C}$)

Middle-speed on-chip oscillator

- Selectable from $4 \mathrm{MHz}, 2 \mathrm{MHz}$, and 1 MHz .

Operating ambient temperature

- $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications)
- $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ (G: Industrial applications)

Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 14 levels)

Data transfer controller (DTC)

- Transfer modes: Normal transfer mode, repeat transfer mode, block transfer mode
- Activation sources: Activated by interrupt sources.
- Chain transfer function

Event link controller (ELC)

- Event signals of 18 types can be linked to the specified peripheral function.

Serial interfaces

- CSI: 4 channels
- UART: 2 channel
- ${ }^{2} \mathrm{C} /$ simplified $\mathrm{I}^{2} \mathrm{C}: 4$ channels
- Multimaster $\mathrm{I}^{2} \mathrm{C}$: 2 channels

Timers

- 16-bit timer (TAU): 4 channels
- TKB: 1 channel

12-bit interval timer: 1 channel

- 8-bit interval timer: 2 channels
- Watchdog timer: 1 channel

A/D converter

- 8/10-bit resolution A/D converter (VDD $=1.6$ to 5.5 V)
- Analog input: 10 to 11 channels
- Internal reference voltage (1.45 V) and temperature sensor

D/A converter

- 8/10-bit resolution D/A converter (VDD $=1.6$ to 5.5 V)
- Analog input: 2 channels (channel 1: output to the ANO1 pin, channel 0: output to the comparator)
- Output voltage: 0 V to VDD
- Real-time output function

Comparator

- 2 channels
- Operating modes: Comparator high-speed mode, comparator low-speed mode, window mode

PGA

- 1 channels

I/O ports
I/O port: 17 to 21 (N-ch open drain I/O [VDD withstand voltage ${ }^{\text {Note }} 1 /$ EVDD withstand voltage ${ }^{\text {Note } 2 \text { 2]: }} 10$ to 14)

- Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor
- Different potential interface: Can connect to a 1.8/2.5/3.0 V device

On-chip key interrupt function

- On-chip clock output/buzzer output controller Others
- On-chip BCD (binary-coded decimal) correction circuit

On-chip data operation circuit

Note 1. 16, 20, 24-pin products
Note 2. 25 -pin products

Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

O ROM, RAM capacities

Flash ROM	Data flash	RAM	RL78/G11				
	16 KB		1.5 KB	R5F1051A	R5F1054A	R5F1056A	R5F1057A

Remark The flash library uses RAM in self-programming and rewriting of the data flash memory.
The target products and start address of the RAM areas used by the flash library are shown below.

R5F105xA (x = 1, 4, 6, 7, 8): Start address FF900H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

1.2 Ordering Information

Figure 1-1 Part Number, Memory Size, and Package of RL78/G11

Pin count	Package	Ordering Part Number	RENESAS Code
10 pins	10-pin plastic LSSOP ($4.4 \times 3.6 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)	R5F1051AGSP\#10, R5F1051AASP\#10 R5F1051AGSP\#30, R5F1051AASP\#30 R5F1051AGSP\#50, R5F1051AASP\#50	PLSP0010JA-A
16 pins	16-pin plastic SSOP ($4.4 \times 5.0 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)	R5F1054AGSP\#10, R5F1054AASP\#10 R5F1054AGSP\#30, R5F1054AASP\#30 R5F1054AGSP\#50, R5F1054AASP\#50	PRSP0016JC-B
20 pins	20-pin plastic LSSOP ($4.4 \times 6.5 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)	R5F1056AGSP\#30, R5F1056AASP\#30 R5F1056AGSP\#50, R5F1056AASP\#50	PLSP0020JB-A
	20-pin plastic TSSOP ($4.4 \times 6.5 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)	R5F1056AGSM\#10, R5F1056AASM\#10 R5F1056AGSM\#30, R5F1056AASM\#30 R5F1056AGSM\#50, R5F1056AASM\#50	PTSP0020JI-A
24 pins	24-pin plastic HWQFN ($4 \times 4 \mathrm{~mm}, 0.50 \mathrm{~mm}$ pitch)	R5F1057AGNA\#U0, R5F1057AANA\#U0 R5F1057AGNA\#W0, R5F1057AANA\#W0	PWQN0024KE-A
		R5F1057AGNA\#00, R5F1057AANA\#00 R5F1057AGNA\#20, R5F1057AANA\#20 R5F1057AGNA\#40, R5F1057AANA\#40	PWQN0024KF-A
25 pins	25-pin plastic WFLGA ($3 \times 3 \mathrm{~mm}, 0.50 \mathrm{~mm}$ pitch)	R5F1058AGLA\#U0, R5F1058AALA\#U0 R5F1058AGLA\#W0, R5F1058AALA\#W0	PWLG0025KA-A

Caution 1. For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G11.
Caution 2. The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Pin Configuration (Top View)

1.3.1 10-pin products

- 10-pin plastic LSSOP ($4.4 \times 3.6 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch $)$

1.3.2 16-pin products

- 16-pin plastic SSOP ($4.4 \times 5.0 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch $)$

1.3.3 20-pin products

- 20-pin plastic LSSOP ($4.4 \times 6.5 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch $)$
- 20-pin plastic TSSOP ($4.4 \times 6.5 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 to 3 (PIORO to PIOR3).

1.3.4 24-pin products

- 24-pin plastic HWQFN (4 $\times 4 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. It is recommended to connect an exposed die pad to Vss.
Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 to 3 (PIOR0 to PIOR3).

1.3.5 25-pin products

- 25-pin plastic WFLGA ($3 \times 3 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)

Top View

Bottom View

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 to 3 (PIOR0 to PIOR3).

1.4 Pin Identification

ANIO to ANI3,	
ANI16 to ANI22	: Analog input
ANO1	Analog output
AVrefm	A/D converter reference potential (- side) input
AVRefp	: A/D converter reference potential (+ side) input
EVdD	: Power supply
EXCLK	External clock input (main system clock)
INTPO to INTP11	External interrupt input
INTFO	: Interrupt Flag output
IVCMP0, IVCMP1	: Comparator input
IVREFO, IVREF1	: Comparator reference input
KR0 to KR7	: Key return
PGAI, PGAGND	PGA Input
P00 to P01	Port 0
P20 to P23	: Port 2
P30 to P33	: Port 3
P40	Port 4
P51 to P56	: Port 5
P121, P122, P125	Port 12
P137	Port 13

PCLBUZ0, PCLBUZ1	Programmable clock output/buzzer output
REGC	: Regulator capacitance
RESET	Reset
RxD0, RxD1	Receive data
SCK00, SCK01,	
SCK10, SCK11	Serial clock input/output
SCLA0, SCLA1	Serial clock input/output
SCL00, SCL01,	
SCL10, SCL11	Serial clock output
SDAA0, SDAA1	: Serial data input/output
SDA00, SDA01,	
SDA10, SDA11	: Serial data input/output
SIOO, SIO1,	
SI10, SI11	: Serial data input
SO00, SO01,	
SO10, SO11	Serial data output
$\overline{\text { SSIOO }}$	Serial interface chip select input
TIOO to TIO3	: Timer input
TKBO0, TKBO1	: TMKB output
TOOO to TO03	: Timer output
TOOLO	Data input/output for tool
TOOLRXD, TOOLTXD	: Data input/output for external device
TxD0, TxD1	Transmit data
VCOUT0, VCOUT1	: Comparator output
VdD	Power supply
Vss	: Ground
X1, X2	: Crystal oscillator (main system clock)

1.5 Block Diagram

1.5.1 10-pin products

1.5.2 16-pin products

1.5.3 20-pin products

1.5.4 24-pin, 25-pin products

Note
25 -pin products

1.6 Outline of Functions

This outline describes the functions at the time when Peripheral I/O redirection register 0 to 3 (PIOR0 to PIOR3) are set to 00 H .
(1/2)

Item		10-pin	16-pin	20-pin	24-pin	25-pin
		R5F1051A	R5F1054A	R5F1056A	R5F1057A	R5F1058A
Code flash memory (KB)		16 Kbytes				
Data flash memory (KB)		2 Kbytes				
RAM		1.5 Kbytes				
Address space		1 Mbytes				
Main system clock	High-speed system clock (fmx)	X1 (crystal/ceramic) oscillationNote, external main system clock input (EXCLK) 1 to 20 MHz : $\mathrm{VDD}=2.7$ to 5.5 V 1 to 16 MHz : $\mathrm{VDD}=2.4$ to 5.5 V 1 to $8 \mathrm{MHz}: \mathrm{VDD}_{\mathrm{D}}=1.8$ to 5.5 V 1 to 4 MHz : VDD $=1.6$ to 5.5 V				
	High-speed on-chip oscillator clock (fін) Max: 24 MHz Middle-speed onchip oscillator clock (fim) Max: 4 MHz	```HS (High-speed main) mode: 1 to 24 MHz (VDD = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (VdD = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (VdD = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V), LP (Low-power main) mode: 1 MHz (VDD = 1.8 to 5.5 V)```				
Subsystem clock	Low-speed on-chip oscillator clock (fiL)	15 kHz (typ.): VDD $=1.6$ to 5.5 V				
General-purpose register		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)				
Minimum instruction execution time		$0.04167 \mu \mathrm{~s}$ (High-speed on-chip oscillator clock: fIH $=24 \mathrm{MHz}$ operation)				
		$0.05 \mu \mathrm{~s}$ (High-speed system clock: $\mathrm{fmx}=20 \mathrm{MHz}$ operation)				
Instruction set		- Data transfer (8/16 bits) - Adder and subtractor/logical operation (8/16 bits) - Multiplication (8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division (16 bits $\div 16$ bits, 32 bits $\div 32$ bits) - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits) - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.				
I/O port	Total	7	13	17	21	
	CMOS I/O	4	9	13	17	
	CMOS input					
Timer	16-bit timer	4 channels				
	Watchdog timer	1 channel				
	Timer KB	1 channel				
	12-bit interval timer	1 channel				
	8/16-bit interval timer	2 channels (8 bit)/1 channel (16 bit)				
	Timer output	- 3	5		6	

Note $\quad 16,20,24,25$-pin products

Caution The flash library uses RAM in self-programming and rewriting of the data flash memory.
The target products and start address of the RAM areas used by the flash library are shown below.

R5F105xA ($x=1,4,6,7,8$): Start address FF900H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Item		10-pin	16-pin	20-pin	24-pin	25-pin
		R5F1051A	R5F1054A	R5F1056A	R5F1057A	R5F1058A
Clock output/buzzer output		1		2		
		- $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Main system clock: fmain $=20 \mathrm{MHz}$ operation) - $117 \mathrm{~Hz}, 234 \mathrm{~Hz}, 469 \mathrm{~Hz}, 938 \mathrm{~Hz}, 1.875 \mathrm{kHz}, 3.75 \mathrm{kHz}, 7.5 \mathrm{kHz}, 15 \mathrm{kHz}$ (subsystem clock: fil $=15 \mathrm{kHz}$ operation)				
10-bit resolution A/D converter	External	3 channels	8 channels	10 channels	11 channels	
	Internal	1 channel				
8-bit D/A converter		1 channel	2 channels			
Comparator (Window Comparator)		1 channel	2 channels			
PGA		1 channel				
Data Operation Circuit (DOC)		Comparison, addition, and subtraction of 16-bit data				
Serial interface		[10-pin products] - CSI: 1 channel/UART: 1 channel [16-pin products] - CSI: 2 channels/UART: 2 channels/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel [20-pin products] - CSI: 3 channel/UART: 2 channel/simplified $I^{2} \mathrm{C}: 3$ channel [24-pin, 25-pin products] - CSI: 4 channels/UART: 2 channel/simplified I²C: 4 channels				
	${ }^{12} \mathrm{C}$ bus	None	1 channel		2 channels	
Data transfer controller (DTC)		13 sources	22 sources	23 sources	24 sources	
Event link controller (ELC)		Event input: 11 Event trigger output: 3	Event input: 16 Event trigger output: 4	Event input: 17 Event trigger output: 4	Event input: 18 Event trigger output: 4	
Vectored interrupt sources	Internal	20	24	25		
	External	3	9	10		
Key interrupt		None	3	5		
Reset		- Reset by RESET pin - Internal reset by watchdog timer - Internal reset by power-on-reset - Internal reset by voltage detector - Internal reset by illegal instruction execution - Internal reset by RAM parity error - Internal reset by illegal-memory access				
Power-on-reset circuit		- Power-on-reset: $1.51 \pm 0.04 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ $1.51 \pm 0.06 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=+85 \text { to }+105^{\circ} \mathrm{C}\right)$ - Power-down-reset: $1.50 \pm 0.04 \mathrm{~V}$ ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$) $1.50 \pm 0.06 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=+85 \text { to }+105^{\circ} \mathrm{C}\right)$				
Voltage detector	Power on	1.67 V to 4.06 V (14 stages)				
	Power down	1.63 V to 3.98 V (14 stages)				
On-chip debug function		Provided (Disable to tracing)				
Power supply voltage		$\mathrm{V}_{\mathrm{DD}}=1.6$ to 5.5 V				
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ (Consumer applications) $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ (Industrial applications)				

2. ELECTRICAL SPECIFICATIONS (TA $=-40$ to $+85^{\circ} \mathrm{C}$)

This chapter describes the following electrical specifications.
Target products A: Consumer applications ($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}$)
R5F105xxAxx

G : When the products " G : Industrial applications ($\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$)" is used in the range of $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$
R5F105xxGxx

Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G11 User's Manual.
Caution 3. The EVdD pin is not present on products with 24 or less pins. Accordingly, replace EVdd with Vdd and the voltage condition $1.6 \leq \operatorname{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ with $1.6 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$.

2.1 Absolute Maximum Ratings

(1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVdD		-0.5 to +6.5	V
	AVREFP		0.3 to VDD + 0.3 Note 2	V
	AVREFM		$\begin{aligned} & -0.3 \text { to VDD }+0.3 \text { Note } 2 \\ & \text { and } A V R E F M \leq A V R E F P \end{aligned}$	V
REGC pin input voltage	Viregc	REGC	$\begin{gathered} -0.3 \text { to }+2.8 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 1 \end{gathered}$	V
Input voltage	V11	P00, P01, P30 to P33, P40, and P51 to P56	$\begin{gathered} -0.3 \text { to EVDD }+0.3 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 2 \end{gathered}$	V
	V12	$\begin{aligned} & \text { P20 to P23, P121, P122, P125, P137, } \\ & \text { EXCLK, RESET } \end{aligned}$	-0.3 to VDD + 0.3 Note 2	V
Output voltage	Vo1	P00, P01, P30 to P33, P40, and P51 to P56	$\begin{gathered} -0.3 \text { to EVDD }+0.3 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 2 \end{gathered}$	V
	Vo2	P20 to P23	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI22	-0.3 to $\operatorname{EVDD}+0.3$ and -0.3 to $\operatorname{AVREF}(+)+0.3$ Notes 2,3	V
	VAI2	ANIO to ANI3	-0.3 to $\operatorname{VdD}+0.3$ and -0.3 to $\operatorname{AVREF}(+)+0.3$ Notes 2, 3	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
Note 2. Must be 6.5 V or lower.
Note 3. Do not exceed $A V$ REF $(+)+0.3 V$ in case of A / D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
Remark 2. AVref (+): + side reference voltage of the A/D converter.
Remark 3. Vss: Reference voltage

Parameter	Symbols	Conditions		Ratings	Unit
Output current, high	IOH 1	Per pin		-40	mA
		Total of all pins -170 mA	P00, P01, P40	-70	mA
			P30 to P33, P51 to P56	-100	mA
	IOH 2	Per pin	P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IoL1	Per pin		40	mA
		Total of all pins 170 mA	P00, P01, P40	70	mA
			P30 to P33, P51 to P56	100	mA
	IoL2	Per pin	P20 to P23	1	mA
		Total of all pins		4	mA
Operating ambient temperature	TA	In normal operation mode		-40 to +85	${ }^{\circ} \mathrm{C}$
		In flash memory programming mode			
Storage temperature	Tstg			-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.2 Oscillator Characteristics

2.2.1 X1 characteristics

(TA $=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = 0 V)

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/ crystal resonator	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1.0		20.0	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1.0		16.0	
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$	1.0		8.0	
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$	1.0		4.0	

Note Indicates only permissible oscillator frequency ranges. Refer to 2.4 AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to 6.4 System Clock Oscillator in the RL78/G11 User's Manual.

2.2.2 On-chip oscillator characteristics

(TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = 0 V)

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fiH^{\prime}	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1		24	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1		16	
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1		8	
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1		4	
High-speed on-chip oscillator clock frequency accuracy		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-20 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	-1		1	\%
			$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$	-5		5	
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ & -20^{\circ} \mathrm{C} \end{aligned}$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	-1.5		1.5	\%
			$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$	-5.5		5.5	
Middle-speed on-chip oscillator oscillation frequency Note 2	fim			1		4	MHz
Middle-speed on-chip oscillator oscillation frequency accuracy				-12		+12	\%
Temperature drift of Middle-speed on-chip oscillator oscillation frequency accuracy	Dimt				0.008		\%/ ${ }^{\circ} \mathrm{C}$
Voltage drift of Middle-speed on-chip oscillator oscillation frequency accuracy	Dimv	$\mathrm{TA}=25^{\circ} \mathrm{C}$	$2.1 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		0.02		\%/V
			$2.0 \mathrm{~V} \leq \mathrm{VDD}<2.1 \mathrm{~V}$		-12		
			$1.6 \mathrm{~V} \leq \mathrm{VDD}<2.0 \mathrm{~V}$		10		
Low-speed on-chip oscillator clock frequency Note 2	fil				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	\%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 3 of the option byte $(000 \mathrm{C} 2 \mathrm{H})$ and bits 0 to 2 of the HOCODIV register.
Note 2. This only indicates the oscillator characteristics. Refer to 2.4 AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(1/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	IOH1	Per pin for P00, P01, P30 to P33, P40, and P51 to P56				$\begin{aligned} & -10.0 \\ & \text { Note } 2 \end{aligned}$	mA
		$\begin{aligned} & \text { Total of P00, P01, and P40 } \\ & \text { (When duty } \leq 70 \% \text { Note } 3 \text {) } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			-42.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$			-10.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{EVDD}<2.7 \mathrm{~V}$			-5.0	mA
			$1.6 \mathrm{~V} \leq \mathrm{EVDD}<1.8 \mathrm{~V}$			-2.5	mA
		Total of P30 to P33, and P51 to P56 (When duty $\leq 70 \%$ Note 3)	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			-80.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$			-19.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{EVDD}<2.7 \mathrm{~V}$			-10.0	mA
			$1.6 \mathrm{~V} \leq \mathrm{EVDD}<1.8 \mathrm{~V}$			-5.0	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)				-122.0	mA
	IOH 2	Per pin for P20 to P23				-0.1 Note 2	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			-0.4	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.
Note 2. Do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $\mathrm{n} \%$).

- Total output current of pins $=(\mathrm{IOH} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOH}=-10.0 \mathrm{~mA}$ Total output current of pins $=(-10.0 \times 0.7) /(80 \times 0.01) \approx-8.7 \mathrm{~mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.
A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P01, P20, P30 to P33, P40 and P51 to P56 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(2/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IoL1	Per pin for P00, P01, P30 to P33, P40, and P51 to P56				$\begin{gathered} \hline 20.0 \\ \text { Note } 2 \end{gathered}$	mA
		$\begin{aligned} & \text { Total of P00, P01, and P40 } \\ & \text { (When duty } \leq 70 \% \text { Note 3) } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			70.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$			15.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{EVDD}<2.7 \mathrm{~V}$			9.0	mA
			$1.6 \mathrm{~V} \leq \mathrm{EVDD}<1.8 \mathrm{~V}$			4.5	mA
		Total of P30 to P33, and P51 to P56 (When duty $\leq 70 \%$ Note 3)	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			80.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$			35.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{EVDD}<2.7 \mathrm{~V}$			20.0	mA
			$1.6 \mathrm{~V} \leq \mathrm{EVDD}<1.8 \mathrm{~V}$			10.0	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)				150.0	mA
	IOL2	Per pin for P20 to P23				$\begin{gathered} \hline 0.4 \\ \text { Note } 2 \end{gathered}$	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			1.6	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
Note 2. Do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $n \%$).

- Total output current of pins $=(\mathrm{IOL} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOL}=10.0 \mathrm{~mA}$
Total output current of pins $=(10.0 \times 0.7) /(80 \times 0.01) \approx 8.7 \mathrm{~mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(3/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{VIH1}^{1}$	P00, P01, P30 to P33, P40, and P51 to P56	Normal mode	0.8 EVDD		EVDD	V
	VIH2	$\begin{aligned} & \text { P00, P30 to P32, P40, P51 to } \\ & \text { P56 } \end{aligned}$	TTL mode $4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	2.2		EVDD	V
			TTL mode $3.3 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$	2.0		EVdD	v
			TTL mode $1.6 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}$	1.5		EVDD	V
	Vін3	P20 to P23 (digital input)		0.7 VDD		VDD	V
	$\mathrm{VIH4}$	P121, P122, P125, P137, EXCLK, $\overline{\text { RESET }}$		0.8 VDD		VDD	V
Input voltage, low	VIL1	P00, P01, P30 to P33, P40, and P51 to P56	Normal mode	0		0.2 EVDD	V
	VIL2	$\begin{aligned} & \text { P00, P30 to P32, P40, P51 to } \\ & \text { P56 } \end{aligned}$	TTL mode $4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	0		0.8	V
			TTL mode $3.3 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$	0		0.5	V
			TTL mode $1.6 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}$	0		0.32	V
	Vінз	P20 to P23 (digital input)		0		0.3 VDD	V
	VIH_{4}	P121, P122, P125, P137, EXCLK, RESET		0		0.2 VDD	V

Caution The maximum value of ViH of pins P00, P01, P20, P30 to P33, P40 and P51 to P56 is Vdd or EVdd, even in the N-ch open-drain mode.
(P20: Vdd
P00, P01, P30 to P33, P40, P51 to P56: EVdd)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
($\mathrm{TA}^{2}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(4/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	$\begin{aligned} & \text { P00, P01, P30 to P33, P40, } \\ & \text { and P51 to P56 } \end{aligned}$	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH}=-10.0 \mathrm{~mA} \end{aligned}$	EVDD - 1.5			v
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH}=-3.0 \mathrm{~mA} \end{aligned}$	EVDD - 0.7			V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loH}=-2.0 \mathrm{~mA} \end{aligned}$	EVDD - 0.6			v
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V} \\ & \mathrm{loH}=-1.5 \mathrm{~mA} \end{aligned}$	EVDD - 0.5			V
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH}=-1.0 \mathrm{~mA} \end{aligned}$	EVDD - 0.5			v
	Voh2	P20 to P23	$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH}=-100 \mu \mathrm{~A} \end{aligned}$	VDD - 0.5			v
Output voltage, low	VoL1	$\begin{aligned} & \text { P00, P01, P30 to P33, P40, } \\ & \text { and P51 to P56 } \end{aligned}$	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=20.0 \mathrm{~mA} \end{aligned}$			1.3	v
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=8.5 \mathrm{~mA} \end{aligned}$			0.7	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=3.0 \mathrm{~mA} \end{aligned}$			0.6	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=1.5 \mathrm{~mA} \end{aligned}$			0.4	v
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=0.6 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=0.3 \mathrm{~mA} \end{aligned}$			0.4	V
	VOL2	P20 to P23	$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=400 \mu \mathrm{~A} \end{aligned}$			0.4	v

Caution P00, P01, P20, P30 to P33, P40 and P51 to P56 do not output high level in N-ch open-drain mode.
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(5/5)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00, P01, P30 to P33, P40, and P51 to P56	$\mathrm{V}_{1}=\mathrm{EVDD}$				1	$\mu \mathrm{A}$
	ILIH2	P20 to P23, P125, P137, $\overline{\text { RESET }}$	$V_{1}=V_{D D}$				1	$\mu \mathrm{A}$
	ІІнз	P121, P122, X1, X2, EXCLK	$V_{1}=V_{D D}$	In input port or external clock input			1	$\mu \mathrm{A}$
				In resonator connection			10	$\mu \mathrm{A}$
Input leakage current, low	ILLL1	P00, P01, P30 to P33, P40, and P51 to P56	$\mathrm{V}_{1}=\mathrm{Vss}$				-1	$\mu \mathrm{A}$
	ILIL2	P20 to P23, P125, P137, RESET	$\mathrm{V}_{1}=\mathrm{V}_{\text {ss }}$				-1	$\mu \mathrm{A}$
	ILLı3	P121, P122, X1, X2, EXCLK	V I $=\mathrm{Vss}$	In input port or external clock input			-1	$\mu \mathrm{A}$
				In resonator connection			-10	$\mu \mathrm{A}$
On-chip pull-up resistance	Ru	P00, P01, P30 to P33, P40, P51 to P56, P125	$\mathrm{V}_{\mathrm{I}}=\mathrm{Vss}$, In input port		10	20	100	k Ω

[^0]
2.3.2 Supply current characteristics

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(1/4)

Parameter	Symbol				Conditions			MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	Operating mode	Basic operation	HS (high-speed main) mode	$\begin{aligned} & \mathrm{fHOCO}=48 \mathrm{MHz}^{\text {Note } 3} \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$			1.7		mA
						$\mathrm{VDD}=3.0 \mathrm{~V}$			1.7		
					$\begin{aligned} & f \mathrm{fHOCO}=24 \mathrm{MHZ}^{\text {Note }} 3 \\ & \mathrm{ffH}_{\mathrm{H}}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$			1.4		
						$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$			1.4		
			Normal operation	HS (high-speed main) mode	$\begin{aligned} & \mathrm{fHOCO}=48 \mathrm{MHz}^{\text {Note } 3} \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$			3.5	6.9	mA
						$\mathrm{VDD}=3.0 \mathrm{~V}$			3.5	6.9	
					$\begin{aligned} & \text { fHOCO }=24 \mathrm{MHz}^{\text {Note } ~} 3 \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$			3.2	6.3	
						$\mathrm{VDD}=3.0 \mathrm{~V}$			3.2	6.3	
					$\begin{aligned} & \mathrm{fHOCO}=16 \mathrm{MHz} \text { Note } 3 \\ & \mathrm{fiH}=16 \mathrm{MHz} \text { Note } 3 \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$			2.4	4.6	
						$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$			2.4	4.6	
			Normal operation	LS (low-speed main) mode (MCSEL = 0)	$\mathrm{fiH}^{\prime}=8 \mathrm{MHz}$ Note 3	$\mathrm{VDD}=3.0 \mathrm{~V}$			1.1	2.0	mA
						$\mathrm{VDD}=2.0 \mathrm{~V}$			1.1	2.0	
			Normal operation	LS (low-speed main) mode (MCSEL = 1)	$\mathrm{fiHf}^{\prime}=4 \mathrm{MHz}$ Note 3	$\mathrm{VDD}=3.0 \mathrm{~V}$			0.72	1.3	mA
						$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$			0.72	1.3	
					$\mathrm{fim}=4 \mathrm{MHz}$ Note 6	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$			0.58	1.1	
						$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$			0.58	1.1	
			Normal operation	LV (low-voltage main) mode	$\mathrm{fiH}=4 \mathrm{MHz}$ Note 3	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$			1.2	1.8	mA
						$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$			1.2	1.8	
			Normal operation	LP (low-power main) mode (MCSEL = 1)	$\mathrm{fiHF}^{\prime}=1 \mathrm{MHz}$ Note 3	$V_{D D}=3.0 \mathrm{~V}$			290	480	$\mu \mathrm{A}$
						$V_{D D}=2.0 \mathrm{~V}$			290	480	
					$\mathrm{fim}=1 \mathrm{MHz}$ Note 6	$\mathrm{VDD}=3.0 \mathrm{~V}$			124	230	
						$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$			124	230	
			Normal operation	HS (high-speed main) mode	$\mathrm{fmxx}^{\prime}=20 \mathrm{MHz}$ Note 2	$\mathrm{VDD}=5.0 \mathrm{~V}$	Square wave input		2.7	5.3	mA
							Resonator connection		2.8	5.5	
						$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	Square wave input		2.7	5.3	
							Resonator connection		2.8	5.5	
					$\mathrm{fmx}^{\text {a }}=10 \mathrm{MHz}$ Note 2	$V_{D D}=5.0 \mathrm{~V}$	Square wave input		1.8	3.1	
							Resonator connection		1.9	3.2	
						$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	Square wave input		1.8	3.1	
							Resonator connection		1.9	3.2	
			Normal	LS (low-speed main)	$\mathrm{fmx}=8 \mathrm{MHz}$ Note 2	$\mathrm{VDD}=3.0 \mathrm{~V}$	Square wave input		0.9	1.9	mA
							Resonator connection		1.0	2.0	
			Normal		$\mathrm{fmx}=8 \mathrm{MHz}$ Note 2	$\mathrm{VDD}=2.0 \mathrm{~V}$	Square wave input		0.9	1.9	
			operation				Resonator connection		1.0	2.0	
			Normal	LS (low-speed main)	$\mathrm{fmx}=4 \mathrm{MHz}$ Note 2	$\mathrm{VDD}=3.0 \mathrm{~V}$	Square wave input		0.6	1.1	mA
			operation	mode			Resonator connection		0.6	1.2	
			Normal	(MCSEL - 1)	$\mathrm{fmx}=4 \mathrm{MHz}$ Note 2	$\mathrm{VDD}=2.0 \mathrm{~V}$	Square wave input		0.6	1.1	
			operation				Resonator connection		0.6	1.2	
			Normal	LP (low-power main)	$\mathrm{fmx}=1 \mathrm{MHz}$ Note 2	$\mathrm{VDD}=3.0 \mathrm{~V}$	Square wave input		100	190	$\mu \mathrm{A}$
			operation	mode			Resonator connection		145	250	
			Normal		$\mathrm{fmx}^{\prime}=1 \mathrm{MHz}$ Note 2	$\mathrm{VDD}=2.0 \mathrm{~V}$	Square wave input		100	190	
							Resonator connection		145	250	

(Notes and Remarks are listed on the next page.)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, VSS $=0 \mathrm{~V}$)
(2/4)

Note 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, D/A converter, comparator, programmable gain amplifier, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
Note 2. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock and low-speed on-chip oscillator clock are stopped.
Note 3. When the high-speed system clock, middle-speed on-chip oscillator clock and low-speed on-chip oscillator clock are stopped.
Note 4. When the high-speed system clock is stopped.
Note 5. When the high-speed system clock, high-speed on-chip oscillator clock and middle-speed on-chip oscillator clock are stopped.
Note 6. When the high-speed system clock, high-speed on-chip oscillator clock and low-speed on-chip oscillator clock are stopped.

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fiн: High-speed on-chip oscillator clock frequency (24 MHz max.)
Remark 3. fim: Middle-speed on-chip oscillator clock frequency (4 MHz max.)
Remark 4. fil: Low-speed on-chip oscillator clock frequency
Remark 5. fsub: Subsystem clock frequency (Low-speed on-chip oscillator clock frequency)
Remark 6. Except subsystem clock operation, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions					MIN.	TYP.	MAX.	Unit
Supply current Note 1	$\begin{aligned} & \hline \text { IDD2 } \\ & \text { Note 2 } \end{aligned}$	$\begin{aligned} & \text { HALT } \\ & \text { mode } \end{aligned}$	HS (high-speed main) mode	$\begin{aligned} & \mathrm{fHOCO}=48 \mathrm{MHz} \text { Note } 4 \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$			0.59	2.43	mA
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$			0.59	2.43	
				$\begin{aligned} & \mathrm{fHOCO}=24 \mathrm{MHz} \text { Note } 4 \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$V_{\text {do }}=5.0 \mathrm{~V}$			0.41	1.83	
					$V_{\text {do }}=3.0 \mathrm{~V}$			0.41	1.83	
				$\begin{aligned} & \mathrm{fHOCO}=16 \mathrm{MHz} \text { Note } 4 \\ & \mathrm{fiH}^{2}=16 \mathrm{MHz} \text { Note } 4, \end{aligned}$	$\mathrm{V} D=5.0 \mathrm{~V}$			0.39	1.38	
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$			0.39	1.38	
			LS (low-speed main) mode (MCSEL = 0)		$\mathrm{V}_{\mathrm{dD}}=3.0 \mathrm{~V}$			250	710	$\mu \mathrm{A}$
					$V_{D D}=2.0 \mathrm{~V}$			250	710	
			LS (low-speed main) mode (MCSEL = 1)	$\mathrm{fiH}^{\prime}=4 \mathrm{MHz}$ Note 4	$V_{\text {dD }}=3.0 \mathrm{~V}$			204	400	$\mu \mathrm{A}$
					$V_{D D}=2.0 \mathrm{~V}$			204	400	
				$\mathrm{fim}=4 \mathrm{MHz}$ Note 6	$\mathrm{V}_{\mathrm{dD}}=3.0 \mathrm{~V}$			43	250	
					$V_{\text {dD }}=2.0 \mathrm{~V}$			43	250	
			LV (low-voltage main) mode	$\mathrm{fiH}^{\text {¢ }}=4 \mathrm{MHz}$ Note 4	VdD $=3.0 \mathrm{~V}$			450	700	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$			450	700	
			LP (low-power main) mode (MCSEL = 1)	$\mathrm{fiH}_{\text {I }}=1 \mathrm{MHz}$ Note 4	VdD $=3.0 \mathrm{~V}$			192	400	$\mu \mathrm{A}$
					$V_{D D}=2.0 \mathrm{~V}$			192	400	
				fim $=1 \mathrm{MHz}$ Note 6	$V_{D D}=3.0 \mathrm{~V}$			28	100	
					$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$			28	100	
			HS (high-speed main) mode	$\mathrm{fmx}=20 \mathrm{MHz}$ Note 3	$\mathrm{V} D=5.0 \mathrm{~V}$	Square wave input		0.20	1.55	mA
						Resonator connection		0.40	1.74	
					V DD $=3.0 \mathrm{~V}$	Square wave input		0.20	1.55	
						Resonator connection		0.40	1.74	
				$\mathrm{f}_{\mathrm{MX}}=10 \mathrm{MHz}$ Note 3	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$	Square wave input		0.15	0.86	
						Resonator connection		0.30	0.93	
					VdD $=3.0 \mathrm{~V}$	Square wave input		0.15	0.86	
						Resonator connection		0.30	0.93	
			LS (low-speed main) mode (MCSEL = 0)	$\mathrm{fmx}_{\mathrm{mx}}=8 \mathrm{MHz}$ Note 3	$V_{D D}=3.0 \mathrm{~V}$	Square wave input		68	550	$\mu \mathrm{A}$
						Resonator connection		125	590	
				$\mathrm{fmx}=8 \mathrm{MHz}$ Note 3	$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$	Square wave input		68	550	
						Resonator connection		125	590	
			LS (low-speed main) mode (MCSEL = 1)	$\mathrm{fmx}_{\mathrm{m}}=4 \mathrm{MHz}$ Note 3	$\mathrm{V} D=3.0 \mathrm{~V}$	Square wave input		23	128	$\mu \mathrm{A}$
						Resonator connection		65	200	
				$\mathrm{f}_{\mathrm{Mx}}=1 \mathrm{MHz}$ Note 3	$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$	Square wave input		23	128	
						Resonator connection		65	200	
			LP (low-power main) mode (MCSEL = 1)	$\mathrm{fmx}_{\mathrm{m}}=4 \mathrm{MHz}$ Note 3	$V_{D D}=3.0 \mathrm{~V}$	Square wave input		10	64	$\mu \mathrm{A}$
						Resonator connection		59	150	
				$\mathrm{fmx}=1 \mathrm{MHz}$ Note 3	$V_{D D}=2.0 \mathrm{~V}$	Square wave input		10	64	
						Resonator connection		59	150	
			Subsystem clock operation	$\mathrm{fiL}^{2}=15 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ Note 5				0.48	1.22	$\mu \mathrm{A}$
				fil $=15 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Note 5				0.55	1.22	
				fil $=15 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ Note 5				0.80	3.30	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, D/A converter, comparator, programmable gain amplifier, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
Note 2. When the HALT instruction is executed in the flash memory.
Note 3. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, and low-speed on-chip oscillator clock are stopped.
Note 4. When the high-speed system clock, middle-speed on-chip oscillator clock and low-speed on-chip oscillator clock are stopped.
Note 5. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock and high-speed system clock are stopped.
Note 6. When the high-speed system clock, high-speed on-chip oscillator clock, and low-speed on-chip oscillator clock are stopped.

Remark 1. $f m x$: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fiн: High-speed on-chip oscillator clock frequency (24 MHz max.)
Remark 3. fim: Middle-speed on-chip oscillator clock frequency (4 MHz max.)
Remark 4. fiL: Low-speed on-chip oscillator clock frequency
Remark 5. fsub: Subsystem clock frequency (Low-speed on-chip oscillator clock frequency)
Remark 6. Except subsystem clock operation, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(4/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD3 Note 2	STOP mode Note 3	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$		0.19	0.51	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.25	0.51	
			$\mathrm{TA}^{\prime}=+50^{\circ} \mathrm{C}$		0.28	1.10	
			$\mathrm{TA}=+70^{\circ} \mathrm{C}$		0.38	1.90	
			$\mathrm{TA}^{\prime}=+85^{\circ} \mathrm{C}$		0.60	3.30	

Note 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, comparator, Programmable gain amplifier, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
Note 2. The values do not include the current flowing into the 12-bit interval timer and watchdog timer.
Note 3. For the setting of the current values when operating the subsystem clock in STOP mode, see the current values when operating the subsystem clock in HALT mode.

Peripheral Functions (Common to all products)
(TA = -40 to $+85^{\circ} \mathrm{C}, \mathbf{1 . 6} \mathrm{V} \leq \mathrm{EVDD} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

(Notes and Remarks are listed on the next page.)

Note 1. Current flowing to VDD.
Note 2. Operable range is 2.7 to 5.5 V .
Note 3. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, and high-speed system clock are stopped.
Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IdD1 or IdD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).
The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IwDT when the watchdog timer is in operation.
Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
Note 8. Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IdD3 and Icmp when the comparator circuit is in operation.
Note 9. Current flowing only to the 8-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 8-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
Note 10. Current consumed by generating the internal reference voltage (1.45 V).
Note 11. Current flowing during programming of the data flash.
Note 12. Current flowing during self-programming.
Note 13. For transition time to the SNOOZE mode, see 24.3.3 SNOOZE mode in the RL78/G11 User's Manual.
Note 14. Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.

Remark 1. fiL: Low-speed on-chip oscillator clock frequency
Remark 2. fCLK: CPU/peripheral hardware clock frequency
Remark 3. Temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$

2.4 AC Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)
(1/2)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fmain) operation	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	0.04167		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{s}$
			LS (low-speed main) mode	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} \\ & \mathrm{PMMC.} \mathrm{MCSEL}=0 \end{aligned}$	0.125		1	$\mu \mathrm{s}$
				$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} \\ & \mathrm{PMMC.} \mathrm{MCSEL}=1 \end{aligned}$	0.25		1	
			LP (low-power main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1			$\mu \mathrm{s}$
			LV (low-voltage main) mode	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.25		1	$\mu \mathrm{s}$
		Subsystem clock (fsub) operation	fil	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		66.7		$\mu \mathrm{S}$
		In the selfprogramming mode	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.04167		1	$\mu \mathrm{S}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{s}$
			LS (low-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.125		1	$\mu \mathrm{s}$
			LV (low-voltage main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.25		1	$\mu \mathrm{s}$
External system clock frequency	fex	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			1		20	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			1		16	MHz
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$			1		8	MHz
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$			1		4	MHz
External system clock input high-/lowlevel width	$\begin{aligned} & \text { texh, } \\ & \text { tEXL } \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			24			ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			30			ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$			60			ns
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$			120			ns
TIOO to TIO3 input high-/low-level width	ttic, tTILNote				$\begin{gathered} \text { 1/fMCK }+ \\ 10 \end{gathered}$			ns

Note Following conditions must be satisfied on low level interface of EVDD < VDD.
$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 2.7 \mathrm{~V}$: MIN. 125 ns $1.6 \mathrm{~V} \leq \mathrm{EVDD}<1.8 \mathrm{~V}$: MIN. 250 ns

Remark fмск: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m : Unit number ($m=0$), n : Channel number ($\mathrm{n}=0$ to 3))
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{VsS}=0 \mathrm{~V}\right)$
(2/2)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
TO00 to TO03, TKBO0, and TKBO1 output frequency Note	fto	TOOO to TO03, TKBOO, and TKBO1 (in the case of output from port pins other than P20)	HS (high-speed main) mode	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			12	MHz
				$2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$			8	
				$1.8 \mathrm{~V} \leq \mathrm{EVDD}<2.7 \mathrm{~V}$			4	
				$1.6 \mathrm{~V} \leq \mathrm{EVDD}<1.8 \mathrm{~V}$			2	
			LS (low-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			4	
				$1.6 \mathrm{~V} \leq \mathrm{EVDD}<1.8 \mathrm{~V}$			2	
			LP (low-power main) mode	$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			0.5	
			LV (low-voltage main) mode	$1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			2	
		TKBO1 (in the case of output from P20)	HS (high-speed main) mode	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			1.5	MHz
				$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$			1.2	
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			1	
			LS (low-speed main) mode	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			1.5	
				$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$			1.2	
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			1	
				$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$			0.75	
			LP (low-power main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			0.5	
			LV (low-voltage main) mode	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			1.5	
				$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$			1.2	
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			1	
				$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$			0.75	
				$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$			0.5	
PCLBUZO, PCLBUZ1 output frequency	fPCL	HS (high-speed main) mode		$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			16	MHz
				$2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$			8	
				$1.8 \mathrm{~V} \leq \mathrm{EVDD}<2.7 \mathrm{~V}$			4	
				$1.6 \mathrm{~V} \leq \mathrm{EVDD}<1.8 \mathrm{~V}$			2	
		LS (low-speed main) mode		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			4	
				$1.6 \mathrm{~V} \leq \mathrm{EVDD}<1.8 \mathrm{~V}$			2	
		LP (low-power main) mode		$1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			1	
		LV (low-voltage main) mode		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			4	
				$1.6 \mathrm{~V} \leq \mathrm{EVDD}<1.8 \mathrm{~V}$			2	
Interrupt input high-/ low-level width	$\begin{aligned} & \text { tinth, } \\ & \text { tintl } \end{aligned}$	INTP0 to INTP2, INTP9		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1			$\mu \mathrm{s}$
		INTP3 to INTP8, INTP10, INTP11		$1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	1			
Key interrupt input low-level width	tKR	KR0 to KR7		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	250			ns
				$1.6 \mathrm{~V} \leq \mathrm{EVDD}<1.8 \mathrm{~V}$	1			$\mu \mathrm{s}$
RESET low-level width	tRSL				10			$\mu \mathrm{S}$

Note When duty is 50%.

AC Timing Test Points

External System Clock Timing

TI/TO Timing

TIOO to TIO3

TO00 to TO03

Interrupt Request Input Timing

Key Interrupt Input Timing

$\overline{\text { RESET }}$ Input Timing

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)

When P01, P30, P31 and P54 are used as TxDq pins
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1, 2		$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		fмск/6		fmck/6		fмск/6		fmск/6	bps
		Theoretical value of the maximum transfer rate $\mathrm{f}_{\mathrm{MCK}}=\mathrm{fcLK}$ Note 3		4.0		1.3		0.1		0.6	Mbps
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$ Theoretical value of the maximum transfer rate $\mathrm{fmck}^{\mathrm{f}} \mathrm{fcLk}$ Note 3		fмск/6		fmck/6		fмск/6		fмск/6	bps
				4.0		1.3		0.1		0.6	Mbps
		$\begin{aligned} & 1.7 \mathrm{~V} \leq \text { EVDD } \leq 5.5 \mathrm{~V} \\ & \begin{array}{l} \text { Theoretical value of the } \\ \text { maximum transfer rate } \\ \text { fмck }=\text { fcLk } \text { Note } 3 \end{array} \end{aligned}$		fмск/6		fмck/6		fмск/6		fмск/6	bps
				4.0		1.3		0.1		0.6	Mbps
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V} \\ & \begin{array}{l} \text { Theoretical value of the } \\ \text { maximum transfer rate } \\ \mathrm{fm}_{\mathrm{M}}=\text { f f } \mathrm{LK} \\ \text { Note } 3 \end{array} \end{aligned}$				fмск/6		fмск/6		fmck/6	bps
						1.3		0.1		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
Note 2. Following conditions must be satisfied on low level interface of EVDD < VDD.
$2.4 \mathrm{~V} \leq \mathrm{EVDD}<2.7 \mathrm{~V}$: MAX.2.6 Mbps
$1.8 \mathrm{~V} \leq \mathrm{EVDD}<2.4 \mathrm{~V}$: MAX.1.3 Mbps
$1.6 \mathrm{~V} \leq \mathrm{EVDD}<1.8 \mathrm{~V}$: MAX. 0.6 Mbps
Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode: $24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V})$

$$
16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V})
$$

LS (low-speed main) mode: $\quad 8 \mathrm{MHz}(1.8 \mathrm{~V} \leq E V D D \leq 5.5 \mathrm{~V})$
LP (low-power main) mode: $1 \mathrm{MHz}(1.8 \mathrm{~V} \leq E V D D \leq 5.5 \mathrm{~V})$
LV (low-voltage main) mode: $\quad 4 \mathrm{MHz}(1.6 \mathrm{~V} \leq E V D D \leq 5.5 \mathrm{~V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

When P20 is used as TxD1 pin

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Sym bol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		fмск/6 Notes 1, 2,		fмск/6 Notes 1, 2		fMCK/6 Notes 1, 2		$\begin{gathered} \hline \mathrm{fMCK}_{\mathrm{K}} 6 \\ \text { Notes 1, } 2 \end{gathered}$	bps
		Theoretical value of the maximum transfer rate $\mathrm{f}_{\text {MCK }}=$ fcLK Notes 1,3		1.5		1.3		0.1		0.6	Mbps
		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		fмск/6 Notes 1, 2,		fмск/6 Notes 1, 2		$\begin{gathered} \hline \mathrm{fmCK} / 6 \\ \text { Notes 1, } 2 \end{gathered}$		$\begin{gathered} \hline \mathrm{fmCK}_{\mathrm{K}} 6 \\ \text { Notes 1,2 } \end{gathered}$	bps
		Theoretical value of the maximum transfer rate $\mathrm{f}_{\text {MCK }}=\mathrm{fcLK}$ Notes 1,3		1.2		1.2		0.1		0.6	Mbps
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		fмск/6 Notes 1, 2, 3		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		$\begin{gathered} \text { fмск/6 } \\ \text { Notes 1, } 2 \end{gathered}$	bps
		Theoretical value of the maximum transfer rate fmCK $=$ fcLK ${ }^{\text {Notes }} 1,3$		1.0		1.0		0.1		0.6	Mbps
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		Using prohibited		fмck/6 Notes 1, 2		fмск/6 Notes 1, 2		$\begin{gathered} \mathrm{fmCK}_{\mathrm{MC}} / 6 \\ \text { Notes 1, } 2 \end{gathered}$	bps
		Theoretical value of the maximum transfer rate $\mathrm{f}_{\mathrm{MCK}}=\mathrm{fCLK}$ Notes 1,3				0.6		0.1		0.6	Mbps
		$1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$				Using prohibited		Using prohibited		$\begin{gathered} \text { fмск/6 } \\ \text { Notes 1, } 2 \end{gathered}$	bps
		Theoretical value of the maximum transfer rate $\mathrm{fmCK}_{\mathrm{M}}=\mathrm{fcLK}$ Notes 1,3								0.5	Mbps
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$								fмск/6 Notes 1, 2	bps
		Theoretical value of the maximum transfer rate fmCK $=$ fclk ${ }^{\text {Notes }} 1,3$								0.5	Mbps

Note 1. fMCK is a frequency selected by setting the CKS bit in the SPS and SMR registers.
Note 2. The transfer rate of 4800 bps is only supported in the SNOOZE mode.
Note that the SNOOZE mode is not supported when fHOCO is 48 MHz .
Note 3. fclk in each operating mode is as follows.:
HS (high-speed main) mode: $24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
LS (low-speed main) mode: $\quad 8 \mathrm{MHz}(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
LP (low-power main) mode: $1 \mathrm{MHz}(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
LV (low-voltage main) mode: $\quad 4 \mathrm{MHz}(1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q : UART number ($q=0$ and 1), g : PIM and POM number ($g=0,2,3$ and 5)
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03))
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSIOO only)
($\mathrm{TA}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathbf{2 . 7} \mathrm{V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tкç $1 \geq 2 / f \mathrm{fcLk}$	83.3		250		2000		500		ns
SCKp high-/low-level width	tkL1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \\ & \leq 5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { tксү1/2 } \\ -7 \end{gathered}$		$\begin{gathered} \text { tкCy1/2 } \\ -50 \end{gathered}$		$\begin{gathered} \text { tксү1/2 } \\ -50 \end{gathered}$		$\begin{gathered} \text { tксү1/2 } \\ -50 \end{gathered}$		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD} \\ & \leq 5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { tксү1/2 } \\ -10 \end{gathered}$								ns
SIp setup time (to SCKp \uparrow) Note 1	tsık1	$\begin{aligned} & \hline 4.0 \mathrm{~V} \leq \mathrm{EVDD} \\ & \leq 5.5 \mathrm{~V} \\ & \hline \end{aligned}$	23		110		110		110		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD} \\ & \leq 5.5 \mathrm{~V} \end{aligned}$	33								ns
SIp hold time (from SCKp \uparrow) Note 2	tksı1		10		10		10		10		ns
Delay time from SCKp \downarrow to SOp output Note 3	tksO1	$\begin{aligned} & \mathrm{C}=20 \mathrm{pF} \\ & \text { Note } 4 \end{aligned}$		10		20		20		20	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn = 0 and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. $\quad \mathrm{C}$ is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p : CSI number $(\mathrm{p}=00)$, m: Unit number $(\mathrm{m}=0)$, n : Channel number $(\mathrm{n}=0)$, g : PIM and POM numbers $(\mathrm{g}=5)$
Remark 2. fмск: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number $(\mathrm{mn}=00)$)
(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

When P01, P32, P53, P54 and P56 are used as SOmn pins
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp ${ }^{1 "}$ when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p : CSI number ($p=00,01,10$ and 11), m : Unit number ($m=0$), n : Channel number ($n=0$ to 3), g : PIM and POM numbers ($\mathrm{g}=0,2,3$ to 5 and 12)

Remark 2. $\ddagger м с к$: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m : Unit number, n : Channel number ($\mathrm{mn}=00$ to 03)

When P20 is used as SO10 pin
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX	MIN.	MAX.	
SCKp cycle time	tKCY1	tKCY1 \geq 4/fcLk	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	600		600		4000		1000		ns
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	850		850						
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1000		1000						
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	-		1500				1500		
			$1.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	-		-		-		2000		
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	-		-		-				
SCKp high-/ low-level width	tкн1, tKL1	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		tKсү1/2 - 12		$\begin{gathered} \text { tксү1/2 } \\ -50 \end{gathered}$		tксү1/2-50		$\begin{gathered} \text { tкč1/2 } \\ -50 \end{gathered}$		ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		$\begin{gathered} \hline \text { tKCY1/2 } \\ -18 \end{gathered}$								
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		tKCY1/2 - 38								
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-								
		$1.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		-		-		tKCY1/2-100		
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		-		-				
SIp setup time (to SCKp \uparrow) Note 1	tsIK1	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		44		110		110		110		ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$										
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		75								
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-								
		$1.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		-		-		220		
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		-		-				
Slp hold time (from SCKp \uparrow) Note 2	tKSI1	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		19		19		19		19		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-								
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		-		-				
Delay time from SCKp \downarrow to SOp output Note 3	tKSO1	$\mathrm{C}=30 \mathrm{pF}$ Note 4	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		150		250		250		300	ns
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-							
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		-		-			

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. $\quad \mathrm{C}$ is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register \mathbf{g} (PIMg) and port output mode register \mathbf{g} (POMg).

Remark 1. p : CSI number ($\mathrm{p}=00,01,10$ and 11), m : Unit number $(\mathrm{m}=0)$, n : Channel number ($\mathrm{n}=0$ to 3), g : PIM and POM numbers ($g=0,4$ and 12)

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03))
(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

When P01, P32, P53, P54 and P56 are used as SOmn pins
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 3	tkcy2	$4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}$	$\mathrm{fmCK}>20 \mathrm{MHz}$	8/fmск		-		-		-		ns
			$\mathrm{fmCK} \leq 20 \mathrm{MHz}$	6/fмск		6/fмск		6/fмск		6/fмск		
		$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	$\mathrm{fmCK}^{\text {> }} 16 \mathrm{MHz}$	8/fмск		-		-		-	-	
			$\mathrm{fmCK} \leq 16 \mathrm{MHz}$	6/fмск		6/fмск		6/fмск		6/fмск		
		$2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		6/fмск and 500								
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		6/fмск and 750								
		$1.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}$		6/fмск and 1500		6/fмск and 1500						
		$1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		-								
SCKp high-/ low-level width	$\begin{aligned} & \text { tKH2, } \\ & \text { tKL2 } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		tkč2/2 - 7		$\begin{gathered} \mathrm{t}_{\mathrm{tc} \mathrm{Y} 2} / 2- \\ 7 \end{gathered}$		tkcyz/2 7		$\mathrm{t}_{\mathrm{kc}} \mathrm{y} 2 / 2 \text { - }$ 7		ns
		$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		tкCY2/2 - 8		$\begin{gathered} \mathrm{tkCy} 2 / 2- \\ 8 \end{gathered}$		tkcy2/2 - 8		tксү2/2 8		
		$1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}$		$\begin{gathered} \mathrm{t}_{\mathrm{KCY} \gamma} / 2 \\ -18 \end{gathered}$		$\begin{gathered} \mathrm{tkcy}_{2} / 2 \\ -18 \end{gathered}$		tkcy2/2 -18		$\begin{gathered} \mathrm{t}_{\mathrm{KCY} \mathrm{y} / 2} \\ -18 \end{gathered}$		
		$1.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		$\begin{gathered} \mathrm{t}_{\mathrm{kcy}}^{2} / 2 \\ -66 \end{gathered}$		$\begin{gathered} \mathrm{tkcy}_{\mathrm{k}} / 2 \\ -66 \end{gathered}$		$\begin{gathered} \text { tкCy2/2 } \\ -66 \end{gathered}$		$\begin{gathered} \mathrm{t}_{\mathrm{K} \subset \curlyvee} / 2 / 2 \\ -66 \end{gathered}$		
		$1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		-								
Slp setup time (to SCKp \uparrow) Note 1	tsik2	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		$\begin{aligned} & 1 / \text { fмск } \\ & +20 \end{aligned}$		$\begin{gathered} 1 / f \text { мск } \\ +30 \end{gathered}$		$\begin{aligned} & 1 / \mathrm{fmск} \\ & +30 \end{aligned}$		$\begin{aligned} & \text { 1/fмск } \\ & +30 \end{aligned}$		ns
		$1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}$		$\begin{aligned} & 1 / \mathrm{fмск} \\ & +30 \end{aligned}$		$\begin{gathered} 1 / \text { fмск } \\ +30 \end{gathered}$		$\begin{aligned} & 1 / \mathrm{fmск} \\ & +30 \end{aligned}$		$\begin{aligned} & 1 / \mathrm{fmск} \\ & +30 \end{aligned}$		
		$1.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		$\begin{gathered} 1 / \text { fмск } \\ +40 \end{gathered}$		$\begin{aligned} & 1 / \mathrm{fмск} \\ & +40 \end{aligned}$		$\begin{aligned} & 1 / \mathrm{fmск} \\ & +40 \end{aligned}$		$\begin{aligned} & 1 / f м с к \\ & +40 \end{aligned}$		
		$1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		-								
SIp hold time (from SCKp \uparrow) Note 2	tksı2	$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		$\begin{gathered} 1 / \mathrm{fmск} \\ +31 \end{gathered}$		$\begin{gathered} 1 / \text { fмск } \\ +31 \end{gathered}$		$\begin{gathered} 1 / \mathrm{fmск} \\ +31 \end{gathered}$		$\begin{gathered} 1 / \text { fмск } \\ +31 \end{gathered}$		ns
		$1.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		$\begin{aligned} & 1 / \mathrm{fмск} \\ & +250 \end{aligned}$		$\begin{aligned} & \hline \text { 1/fмск } \\ & +250 \end{aligned}$		$\begin{aligned} & 1 / \text { fмск } \\ & +250 \end{aligned}$		$\begin{aligned} & 1 / f \text { мск } \\ & +250 \end{aligned}$		
		$1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		-								

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn = 0 and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. The maximum transfer rate when using the SNOOZE mode is 1 Mbps .

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p : CSI number ($\mathrm{p}=00,01,10$ and 11), m : Unit number $(\mathrm{m}=0)$, n : Channel number $(\mathrm{n}=0$ to 3$)$, g : PIM and POM numbers ($\mathrm{g}=0,2,3$ to 5 and 12)
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(2/2)

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. \quad C is the load capacitance of the SOp output lines.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register \mathbf{g} (PIMg) and port output mode register g (POMg).

Remark 1. p : CSI number $(\mathrm{p}=00,01,10$ and 11), m : Unit number $(\mathrm{m}=0)$, n : Channel number $(\mathrm{n}=0$ to 3$)$, g : PIM and POM numbers $(\mathrm{g}=0,2,3$ to 5 and 12)
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00$ to 03))

When P20 is used as SO10 pin
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD}=\mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 5	tkcy2	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$\mathrm{fmck}>20 \mathrm{MHz}$	14/fмск		-		-		-		ns
			$\mathrm{f}_{\text {MCK }} \leq 20 \mathrm{MHz}$	12/fmск		12/fmCk		12/fmсk		12/fmck		
		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$\mathrm{f}_{\text {MCK }}>16 \mathrm{MHz}$	14/fmск and 850		-		-		-		
			$\mathrm{f}_{\text {MCK }} \leq 16 \mathrm{MHz}$	12/fmck and 850		12/fmск		12/fмск		12/fmск		
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		12/fmck and 1000		12/fмск		12/fмск		12/fмск		
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		12/fmск		12/fмск		12/fмск		
		$1.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		-		-		12/fмск		
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		-		-				
SCKp high-/ low-level width	$\mathrm{t}_{\mathrm{KH} \mathrm{H} 2},$	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		tксү2/2 - 7		tксүг/2 - 7		tксү2/2 7		$\mathrm{t}_{\mathrm{k} \subset \curlyvee} \mathrm{Y} 2 / 2 \text { - }$ 7		ns
		$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		tкCY2/2 - 8		tксү2/2 8		tkcyz/28		tксү2/2 - 8		
		$1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		-		tкč2/2 - 18		tkcy2/2 - 18		tксү2/2 - 18		
		$1.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		-		-		tкč2/2-		
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		-		-		66		
SIp setup time (to SCKp \uparrow) Note 1	tsIK2	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1/fmCK $+20$		$\begin{gathered} 1 / \mathrm{fMCK} \\ +30 \end{gathered}$		1/fMCK$+30$		$\begin{gathered} 1 / \mathrm{fMCK} \\ +30 \end{gathered}$		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1/fmCK $+30$								
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-								
		$1.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		-		-		1/fmck		
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		-		-		+ 40		
SIp hold time (from SCKp \uparrow) Note 2	tks ${ }^{2}$	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		$\begin{gathered} 1 / \mathrm{fMCK} \\ +31 \end{gathered}$		$\begin{gathered} 1 / \mathrm{fmCK} \\ +31 \end{gathered}$		$\begin{gathered} 1 / \mathrm{fMCK} \\ +31 \end{gathered}$		$\begin{gathered} 1 / \mathrm{fMCK} \\ +31 \end{gathered}$		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		1/fmCK $+31$		1/fmCK $+31$		1/fмck $+31$		
		$1.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		-		-		-		1/fmск		
		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		-		-		+250		
Delay time from SCKp \downarrow to SOp output Note 3	tksO2	$\mathrm{C}=30 \mathrm{pF}$ Note 4	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		$\begin{gathered} \text { 2/fмck } \\ +160 \end{gathered}$		$\begin{aligned} & \text { 2/fмck } \\ & +260 \end{aligned}$		$\begin{aligned} & \text { 2/fMCK } \\ & +260 \end{aligned}$		$\begin{aligned} & \hline \text { 2/fmCK } \\ & +260 \end{aligned}$	ns
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		$\begin{gathered} \text { 2/fMCK } \\ +190 \end{gathered}$							
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-							
			$1.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		-		-		2/fmck	
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		-		-		-		+ 320	

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and $C K P m n=0$.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. \quad is the load capacitance of the SOp output lines.
Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps .

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p : CSI number $(\mathrm{p}=00,01,10$ and 11$)$, m : Unit number $(m=0)$, n : Channel number $(\mathrm{n}=0$ to 3$)$, g : PIM and POM

$$
\text { numbers }(g=0,4 \text { and } 12)
$$

Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00$ to 03))

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSIOO))

SCK00RL78 microcontroller	SCKSO
SOOO	SI
$\overline{\mathrm{SSIOO}}$	$\overline{\mathrm{SSO}}$

Remark p: CSI number $(\mathrm{p}=00,01,10$ and 11$)$

CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number ($p=00,01,10$ and 11)
Remark 2. m : Unit number, n : Channel number ($\mathrm{mn}=00$ to 03)
(5) During communication at same potential (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Note 1. The value must be equal to or less than $f(M C K / 4$.
Note 2. Set the fmck value to keep the hold time of $\operatorname{SCLr}=$ "L" and $S C L r=$ "H".

Caution Select the normal input buffer and the N-ch open drain output (EVDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode connection diagram (during communication at same potential)

Simplified $I^{2} \mathrm{C}$ mode serial transfer timing (during communication at same potential)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (SDAr) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SDAr, SCLr) load capacitance r : IIC number ($r=00,01,10$ and 11), g: PIM number ($g=0,3$ and 5), h: POM number ($h=0,3$ and 5)
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ($m=0$),
n : Channel number ($\mathrm{n}=0$ to 3), $\mathrm{mn}=00$ to 03)
(6) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3.0 \mathrm{~V}$) (UART mode) (dedicated baud rate generator output)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(1/2)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		reception	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V} \end{aligned}$		fмск/6 Note 1	bps						
			Theoretical value of the maximum transfer rate fмск $=$ fcLk Note 3		4.0		1.3		0.1		0.6	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$		fмск/6 Note 1	bps						
			Theoretical value of the maximum transfer rate fmck $=$ fcLk Note 3		4.0		1.3		0.1		0.6	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \end{aligned}$		fмск/6 Notes 1, 2, 4		$\begin{gathered} \mathrm{fmCK}_{\mathrm{M}} / 6 \\ \text { Notes 1, } 2 \end{gathered}$		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate $\mathrm{f}_{\mathrm{mcK}}=\text { fcLk } \text { Note } 3$		4.0		1.3		0.1		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is $4,800 \mathrm{bps}$ only.
Note 2. Use it with EVDD $\geq \mathrm{Vb}$.
Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode: $24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
LS (low-speed main) mode: $\quad 8 \mathrm{MHz}(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
LP (low-power main) mode: $1 \mathrm{MHz}(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
LV (low-voltage main) mode: $\quad 4 \mathrm{MHz}(1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
Note 4. The following conditions are required for low voltage interface when EVDD $<V_{D D}$
$2.4 \mathrm{~V} \leq \mathrm{EVDD}<2.7 \mathrm{~V}$: MAX. 2.6 Mbps
$1.8 \mathrm{~V} \leq \mathrm{EVDD}<2.4 \mathrm{~V}$: MAX. 1.3 Mbps

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (EVDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For Viн and Vit, see the DC characteristics with TTL input buffer selected.

Remark 1. $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. q : UART number ($\mathrm{q}=0$ and 1), g : PIM and POM number ($\mathrm{g}=0,2,3,5$ and 12)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03))
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmission	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V} \end{aligned}$		Note 1		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $\begin{aligned} & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{b}}=2.7 \mathrm{~V} \end{aligned}$		2.8 Note 2	Mbps						
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$		Note 3		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate $\begin{aligned} & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{b}}=2.3 \mathrm{~V} \end{aligned}$		1.2 Note 4	Mbps						
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \end{aligned}$		Notes 5, 6	bps						
			Theoretical value of the maximum transfer rate $\begin{aligned} & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{b}}=1.6 \mathrm{~V} \end{aligned}$		0.43 Note 7	Mbps						

Note 1. The smaller maximum transfer rate derived by using $f(\mathcal{L C} / 6$ or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$ and $2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
Note 3. The smaller maximum transfer rate derived by using $f м \subset \kappa / 6$ or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 4.0 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$

Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \operatorname{Rb} \times \ln \left(1-\frac{2.0}{\mathrm{~V}_{b}}\right)\right\}}{} \times 100[\%]$

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
Note 5. Use it with EVDD $\geq \mathrm{V}_{\mathrm{b}}$.

Note 6. The smaller maximum transfer rate derived by using $\mathrm{f}_{\mathrm{MCK}} / 6$ or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $1.8 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}$ and $1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$

$$
\begin{aligned}
& \text { Maximum transfer rate } \left.=\frac{1}{\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{1.5}{\mathrm{Vb}_{\mathrm{b}}}\right)\right\} \times 3} \mathrm{Cbps}\right] \\
& \text { Baud rate error (theoretical value) }=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{1.5}{\mathrm{~V}_{\mathrm{b}}}\right)\right\}}{\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }} \times 100 \text { [\%] } \\
& \text { * This value is the theoretical value of the relative difference between the transmission and reception sides }
\end{aligned}
$$

Note 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (EVDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (TxDq) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (TxDq) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. q : UART number ($q=0$ and 1), g : PIM and POM number ($g=0,2,3,5$ and 12)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03) $)$
(7) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.0 \mathrm{~V}$) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSIOO only)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = 0 V)
(1/2)

Parameter	$\begin{gathered} \hline \text { Sym } \\ \text { bol } \end{gathered}$	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tкCY $1 \geq 2 /$ fclk	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	200		1150		1150		1150		ns
		tкCY1 $\geq 2 /$ fclk	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	300								ns
SCKp high-level width	tкH1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} \hline \text { tксү1/2 } \\ -50 \end{gathered}$		$\begin{array}{\|c} \hline \text { tксү1/2 } \\ -50 \end{array}$		$\begin{aligned} & \text { tкСү1/2 } \\ & -50 \end{aligned}$		$\begin{gathered} \hline \text { tксү1/2 } \\ -50 \end{gathered}$		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} \text { tксү1/2 } \\ -120 \end{gathered}$		$\begin{array}{\|c\|} \hline \text { tксү1/2 } \\ \hline-120 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \text { tксү1/2 } \\ \hline-120 \end{array}$		$\begin{gathered} \text { tксү1/2 } \\ \hline-120 \end{gathered}$		ns
SCKp low-level width	tkLı	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} \text { tксү1/2 } \\ -7 \end{gathered}$		$\begin{array}{\|c} \hline \text { tксу1/2 } \\ -50 \end{array}$		$\begin{gathered} \text { tксү1/2 } \\ -50 \end{gathered}$		$\begin{gathered} \text { tксу1/2 } \\ -50 \end{gathered}$		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} \text { tксү1/2 } \\ -10 \end{gathered}$								
SIp setup time (to SCKp \uparrow) Note 1	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		58		479		479		479		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		121								
SIp hold time (from SCKp \uparrow) Note 1	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		10		10		10		10		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$										
Delay time from SCKp \downarrow to SOp output Note 1	tksol	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			60		60		60		60	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			130		130		130		130	
Slp setup time (to SCKp \downarrow) Note 2	tsiк1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		23		110		110		110		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		33								
Slp hold time (from SCKp \downarrow) Note 2	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		10		10		10		10		ns

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(2/2)

Parameter	$\begin{gathered} \text { Sym } \\ \text { bol } \end{gathered}$	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Delay time from SCKp \uparrow to SOp output Note 2	tksol	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		10		10		10		10	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$									

Note 1. When DAPmn $=0$ and $C K P m n=0$, or DAPmn $=1$ and CKPmn $=1$.
Note 2. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (EVDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SCKp, SOp) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. p : CSI number $(p=00)$, m: Unit number $(m=0)$, n : Channel number $(n=0), g$: PIM and POM number $(g=5)$
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number $(\mathrm{mn}=00)$)
(8) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3.0 \mathrm{~V}$) (CSI mode) (master mode, SCKp... internal clock output)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Note Use it with EVDD $\geq \mathrm{Vb}_{\mathrm{b}}$.

Caution Select the TTL input buffer for the Slp pin and the N-ch open drain output (EVdD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For Viн and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the page after the next page.)
(8) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3.0 \mathrm{~V}$) (CSI mode) (master mode, SCKp... internal clock output)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(2/2)

Parameter	$\begin{gathered} \text { Sym } \\ \text { bol } \end{gathered}$	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp \uparrow) Note 1	tsıк1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	81		479		479		479		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	177								
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	479								
SIp hold time (from SCKp \uparrow) Note 1	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	19		19		19		19		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$									
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V} \mathrm{~b} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$									
Delay time from SCKp \downarrow to SOp output Note 1	tksO1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		100		100		100		100	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		195		195		195		195	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		483		483		483		483	ns
SIp setup time (to SCKp \downarrow) Note 2	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	44		110		110		110		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$									
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	110								
SIp hold time (from SCKp \downarrow) Note 2	tksıl	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	19		19		19		19		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$									
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V} \mathrm{~b} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$									
Delay time from SCKp \uparrow to SOp output Note 2	tksol	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$		25		25		25		25	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$									
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$									

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
Note 2. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. Use it with EVDD $\geq \mathrm{Vb}$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (EVDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register \mathbf{g} (POMg). For Vif and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SCKp, SOp) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. p : CSI number $(\mathrm{p}=00,01,10$ and 11), m: Unit number $(\mathrm{m}=0)$, n : Channel number $(\mathrm{n}=0$ to 3$)$, g : PIM and POM numbers $(g=0,2,3$ to 5 and 12)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03))

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn =0.)

Remark p: CSI number $(p=00,01,10$ and 11$)$, m: Unit number $(m=0), n$: Channel number $(n=0$ to 3$)$, g : PIM and POM numbers $(g=0,2,3$ to 5 and 12)
(9) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3.0 \mathrm{~V}$) (CSI mode) (slave mode, SCKp... external clock input)
($\mathrm{TA}=-40$ to $85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	$\begin{gathered} \text { Symb } \\ \text { ol } \end{gathered}$	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V} \end{aligned}$	$20 \mathrm{MHz}<$ fmck $\leq 24 \mathrm{MHz}$	12/fмск		-		-		-		ns
			$8 \mathrm{MHz}<\mathrm{fmCK} \leq 20 \mathrm{MHz}$	10/fмск		-		-		-		ns
			$4 \mathrm{MHz}<\mathrm{fmCK} \leq 8 \mathrm{MHz}$	8/fмск		16/ғмск		-		-		ns
			fMCK $\leq 4 \mathrm{MHz}$	6/fмск		10/fмск		10/fмск		10/fмск		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$	$20 \mathrm{MHz}<\mathrm{fmCK}^{5} 24 \mathrm{MHz}$	16/fмск		-		-		-		ns
			$16 \mathrm{MHz}<\mathrm{fmck} \leq 20 \mathrm{MHz}$	14/fмск		-		-		-		ns
			$8 \mathrm{MHz}<\mathrm{fmck}^{5} 16 \mathrm{MHz}$	12/fмск		-		-		-		ns
			$4 \mathrm{MHz}<\mathrm{fmCK} \leq 8 \mathrm{MHz}$	8/fмск		16/fмск		-		-		ns
			$\mathrm{fMCK} \leq 4 \mathrm{MHz}$	6/fмск		10/fмск		10/fмск		10/fмск		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD}<2.7 \mathrm{~V} \text {, } \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \\ & \text { Note } 2 \end{aligned}$	$20 \mathrm{MHz}<\mathrm{fmck} \leq 24 \mathrm{MHz}$	36/fмск		-		-		-		ns
			$16 \mathrm{MHz}<$ fmck $\leq 20 \mathrm{MHz}$	32/fмск		-		-		-		ns
			$8 \mathrm{MHz}<\mathrm{fm}_{\text {M }} \leq 16 \mathrm{MHz}$	26/fмск		-		-		-		ns
			$4 \mathrm{MHz}<\mathrm{fmCk} \leq 8 \mathrm{MHz}$	16/fmск		16/fмск		-		-		ns
			fmск $\leq 4 \mathrm{MHz}$	10/fмск		10/fмск		10/fмск		10/fмск		ns
SCKp high-/ low-level width	tкн2,tkL2	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$		$\begin{gathered} \text { tксу2/2 } \\ -12 \end{gathered}$		$\begin{gathered} \text { tkcy } 2 / 2 \\ -50 \end{gathered}$		$\begin{gathered} \text { tкcy2/2 } \\ -50 \end{gathered}$		tксү2/2 - 50		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{CD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{tkcy}_{2} / 2 \\ -18 \end{gathered}$		$\begin{gathered} \text { tксү } 2 / 2 \\ -50 \end{gathered}$		$\begin{gathered} \mathrm{t}_{\mathrm{kcy}} / 2 \\ -50 \end{gathered}$		tксү2/2 - 50		ns
		$1.8 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note 2		$\begin{gathered} \text { tксү2/2 } \\ -50 \end{gathered}$		$\begin{gathered} \mathrm{tkcy}_{\mathrm{k}} / 2 \\ -50 \end{gathered}$		$\begin{gathered} \mathrm{t}_{\mathrm{kcy} 2} / 2 \\ -50 \end{gathered}$		tксү2/2 - 50		ns
SIp setup time (to SCKp \uparrow) Note 3	tsıK2	$4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$		1/fмск $+20$		$\begin{gathered} 1 / \mathrm{fmск} \\ +30 \end{gathered}$		1/fмск $+30$		1/fмск + 30		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$		1/fмск $+20$		1/fmск $+30$		$\begin{aligned} & 1 / \text { fмск } \\ & +30 \end{aligned}$		1/fмск + 30		ns
		$1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note 2		$\begin{aligned} & 1 / \mathrm{fmск} \\ & +30 \end{aligned}$		$\begin{aligned} & 1 / \mathrm{fmск} \\ & +30 \end{aligned}$		1/fмск $+30$		1/fмск + 30		ns
SIp hold time (from SCKp \uparrow) Note 3	tks 12			$\begin{gathered} 1 / \mathrm{fмск} \\ +31 \end{gathered}$		$\begin{gathered} 1 / \text { fмск } \\ +31 \end{gathered}$		$\begin{gathered} \hline \text { 1/fмск } \\ +31 \end{gathered}$		1/ғмск + 31		ns
Delay time from SCKp \downarrow to SOp output Note 4	tkso2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			$\begin{aligned} & 2 / f м с к \\ & +120 \end{aligned}$		$\begin{aligned} & \text { 2/fмск } \\ & +573 \end{aligned}$		$\begin{aligned} & \text { 2/fмск } \\ & +573 \end{aligned}$		$\begin{aligned} & \text { 2/fмск } \\ & +573 \end{aligned}$	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			$\begin{aligned} & 2 / f м с к \\ & +214 \end{aligned}$		$\begin{aligned} & \text { 2/fмск } \\ & +573 \end{aligned}$		$\begin{aligned} & 2 / f м с к \\ & +573 \end{aligned}$		$\begin{aligned} & 2 / f \text { мск } \\ & +573 \end{aligned}$	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$			$\begin{aligned} & 2 / f m с к \\ & +573 \end{aligned}$		$\begin{aligned} & \text { 2/fмск } \\ & +573 \end{aligned}$		$\begin{aligned} & \text { 2/fмск } \\ & +573 \end{aligned}$		$\begin{aligned} & 2 / f \text { ммск } \\ & +573 \end{aligned}$	ns

(Notes, Caution and Remarks are listed on the next page.)

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
Note 2. Use it with EVDD $\geq \mathrm{Vb}$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp \downarrow " and the SIp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn = 1 and CKPmn $=0$.
Note 4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (EVdD tolerance) mode for the SOp pin by using port input mode register $g(\mathrm{PIMg})$ and port output mode register g (POMg). For Viн and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

Remark 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$: Communication line (SOp) pull-up resistance, $\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SOp) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. p : CSI number $(\mathrm{p}=00$ to 03), m : Unit number $(\mathrm{m}=0)$, n : Channel number $(\mathrm{n}=0$ to 3$)$, g : PIM and POM numbers ($g=0$, 2, 3 to 5 and 12)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn $=0$.)

Remark p: CSI number $(p=00,01,10$ and 11$)$, m: Unit number $(m=0), n$: Channel number $(n=0$ to 3$)$, g : PIM and POM numbers ($\mathrm{g}=0,2,3$ to 5 and 12)
(10) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3.0 \mathrm{~V}$) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
($\mathrm{TA}=-40$ to $85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	$\begin{gathered} \text { Sym } \\ \text { bol } \end{gathered}$	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscı	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & \hline 1000 \\ & \text { Note } 1 \end{aligned}$		$\begin{gathered} 300 \\ \text { Note } 1 \end{gathered}$		$\begin{gathered} \hline 250 \\ \text { Note } 1 \end{gathered}$		$\begin{aligned} & \hline 300 \\ & \text { Note } 1 \end{aligned}$	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & \hline 1000 \\ & \text { Note } 1 \end{aligned}$		$\begin{gathered} \hline 300 \\ \text { Note } 1 \end{gathered}$		250		$\begin{aligned} & \hline 300 \\ & \text { Note } 1 \end{aligned}$	kHz
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} \hline 400 \\ \text { Note } 1 \end{gathered}$		$\begin{gathered} \hline 300 \\ \text { Note } 1 \end{gathered}$		$\begin{gathered} 250 \\ \text { Note } 1 \end{gathered}$		$\begin{gathered} \hline 300 \\ \text { Note } 1 \end{gathered}$	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} \hline 400 \\ \text { Note } 1 \end{gathered}$		$\begin{gathered} \hline 300 \\ \text { Note } 1 \end{gathered}$		$\begin{gathered} 250 \\ \text { Note } 1 \end{gathered}$		300	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		300		300		$\begin{gathered} 250 \\ \text { Note } 1 \end{gathered}$		$\begin{gathered} 300 \\ \text { Note } 1 \end{gathered}$	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD}_{\mathrm{VD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	475		1550		1550		1550		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	475		1550		1550		1550		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	1150		1550		1550		1550		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1150		1550		1550		1550		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	1550		1550		1550		1550		ns
Hold time when SCLr = "H"	thigh	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	245		610		610		610		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	200		610		610		610		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVod} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	675		610		610		610		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	600		610		610		610		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	610		610		610		610		ns
Data setup time (reception)	$\begin{aligned} & \hline \text { tsu: } \\ & \text { DAT } \end{aligned}$	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \hline \text { 1/fмск } \\ & +135 \\ & \text { Note } 3 \end{aligned}$		$\begin{aligned} & \hline \text { 1/fmck } \\ & +190 \\ & \text { Note } 2 \end{aligned}$		$\begin{aligned} & \hline \text { 1/fмск } \\ & +190 \\ & \text { Note } 3 \end{aligned}$		$\begin{aligned} & \hline \text { 1/fmck } \\ & +190 \\ & \text { Note } 3 \end{aligned}$		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \text { 1/fmck } \\ & +135 \\ & \text { Note } 3 \end{aligned}$		$\begin{aligned} & \text { 1/fmск } \\ & +190 \\ & \text { Note } 2 \end{aligned}$		$\begin{aligned} & \text { 1/fmck } \\ & +190 \\ & \text { Note } 3 \end{aligned}$		$\begin{aligned} & \text { 1/fmck } \\ & +190 \\ & \text { Note } 3 \end{aligned}$		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \hline \text { 1/fmck } \\ & +190 \\ & \text { Note } 3 \end{aligned}$		$\begin{aligned} & \hline \text { 1/fmск } \\ & +190 \\ & \text { Note } 3 \end{aligned}$		$\begin{aligned} & \hline \text { 1/fmск } \\ & +190 \\ & \text { Note } 3 \end{aligned}$		$\begin{aligned} & \text { 1/fmck } \\ & +190 \\ & \text { Note } 3 \end{aligned}$		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq E V_{D D}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1 / \text { fmck } \\ & +190 \\ & \text { Note } 3 \end{aligned}$		$\begin{aligned} & \text { 1/fmck } \\ & +190 \\ & \text { Note } 3 \end{aligned}$		$\begin{aligned} & \text { 1/fmck } \\ & +190 \\ & \text { Note } 3 \end{aligned}$		$\begin{aligned} & \text { 1/fmck } \\ & +190 \\ & \text { Note } 3 \end{aligned}$		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD}_{\mathrm{DD}}<4.0 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1 / \mathrm{fmck} \\ & +190 \\ & \text { Note } 3 \end{aligned}$		$\begin{aligned} & \hline \text { 1/fmck } \\ & +190 \\ & \text { Note } 3 \end{aligned}$		$\begin{aligned} & \hline \text { 1/fmck } \\ & +190 \\ & \text { Note } 3 \end{aligned}$		$\begin{aligned} & \text { 1/fmck } \\ & +190 \\ & \text { Note } 3 \end{aligned}$		ns
Data hold time (transmission)	tho:	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD}^{4.5 .5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V},} \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	0	305	0	305	0	305	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	0	305	0	305	0	305	ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	0	355	0	355	0	355	0	355	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	355	0	355	0	355	0	355	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	0	405	0	405	0	405	0	405	ns

Note 1. The value must be equal to or less than $f M C K / 4$.
Note 2. Use it with $E V_{D D} \geq \mathrm{Vb}_{\mathrm{b}}$.
Note 3. Set the fMCK value to keep the hold time of $S C L r=$ " L " and $S C L r=$ " H ".

Caution Select the TTL input buffer and the N-ch open drain output (EVDD tolerance) mode for the SDAr pin and the N-ch open drain output (EVDd tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register \mathbf{g} (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified $I^{2} \mathrm{C}$ mode connection diagram (during communication at different potential)

Simplified ${ }^{2}{ }^{2} \mathrm{C}$ mode serial transfer timing (during communication at different potential)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SDAr, SCLr) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. r: IIC number ($r=00,01,10$ and 11), g : PIM, POM number ($g=0,3$ and 5)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ($m=0$),
n : Channel number ($\mathrm{n}=0$ to 3), $\mathrm{mn}=00$ to 03)

2.5.2 Serial interface IICA

(1) $\mathrm{I}^{2} \mathrm{C}$ standard mode
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LP (Low-power main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLAO clock frequency	fscl	Standard mode:$\text { fCLK } \geq 1 \mathrm{MHz}$	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	0	100	0	100	0	100	0	100	kHz
			$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	0	100	0	100	0	100	0	100	kHz
			$1.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	0	100	0	100	0	100	0	100	kHz
			$1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	-		0	100	0	100	0	100	kHz
Setup time of restart condition	tsu: STA	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		-		4.7		4.7		4.7		$\mu \mathrm{s}$
Hold time Note 1	thD: STA	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		-		4.0		4.0		4.0		$\mu \mathrm{s}$
Hold time when SCLAO = "L"	tıow	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		-		4.7		4.7		4.7		$\mu \mathrm{s}$
Hold time when SCLAO = "H"	thigh	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$				4.0		4.0		4.0		$\mu \mathrm{s}$
Data setup time (reception)	tsu: DAT	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		250		250		250		250		ns
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		250		250		250		250		ns
		$1.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}$		250		250		250		250		ns
		$1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$				250		250		250		ns
Data hold time (transmission) Note 2	thD: DAT	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0	3.45	0	3.45	0	3.45	0	3.45	$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0	3.45	0	3.45	0	3.45	0	3.45	$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0	3.45	0	3.45	0	3.45	0	3.45	$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		-		0	3.45	0	3.45	0	3.45	$\mu \mathrm{s}$
Setup time of stop condition	tsu: sto	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		4.0		$\mu \mathrm{S}$
		$1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		-		4.0		4.0		4.0		$\mu \mathrm{s}$
Bus-free time	tbuF	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		-		4.7		4.7		4.7		$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIORO2) in the peripheral I/O redirection register 0 (PIORO) is 1. At this time, the pin characteristics (Іон1, Iol1, Vor1, Vol1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $\mathrm{Cb}=400 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$
(2) $\mathrm{I}^{2} \mathrm{C}$ fast mode
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVdD} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (highspeed main) mode		LS (lowspeed main) mode		LP (Lowpower main) mode		LV (lowvoltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLAO clock frequency	fscl	Fast mode: fcLk $\geq 3.5 \mathrm{MHz}$	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	0	400	0	400	0	400	0	400	kHz
			$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	0	400	0	400	0	400	0	400	kHz
Setup time of restart condition	tSu: STA	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		0.6		$\mu \mathrm{S}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		0.6		$\mu \mathrm{s}$
Hold time Note 1	thd: STA	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		0.6		$\mu \mathrm{S}$
Hold time when SCLAO = "L"	tıow	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		1.3		1.3		1.3		1.3		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		1.3		1.3		1.3		1.3		$\mu \mathrm{S}$
Hold time when SCLA0 = "H"	thigh	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		0.6		$\mu \mathrm{S}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		0.6		$\mu \mathrm{s}$
Data setup time (reception)	tsu: DAT	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		100		100		100		100		ns
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		100		100		100		100		ns
Data hold time (transmission) Note 2	thD: DAT	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0	0.9	0	0.9	0	0.9	0	0.9	$\mu \mathrm{S}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0	0.9	0	0.9	0	0.9	0	0.9	$\mu \mathrm{s}$
Setup time of stop condition	tsu: sto	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		0.6		$\mu \mathrm{S}$
Bus-free time	tbuF	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		1.3		1.3		1.3		1.3		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		1.3		1.3		1.3		1.3		$\mu \mathrm{S}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIORO2) in the peripheral I/O redirection register 0 (PIORO) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $\mathrm{Cb}=320 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$
(3) $1^{2} \mathrm{C}$ fast mode plus
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, \mathbf{1 . 6} \mathrm{V} \leq \mathrm{EVDD} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (highspeed main) mode		LS (lowspeed main) mode		LP (Lowpower main) mode		LV (lowvoltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLAO clock frequency	fscl	Fast mode plus: fclk $\geq 10 \mathrm{MHz}$	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \\ & \mathrm{~V} \end{aligned}$	0	1000	-				-		kHz
Setup time of restart condition	tsu: STA	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0.26		-				-		$\mu \mathrm{s}$
Hold time Note 1	thd: STA	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0.26		-				-		$\mu \mathrm{s}$
Hold time when SCLAO = "L"	tıow	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0.5		-				-		$\mu \mathrm{s}$
Hold time when SCLAO = "H"	thigh	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0.26		-				-		$\mu \mathrm{s}$
Data setup time (reception)	tsu: DAT	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		50		-				-		ns
Data hold time (transmission) Note 2	thD: DAT	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0	0.45	-		-		-		$\mu \mathrm{S}$
Setup time of stop condition	tsu: sto	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0.26		-				-		$\mu \mathrm{S}$
Bus-free time	tBuF	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		0.5		-		-		-		$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIORO2) in the peripheral I/O redirection register 0 (PIORO) is 1. At this time, the pin characteristics (ІОН1, IOL1, VOH1, Voli) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.
Fast mode plus: $\mathrm{Cb}=120 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$

IICA serial transfer timing

Remark $n=0,1$

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVrefm	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage $(+)=V_{B G R}$ Reference voltage (-)= AVrefm
ANIO to ANI3	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).
ANI16 to ANI22	Refer to 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1).		-

(1) When reference voltage (+) = AVREFPIANIO (ADREFP1 $=0$, ADREFPO $=1$), reference voltage (-) $=$ AVRefm/ANI1 (ADREFM = 1), target pin: ANI2 and ANI3, internal reference voltage, and temperature sensor output voltage
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, Reference voltage $(+)=$ AVREFP, Reference voltage $(-)$ $=A V_{\text {refm }}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution AVREFP $=$ VDD Note 3	$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$		1.2	± 3.5	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$ Note 4		1.2	± 7.0	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI2 and ANI3	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{S}$
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	57		95	$\mu \mathrm{s}$
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution AVREFP $=$ VDD Note 3	$1.8 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$			± 0.25	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$ Note 4			± 0.50	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution AVrefp $=$ Vdd Note 3	$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			± 0.25	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{AV}$ Refp $\leq 5.5 \mathrm{~V}$ Note 4			± 0.50	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution AVREFP $=$ VDD Note 3	$1.8 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$			± 2.5	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}$ Refp $\leq 5.5 \mathrm{~V}$ Note 4			± 5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP $=$ VDD Note 3	$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			± 1.5	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}$ Refp $\leq 5.5 \mathrm{~V}$ Note 4			± 2.0	LSB
Analog input voltage	Vain	ANI2 and ANI3		0		AVRefp	V
		Internal reference voltage$(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$		VBGR Note 5			V
		Temperature sensor output voltage$(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$		VTMPS25 Note 5			V

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\%FSR) to the full-scale value.
Note 3. When AVrefp < VDd, the MAX. values are as follows.
Overall error: \quad Add ± 1.0 LSB to the MAX. value when $A V R E F P=$ VDD.
Zero-scale error/Full-scale error: Add $\pm 0.05 \% F S R$ to the MAX. value when AVREFP $=$ VDD.
Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AVREFP $=$ VDD.
Note 4. Values when the conversion time is set to $57 \mu \mathrm{~s}$ (min.) and $95 \mu \mathrm{~s}$ (max.).
Note 5. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.
(2) When reference voltage (+) $=$ AVREFP/ANIO (ADREFP1 $=0$, ADREFP0 $=1$), reference voltage (-) $=$ AVrefmiANI1 (ADREFM = 1), target pin: ANI16 to ANI22
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{AVReFP} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = 0 V ,
Reference voltage (+) = AVrefp, Reference voltage (-) = AVrefm $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution EVDD $\leq A V_{\text {REFP }}=$ VDD Notes 3, 4	$1.8 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$		1.2	± 5.0	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$ Note 5		1.2	± 8.5	LSB
Conversion time	tconv	10-bit resolution Target ANI pin: ANI16 to ANI22	$3.6 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	57		95	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution $E V D D \leq A V_{\text {REFP }}=$ VDD Notes 3, 4	$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {Refp }} \leq 5.5 \mathrm{~V}$			± 0.35	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{AV}_{\text {Refp }} \leq 5.5 \mathrm{~V}$ Note 5			± 0.60	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution EVDD $\leq A V_{\text {REFP }}=$ VDD Notes 3, 4	$1.8 \mathrm{~V} \leq \mathrm{AV}$ Refp $\leq 5.5 \mathrm{~V}$			± 0.35	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$ Note 5			± 0.60	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution $\mathrm{EVDD} \leq \mathrm{A}$ REFP $=$ VDD Notes 3,4	$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			± 3.5	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}_{\text {refp }} \leq 5.5 \mathrm{~V}$ Note 5			± 6.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution $\mathrm{EVDD} \leq \mathrm{A}$ Refp $=$ VDD Notes 3, 4	$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {Refp }} \leq 5.5 \mathrm{~V}$			± 2.0	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$ Note 5			± 2.5	LSB
Analog input voltage	Vain	ANI16 to ANI22		0		AV Refp and EVdd	V

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\%FSR) to the full-scale value.
Note 3. When EVDD $\leq \operatorname{AVREFP}$ < VDD, the MAX. values are as follows.
Overall error: \quad Add ± 1.0 LSB to the MAX. value when $\operatorname{AVREFP}=\operatorname{VDD}$.
Zero-scale error/Full-scale error: Add $\pm 0.05 \%$ FSR to the MAX. value when AVREFP $=$ VDD.
Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when $A V$ REFP $=$ VDD.
Note 4. When AVrefp < EVdd \leq Vdd, the MAX. values are as follows.
Overall error: Add ± 4.0 LSB to the MAX. value when AVREFP = VDD.
Zero-scale error/Full-scale error: Add $\pm 0.20 \%$ FSR to the MAX. value when AVREFP $=$ VDD.
Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AVREFP $=$ VDD.
Note 5. When the conversion time is set to $57 \mu \mathrm{~s}$ (min.) and $95 \mu \mathrm{~s}$ (max.).
(3) When reference voltage $(+)=\operatorname{VDD}(\operatorname{ADREFP} 1=0$, ADREFP0 $=0$), reference voltage $(-)=\operatorname{Vss}$ (ADREFM $=0$), target pin: ANIO to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, Reference voltage (+) = VDD,
Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1.2	± 7.0	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Note 3		1.2	± 10.5	LSB
Conversion time	tconv	10-bit resolution Target pin: ANIO to ANI3, ANI16 to ANI22	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	57		95	$\mu \mathrm{s}$
		10-bit resolution Target pin: internal reference voltage, and temperature sensor output voltage	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{S}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.60	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Note 3			± 0.85	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.60	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Note 3			± 0.85	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 4.0	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Note 3			± 6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.0	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Note 3			± 2.5	LSB
Analog input voltage	Vain	ANIO to ANI3		0		VdD	V
		ANI16 to ANI22		0		EVdD	V
		Internal reference voltage$(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$		Vbgr Note 4			V
		Temperature sensor output voltage$(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$		VTMPS25 Note 4			V

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\% FSR) to the full-scale value.
Note 3. When the conversion time is set to $57 \mu \mathrm{~s}$ (min.) and $95 \mu \mathrm{~s}$ (max.).
Note 4. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.
(4) When reference voltage (+) = Internal reference voltage (ADREFP1 $=1$, ADREFP0 $=0$), reference voltage (-) = AVRefm/ANI1 (ADREFM = 1), target pin: ANIO, ANI2 and ANI3, ANI16 to ANI22
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{Vdd}$, Vss $=0 \mathrm{~V}$, Reference voltage $(+)=\mathrm{Vbgr}$ Note 3 , Reference voltage (-) = AVREFM $=0 \mathrm{~V}$ Note 4)

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resolution | RES | | 8 | | | bit |
| Conversion time | tconv | | 17 | | 39 | $\mu \mathrm{~s}$ |
| Zero-scale error Notes 1, 2 | Ezs | | | | ± 0.60 | $\%$ FSR |
| Integral linearity error Note 1 | ILE | | | | ± 2.0 | LSB |
| Differential linearity error Note 1 | DLE | | | | ± 1.0 | LSB |
| Analog input voltage | VAIN | | 0 | | VBGR Note 3 | V |

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\% FSR) to the full-scale value.
Note 3. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.
Note 4. When reference voltage $(-)=$ Vss, the MAX. values are as follows.

Zero-scale error:	Add $\pm 0.35 \%$ FSR to the MAX. value when reference voltage $(-)=$ AVREFM.
Integral linearity error:	Add ± 0.5 LSB to the MAX. value when reference voltage $(-)=$ AVREFM.
Differential linearity error:	Add ± 0.2 LSB to the MAX. value when reference voltage $(-)=$ AVREFM.

2.6.2 Temperature sensor characteristics/internal reference voltage characteristic

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register $=80 \mathrm{H}, \mathrm{TA}=+25^{\circ} \mathrm{C}$		1.05		V
Internal reference voltage	Vbgr	Setting ADS register $=81 \mathrm{H}$	1.38	1.45	1.5	V
Temperature coefficient	FVtMps	Temperature sensor that depends on the temperature		-3.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Operation stabilization wait time	tamp	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	5			$\mu \mathrm{S}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$	10			$\mu \mathrm{s}$

2.6.3 D/A converter (channel 1)

($\mathrm{TA}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathbf{1 . 6} \mathrm{V} \leq \mathrm{EVss} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES					8	bit
Overall error	AINL	Rload $=4 \mathrm{M} \Omega$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.5	LSB
		Rload $=8 \mathrm{M} \Omega$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.5	LSB
Settling time	tSET	Cload $=20 \mathrm{pF}$	$2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$			3	$\mu \mathrm{S}$
			$1.6 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			6	$\mu \mathrm{S}$

2.6.4 Comparator

(Comparator 0: $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(Comparator 1: TA $=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage range	Virefo	IVREFO pin		0		VDD - 1.4 Note 1	V
	Viref1	IVREF1 pin		$\begin{gathered} 1.4 \\ \text { Note } 1 \end{gathered}$		VDD	V
	VICMP	IVCMP0 pin		-0.3		VDD +0.3	V
		IVCMP1 pin		-0.3		$E V D D+0.3$	\checkmark
Output delay	td	$\begin{aligned} & \text { VDD }=3.0 \mathrm{~V} \\ & \text { Input slew rate }>50 \mathrm{mV} / \mu \mathrm{S} \end{aligned}$	Comparator high-speed mode, standard mode			1.2	$\mu \mathrm{s}$
			Comparator high-speed mode, window mode			2.0	$\mu \mathrm{s}$
			Comparator low-speed mode, standard mode		3		$\mu \mathrm{S}$
			Comparator low-speed mode, window mode		4		$\mu \mathrm{s}$
Operation stabilization wait time	tcmp			100			$\mu \mathrm{s}$
Reference voltage declination in channel 0 of internal DAC Note 2	$\triangle \mathrm{VIDAC}$					± 2.5	LSB

Note 1. In window mode, make sure that Vref1 - Vrefo $\geq 0.2 \mathrm{~V}$.
Note 2. Only in CMPO

2.6.5 PGA

($\mathrm{TA}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5 ^ { \circ }} \mathrm{C}, \mathbf{2 . 7} \mathrm{V} \leq \mathrm{EVDD} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=\mathbf{0} \mathrm{V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input offset voltage	Viopga					± 10	mV
Input voltage range	VIPGA			0		$\begin{gathered} 0.9 \times \\ \text { VDD/Gain } \end{gathered}$	V
Output voltage range	VıohPGA			$0.93 \times$ VDD			V
	Violpga					$0.07 \times \mathrm{VDD}$	V
Gain error		x4, x8				± 1	\%
		x16				± 1.5	\%
		x32				± 2	\%
Slew rate	SRRPGA	Rising When $\mathrm{VIN}=0.1 \mathrm{Vdd} /$ gain to $0.9 \mathrm{Vdo} /$ gain. 10 to 90% of output voltage amplitude	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V} \\ & \text { (Other than } \mathrm{x} 32 \text {) } \end{aligned}$	3.5			$\mathrm{V} / \mu \mathrm{s}$
			$4.0 \vee \leq V_{D D} \leq 5.5 \vee(x 32)$	3.0			
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 4.0 \mathrm{~V}$	0.5			
	SRfPGA	Falling When VIN= 0.1Vdd/gain to $0.9 \mathrm{Vdo} /$ gain. 90 to 10% of output voltage amplitude	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V} \\ & \text { (Other than } \mathrm{x} 32 \text {) } \end{aligned}$	3.5			
			$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$ (x 32)	3.0			
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 4.0 \mathrm{~V}$	0.5			
Reference voltage stabilization wait time ${ }^{\text {Note }}$	tpGA	x4, x8				5	$\mu \mathrm{s}$
		x16, x32				10	$\mu \mathrm{s}$

Note Time required until a state is entered where the DC and AC specifications of the PGA are satisfied after the PGA operation has been enabled (PGAEN = 1).

2.6.6 POR circuit characteristics

$\left(\mathrm{TA}_{\mathrm{A}}=\mathbf{- 4 0}\right.$ to $+85^{\circ} \mathrm{C}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	The power supply voltage is rising.	1.47	1.51	1.55	V
	VPDR	The power supply voltage is falling. Note 1	1.46	1.50	1.54	V
Minimum pulse width Note 2	TPW1	Other than STOP/SUB HALT/SUB RUN	300			$\mu \mathrm{~s}$
	TPW2	STOP/SUB HALT/SUB RUN	300			$\mu \mathrm{~s}$

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 2.4 AC Characteristics.
Note 2. Minimum time required for a POR reset when Vdd exceeds below VpDr. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPor while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.7 LVD circuit characteristics

(1) LVD Detection Voltage of Reset Mode and Interrupt Mode
(TA $=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLvDo	The power supply voltage is rising.	3.98	4.06	4.14	V
			The power supply voltage is falling.	3.90	3.98	4.06	V
		VLVD1	The power supply voltage is rising.	3.68	3.75	3.82	V
			The power supply voltage is falling.	3.60	3.67	3.74	V
		VLVD2	The power supply voltage is rising.	3.07	3.13	3.19	V
			The power supply voltage is falling.	3.00	3.06	3.12	V
		VLVD3	The power supply voltage is rising.	2.96	3.02	3.08	V
			The power supply voltage is falling.	2.90	2.96	3.02	V
		VLVD4	The power supply voltage is rising.	2.86	2.92	2.97	V
			The power supply voltage is falling.	2.80	2.86	2.91	V
		VLVD5	The power supply voltage is rising.	2.76	2.81	2.87	V
			The power supply voltage is falling.	2.70	2.75	2.81	V
		VLVD6	The power supply voltage is rising.	2.66	2.71	2.76	V
			The power supply voltage is falling.	2.60	2.65	2.70	V
		VLVD7	The power supply voltage is rising.	2.56	2.61	2.66	V
			The power supply voltage is falling.	2.50	2.55	2.60	V
		VLvD8	The power supply voltage is rising.	2.45	2.50	2.55	V
			The power supply voltage is falling.	2.40	2.45	2.50	V
		VLvD9	The power supply voltage is rising.	2.05	2.09	2.13	V
			The power supply voltage is falling.	2.00	2.04	2.08	V
		VLVD10	The power supply voltage is rising.	1.94	1.98	2.02	V
			The power supply voltage is falling.	1.90	1.94	1.98	V
		VLvD11	The power supply voltage is rising.	1.84	1.88	1.91	V
			The power supply voltage is falling.	1.80	1.84	1.87	V
		VLVD12	The power supply voltage is rising.	1.74	1.77	1.81	V
			The power supply voltage is falling.	1.70	1.73	1.77	V
		VLVD13	The power supply voltage is rising.	1.64	1.67	1.70	V
			The power supply voltage is falling.	1.60	1.63	1.66	V
Minimum pulse width		tıw		300			$\mu \mathrm{S}$
Detection delay time						300	$\mu \mathrm{s}$

(2) LVD Detection Voltage of Interrupt \& Reset Mode
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Interrupt and reset mode	Vlvdao	VPOC0, VPOC1, VPOC2 $=0,0,0$, falling reset voltage		1.60	1.63	1.66	V
	VLVDA1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
			Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
			Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3	LVIS0, LVIS1 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	Vlvdbo	VPOCO, VPOC1, VPOC2 $=0,0,1$, falling reset voltage		1.80	1.84	1.87	V
	VLVDB1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
			Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2	LVISO, LVIS1 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
			Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3	LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
			Falling interrupt voltage	3.00	3.06	3.12	V
	VlvDco	VPOC0, VPOC1, VPOC2 $=0,1,0$, falling reset voltage		2.40	2.45	2.50	V
	VLVDC1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
			Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
			Falling interrupt voltage	2.60	2.65	2.70	V
	Vlvdc3	LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
			Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDDo	VPOCO, VPOC1, VPOC2 $=0,1,1$, falling reset voltage		2.70	2.75	2.81	V
	VLVDD1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3	LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
			Falling interrupt voltage	3.90	3.98	4.06	V

2.6.8 Power supply voltage rising slope characteristics

$\left(\mathrm{TA}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SvDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 RAM Data Retention Characteristics

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

2.8 Flash Memory Programming Characteristics

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
System clock frequency	fCLK	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years	$\mathrm{T}_{A}=85^{\circ} \mathrm{C}$	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1,000,000		
		Retained for 5 years	$\mathrm{TA}^{\prime}=85^{\circ} \mathrm{C}$	100,000			
		Retained for 20 years	$\mathrm{TA}^{\prime}=85^{\circ} \mathrm{C}$	10,000			

Note 1. 1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
Note 2. When using flash memory programmer and Renesas Electronics self-programming library
Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		$1,000,000$	bps

2.10 Timing of Entry to Flash Memory Programming Modes

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.
How long from when an external reset ends until the initial communication settings are specified Note 1	tsuINIT	POR and LVD reset must end before the external reset ends.			100
How long from when the TOOLO pin is placed at the low level until an external reset ends Note 1	tsu	POR and LVD reset must end before the external reset ends.	10		
How long the TOOLO pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory) Notes 1,2	tHD	POR and LVD reset must end before the external reset ends.	1	$\mu \mathrm{~m}$	

Note 1. Deassertion of the POR and LVD reset signals must precede deassertion of the pin reset signal.
Note 2. This excludes the flash firmware processing time (723 $\mu \mathrm{s}$).

$<1>$ The low level is input to the TOOLO pin.
<2> The external reset ends (POR and LVD reset must end before the external reset ends).
$<3>$ The TOOLO pin is set to the high level.
$<4>$ Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.
tsu: How long from when the TOOLO pin is placed at the low level until a pin reset ends
thD: How long to keep the TOOLO pin at the low level from when the external resets end (excluding the processing time of the firmware to control the flash memory)

3. ELECTRICAL SPECIFICATIONS (TA $=-\mathbf{4 0}$ to $+105^{\circ} \mathrm{C}$)

This chapter describes the following electrical specifications.
Target products G : Industrial applications ($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}$)
R5F105xxGxx

Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G11 User's Manual.
Caution 3. Please contact Renesas Electronics sales office for derating of operation under $\mathrm{TA}_{\mathrm{A}}=+\mathbf{8 5}$ to $\mathbf{+ 1 0 5 ^ { \circ }} \mathbf{C}$. Derating is the systematic reduction of load for the sake of improved reliability.
Caution 4. When operating temperature exceeds $85^{\circ} \mathrm{C}$, only HS (high-speed main) mode can be used as the flash operation mode. Regulator mode should be used with the normal setting (MCSEL $=0$).
Caution 5. The EVdD pin is not present on products with 24 or less pins. Accordingly, replace EVdd with Vdd and the voltage condition $1.6 \leq E V D D \leq V D D \leq 5.5 \mathrm{~V}$ with $1.6 \leq \operatorname{VDD} \leq 5.5 \mathrm{~V}$.

Remark When the products "G: Industrial applications" is used in the range of $\mathrm{TA}_{A}=-40$ to $+85^{\circ} \mathrm{C}$, see 2 . ELECTRICAL SPECIFICATIONS ($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}$).

Fields of application	A: Consumer applications	G: Industrial applications
Operating ambient temperature	TA $=-40$ to $+85^{\circ} \mathrm{C}$	TA $=-40$ to $+105^{\circ} \mathrm{C}$
Operating mode Operating Voltage Range	HS (High-speed main) mode: $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ @ 1 MHz to 24 MHz $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ @ 1 MHz to 16 MHz LS (Low-speed main) mode: $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ @ 1 MHz to 8 MHz LV (Low-voltage main) mode: $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ @ 1 MHz to 4 MHz	Only in HS (High-speed main) mode: $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz 2.4V \leq VDD $\leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
High-speed on-chip oscillator clock to an accuracy	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}: \\ & \pm 1.0 \% @ \mathrm{TA}=-20 \text { to }+85^{\circ} \mathrm{C} \\ & \pm 1.5 \% @ \mathrm{TA}=-40 \text { to }-20^{\circ} \mathrm{C} \\ & 1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}: \\ & \pm 5.0 \% @ \mathrm{TA}_{\mathrm{A}}=-20 \text { to }+85^{\circ} \mathrm{C} \\ & \pm 5.5 \% @ \mathrm{TA}=-40 \text { to }-20^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}: \\ & \pm 2.0 \% @ \mathrm{TA}=+85 \text { to }+105^{\circ} \mathrm{C} \\ & \pm 1.0 \% @ \mathrm{TA}=-20 \text { to }+85^{\circ} \mathrm{C} \\ & \pm 1.5 \% @ \mathrm{TA}=-40 \text { to }-20^{\circ} \mathrm{C} \end{aligned}$
Serial array unit	UART CSI: fCLK/2 (12 Mbps are supported), fCLK/4 Simplified ${ }^{2} \mathrm{C}$	UART CSI: fCLK/4 Simplified ${ }^{2} \mathrm{C}$
IICA	Standard mode Fast mode Fast mode plus	Standard mode Fast mode
Voltage Detector	- Rising: 1.67 V to 4.06 V (14 levels) - Falling: 1.63 V to 3.98 V (14 levels)	- Rising: 2.61 V to 4.06 V (8 levels) - Falling: 2.55 V to 3.98 V (8 levels)

Remark The electrical characteristics for "G: Industrial applications" differ from those for "A: Consumer applications" when the product is in use in an ambient temperature over $85^{\circ} \mathrm{C}$. For details, see 3.1 to 3.10 in the following pages.

3.1 Absolute Maximum Ratings

(1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VdD		-0.5 to +6.5	V
	EVdd		-0.5 to +6.5	V
	AVREfP		0.3 to VDD + 0.3 Note 2	V
	AVREFM		$\begin{aligned} & -0.3 \text { to VDD }+0.3 \text { Note } 2 \\ & \text { and AVREFM } \leq A V R E F P \end{aligned}$	V
REGC pin input voltage	Viregc	REGC	$\begin{gathered} -0.3 \text { to }+2.8 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 1 \end{gathered}$	V
Input voltage	VII	P00, P01, P30 to P33, P40, and P51 to P56	$\begin{gathered} -0.3 \text { to EVDD }+0.3 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 2 \end{gathered}$	V
	V12	$\begin{aligned} & \text { P20 to P23, P121, P122, P125, P137, } \\ & \text { EXCLK, RESET } \end{aligned}$	-0.3 to VDD + 0.3 Note 2	V
Output voltage	Vo1	P00, P01, P30 to P33, P40, and P51 to P56	$\begin{gathered} -0.3 \text { to EVDD }+0.3 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 2 \end{gathered}$	V
	Vo2	P20 to P23	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI22	$\begin{gathered} -0.3 \text { to EVDD }+0.3 \\ \text { and }-0.3 \text { to } \operatorname{AVREF}(+)+0.3 \text { Notes } 2,3 \end{gathered}$	V
	VAI2	ANIO to ANI3	$\begin{gathered} -0.3 \text { to } \operatorname{VDD}+0.3 \\ \text { and }-0.3 \text { to } \operatorname{AVREF}(+)+0.3 \text { Notes } 2,3 \end{gathered}$	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
Note 2. Must be 6.5 V or lower.
Note 3. Do not exceed $A V$ REF $(+)+0.3 V$ in case of A / D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
Remark 2. AVref (+): + side reference voltage of the A/D converter.
Remark 3. Vss: Reference voltage

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.2 Oscillator Characteristics

3.2.1 X1 characteristics

($\mathrm{T} A=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = 0 V)

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/ crystal resonator	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1.0		20.0	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1.0		16.0	

Note Indicates only permissible oscillator frequency ranges. Refer to 3.4 AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to 6.4 System Clock Oscillator in the RL78/G11 User's Manual.

3.2.2 On-chip oscillator characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fin	$2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	1		24	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1		16	
High-speed on-chip oscillator clock frequency accuracy		$\mathrm{TA}=+85^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	-2		2	\%
		TA $=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-1		1	\%
		$\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$	-1.5		1.5	\%
Middle-speed on-chip oscillator oscillation frequency Note 2	fim		1		4	MHz
Middle-speed on-chip oscillator oscillation frequency accuracy			-12		+12	\%
Temperature drift of Middle-speed on-chip oscillator oscillation frequency accuracy	DIMT			0.008		\%/ ${ }^{\circ} \mathrm{C}$
Voltage drift of Middle-speed on-chip oscillator oscillation frequency accuracy	Dimv	$\mathrm{TA}=25^{\circ} \mathrm{C}$		0.02		\%/V
Low-speed on-chip oscillator clock frequency Note 2	fil			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	\%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 3 of the option byte (000 C 2 H) and bits 0 to 2 of the HOCODIV register.
Note 2. This only indicates the oscillator characteristics. Refer to 3.4 AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	IOH1	Per pin for P00, P01, P30 to P33, P40, and P51 to P56				$\begin{gathered} -3.0 \\ \text { Note } 2 \end{gathered}$	mA
		$\begin{aligned} & \text { Total of P00, P01, and P40 } \\ & (\text { When duty } \leq 70 \% \text { Note } 3 \text {) } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			-12.5	mA
			$2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$			-10.0	mA
			$2.4 \mathrm{~V} \leq \mathrm{EVDD}<2.7 \mathrm{~V}$			-5.0	mA
		Total of P30 to P33, and P51 to P56 (When duty $\leq 70 \%$ Note 3)	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			-30.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$			-19.0	mA
			$2.4 \mathrm{~V} \leq \mathrm{EVDD}<2.7 \mathrm{~V}$			-10.0	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)				-42.5	mA
	IOH 2	Per pin for P20 to P23				$\begin{gathered} -0.1 \\ \text { Note } 2 \end{gathered}$	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			-0.4	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.
Note 2. Do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $\mathrm{n} \%$).

- Total output current of pins $=(\mathrm{IOH} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOH}=-10.0 \mathrm{~mA}$ Total output current of pins $=(-10.0 \times 0.7) /(80 \times 0.01) \approx-8.7 \mathrm{~mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.
A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P01, P20, P30 to P33, P40 and P51 to P56 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(2/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow Note 1	IoL1	Per pin for P00, P01, P30 to P33, P40, and P51 to P56				$\begin{gathered} \hline 8.5 \\ \text { Note } 2 \end{gathered}$	mA
		Total of P00, P01, and P40 (When duty $\leq 70 \%$ Note 3)	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			36.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD}<4.0 \mathrm{~V}$			15.0	mA
			$2.4 \mathrm{~V} \leq \mathrm{EVDD}<2.7 \mathrm{~V}$			9.0	mA
		Total of P30 to P33, and P51 to P56 (When duty $\leq 70 \%$ Note 3)	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			40.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$			35.0	mA
			$2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD}<2.7 \mathrm{~V}$			20.0	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)				76.0	mA
	IOL2	Per pin for P20 to P23				$\begin{gathered} 0.4 \\ \text { Note } 2 \end{gathered}$	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			1.6	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
Note 2. Do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $\mathrm{n} \%$).

- Total output current of pins $=(\operatorname{loL} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and loL $=10.0 \mathrm{~mA}$

$$
\text { Total output current of pins }=(10.0 \times 0.7) /(80 \times 0.01) \approx 8.7 \mathrm{~mA}
$$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.
A current higher than the absolute maximum rating must not flow into one pin.
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
($\mathrm{TA}_{\mathrm{A}}=-\mathbf{4 0}$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(3/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{VIH1}^{1}$	P00, P01, P30 to P33, P40, and P51 to P56	Normal mode	0.8 EVDD		EVDD	v
	VIH2	$\begin{aligned} & \text { P00, P30 to P32, P40, P51 to } \\ & \text { P56 } \end{aligned}$	TTL mode $4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	2.2		EVDD	V
			TTL mode $3.3 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$	2.0		EVdD	v
			TTL mode $2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}$	1.5		EVdD	v
	Vінз	P20 to P23 (digital input)		0.7 VdD		VDD	V
	VIH_{4}	P121, P122, P125, P137, EXCLK, $\overline{\text { RESET }}$		0.8 VdD		VDD	V
Input voltage, low	VIL1	P00, P01, P30 to P33, P40, and P51 to P56	Normal mode	0		0.2 EVDD	V
	VIL2	$\begin{aligned} & \text { P00, P30 to P32, P40, P51 to } \\ & \text { P56 } \end{aligned}$	TTL mode $4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	0		0.8	v
			TTL mode $3.3 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$	0		0.5	v
			TTL mode $2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}$	0		0.32	V
	Vін3	P20 to P23 (digital input)		0		0.3 VDD	V
	VIH_{4}	P121, P122, P125, P137, EXCLK, $\overline{\text { RESET }}$		0		0.2 VDD	V

Caution The maximum value of VIH of pins P00, P01, P20, P30 to P33, P40 and P51 to P56 is VDD or EVdD, even in the N-ch open-drain mode.
(P20: Vdd
P00, P01, P30 to P33, P40, P51 to P56: EVdd)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
($\mathrm{TA}_{\mathrm{A}}=-\mathbf{4 0}$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(4/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	$\begin{aligned} & \text { P00, P01, P30 to P33, P40, } \\ & \text { and P51 to P56 } \end{aligned}$	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loH}=-3.0 \mathrm{~mA} \end{aligned}$	EVDD - 0.7			V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH}=-2.0 \mathrm{~mA} \end{aligned}$	EVDD - 0.6			V
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V} \\ & \mathrm{IOH}=-1.5 \mathrm{~mA} \end{aligned}$	EVDD - 0.5			V
	Voh2	P20 to P23	$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loH}=-100 \mu \mathrm{~A} \end{aligned}$	VDD - 0.5			V
Output voltage, low	VoL1	P00, P01, P30 to P33, P40, and P51 to P56	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=8.5 \mathrm{~mA} \end{aligned}$			0.7	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=3.0 \mathrm{~mA} \end{aligned}$			0.6	v
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=1.5 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=0.6 \mathrm{~mA} \end{aligned}$			0.4	V
	VoL2	P20 to P23	$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL}=400 \mu \mathrm{~A} \end{aligned}$			0.4	V

Caution P00, P01, P20, P30 to P33, P40 and P51 to P56 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
($\mathrm{TA}=-\mathbf{4 0}$ to $+105^{\circ} \mathrm{C}, \mathbf{2 . 4} \mathrm{V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(5/5)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00, P01, P30 to P33, P40, and P51 to P56	$\mathrm{V}_{1}=\mathrm{EV} \mathrm{VD}$				1	$\mu \mathrm{A}$
	ІІІн2	P20 to P23, P125, P137, $\overline{\text { RESET }}$	$\mathrm{V}_{1}=\mathrm{VDD}$				1	$\mu \mathrm{A}$
	ІІнз	P121, P122, X1, X2, EXCLK	V I $=\mathrm{VDD}$	In input port or external clock input			1	$\mu \mathrm{A}$
				In resonator connection			10	$\mu \mathrm{A}$
Input leakage current, low	ILLL1	P00, P01, P30 to P33, P40, and P51 to P56	$\mathrm{V}_{1}=\mathrm{Vss}$				-1	$\mu \mathrm{A}$
	ILLL2	P20 to P23, P125, P137, $\overline{\text { RESET }}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {ss }}$				-1	$\mu \mathrm{A}$
	ILLı3	P121, P122, X1, X2, EXCLK	V I $=\mathrm{Vss}$	In input port or external clock input			-1	$\mu \mathrm{A}$
				In resonator connection			-10	$\mu \mathrm{A}$
On-chip pull-up resistance	Ru	P00, P01, P30 to P33, P40, P51 to P56, P125	VI = Vss, In input port		10	20	100	$\mathrm{k} \Omega$

[^1]
3.3.2 Supply current characteristics

($\mathrm{T} A=-\mathbf{4 0}$ to $+105^{\circ} \mathrm{C}, \mathbf{2 . 4} \mathrm{V} \leq \mathrm{EVDD} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(1/3)

Note 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to Vdd or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, comparator, Programmable gain amplifier, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
Note 2. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock and low-speed on-chip oscillator clock are stopped.
Note 3. When the high-speed system clock, middle-speed on-chip oscillator clock and low-speed on-chip oscillator clock are stopped.
Note 4. When the high-speed system clock, high-speed on-chip oscillator clock and middle-speed on-chip oscillator clock are stopped.

Remark 1. $f m x$: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fiH: High-speed on-chip oscillator clock frequency (24 MHz max.)
Remark 3. fim: Middle-speed on-chip oscillator clock frequency (4 MHz max.)
Remark 4. fil: Low-speed on-chip oscillator clock frequency
Remark 5. fsub: Subsystem clock frequency (Low-speed on-chip oscillator clock frequency)
Remark 6. Except subsystem clock operation, temperature condition of the TYP. value is $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions					MIN.	TYP.	MAX.	$\begin{gathered} \hline \text { Unit } \\ \hline \mathrm{mA} \end{gathered}$
Supply current Note 1	IdD2 Note 2	HALTmode	HS (high-speed main) mode	$\begin{aligned} & \mathrm{fHOco}=48 \mathrm{MHz} \text { Note } 3 \\ & \mathrm{fiHH}^{2}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$			0.59	3.45	
					VdD $=3.0 \mathrm{~V}$			0.59	3.45	
				$\begin{aligned} & \mathrm{f} \mathrm{f} \mathrm{Oc}=24 \mathrm{MHz} \text { Note } 3 \\ & \mathrm{f} \mathrm{IH}=16 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$V_{D D}=5.0 \mathrm{~V}$			0.41	2.85	
					$V_{D D}=3.0 \mathrm{~V}$			0.41	2.85	
				$\begin{aligned} & \mathrm{f}_{\mathrm{Hoco}}=16 \mathrm{MHz} \text { Note } 3 \\ & \mathrm{fiH}^{2}=16 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$			0.39	2.08	
					$\mathrm{V}_{\mathrm{dD}}=3.0 \mathrm{~V}$			0.39	2.08	
			HS (high-speed main) mode	$\mathrm{fmx}=20 \mathrm{MHz}$ Note 3	$\mathrm{VDD}=5.0 \mathrm{~V}$	Square wave input		0.20	2.45	mA
						Resonator connection		0.40	2.57	
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	Square wave input		0.20	2.45	
						Resonator connection		0.40	2.57	
				$\mathrm{fmx}=10 \mathrm{MHz}$ Note 3	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$	Square wave input		0.15	1.28	
						Resonator connection		0.30	1.36	
					VDD $=3.0 \mathrm{~V}$	Square wave input		0.15	1.28	
						Resonator connection		0.30	1.36	
			Subsystem clock operation	$\mathrm{fiLL}^{\prime}=15 \mathrm{kHz}, \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ Note 5				0.48	1.22	$\mu \mathrm{A}$
				$\mathrm{fiL}^{\prime}=15 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Note 5				0.55	1.22	
				$\mathrm{fiLL}=15 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ Note 5				0.80	3.30	
				$\mathrm{ffiL}^{\prime}=15 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$ Note 5				2.00	17.3	

Note 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, comparator, Programmable gain amplifier, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
Note 2. When the HALT instruction is executed in the flash memory.
Note 3. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, and low-speed on-chip oscillator clock are stopped.
Note 4. When the high-speed system clock, middle-speed on-chip oscillator clock and low-speed on-chip oscillator clock are stopped.
Note 5. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock and high-speed system clock are stopped.

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fiн: High-speed on-chip oscillator clock frequency (24 MHz max.)
Remark 3. fim: Middle-speed on-chip oscillator clock frequency (4 MHz max.)
Remark 4. fiL: Low-speed on-chip oscillator clock frequency
Remark 5. fsub: Subsystem clock frequency (Low-speed on-chip oscillator clock frequency)
Remark 6. Except subsystem clock operation, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
($\mathrm{TA}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+105^{\circ} \mathrm{C}, \mathbf{2 . 4} \mathrm{V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(3/3)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD3 Note 2	STOP mode Note 3	$\mathrm{TA}^{\prime}=-40^{\circ} \mathrm{C}$		0.19	0.51	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.25	0.51	
			$\mathrm{TA}=+50^{\circ} \mathrm{C}$		0.28	1.10	
			$\mathrm{TA}=+70^{\circ} \mathrm{C}$		0.38	1.90	
			$\mathrm{TA}=+85^{\circ} \mathrm{C}$		0.60	3.30	
			$\mathrm{TA}=+105^{\circ} \mathrm{C}$		1.5	17.0	

Note 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, comparator, Programmable gain amplifier, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
Note 2. The values do not include the current flowing into the 12-bit interval timer and watchdog timer.
Note 3. For the setting of the current values when operating the subsystem clock in STOP mode, see the current values when operating the subsystem clock in HALT mode.

Peripheral Functions (Common to all products)
(TA = $\mathbf{- 4 0}$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

(Notes and Remarks are listed on the next page.)

Note 1. Current flowing to VDD.
Note 2. Operable range is 2.7 to 5.5 V .
Note 3. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, and high-speed system clock are stopped.
Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IdD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).
The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
Note 8. Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IdD3 and Icmp when the comparator circuit is in operation.
Note 9. Current flowing only to the 8-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 8-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
Note 10. Current consumed by generating the internal reference voltage (1.45 V).
Note 11. Current flowing during programming of the data flash.
Note 12. Current flowing during self-programming.
Note 13. For transition time to the SNOOZE mode, see 24.3.3 SNOOZE mode in the RL78/G11 User's Manual.

Remark 1. fiL: Low-speed on-chip oscillator clock frequency
Remark 2. fcLK: CPU/peripheral hardware clock frequency
Remark 3. Temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

3.4 AC Characteristics

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fmain) operation	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.04167		1	$\mu \mathrm{S}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{s}$
		Subsystem clock (fsub) operation	fil	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		66.7		$\mu \mathrm{S}$
		In the selfprogramming mode	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.04167		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{S}$
External system clock frequency	fex	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			1		20	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			1		16	MHz
External system clock input high-/lowlevel width	$\begin{aligned} & \text { tEXh, } \\ & \text { tEXL } \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			24			ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			30			ns
TIOO to TIO3 input high-/low-level width	ttin, tTILNote 1				$\begin{gathered} \text { 1/fMCK + } \\ 10 \end{gathered}$			ns
TO00 to TO03, TKBO0, and TKBO1 output frequency Note 2	fto	TOOO to TO03, TKBOO, and TKBO1 (in the case of output from port pins other than P20)	HS (high-speed main) mode	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			12	MHz
				$2.7 \mathrm{~V} \leq$ EVDD $<4.0 \mathrm{~V}$			8	
				$2.4 \mathrm{~V} \leq$ EVDD $<2.7 \mathrm{~V}$			4	
		TKBO1 (in the case of output from P20)	HS (high-speed main) mode	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			1.5	MHz
				$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$			1.2	
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			1	
PCLBUZ0, PCLBUZ1 output frequency	fPCL	HS (high-speed main) mode		$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$			16	MHz
				$2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$			8	
				$2.4 \mathrm{~V} \leq \mathrm{EVDD}<2.7 \mathrm{~V}$			4	
Interrupt input high-/low-level width	tINTH, tINTL	INTP0 to INTP2, INTP9		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1			$\mu \mathrm{s}$
		INTP3 to INTP8, INTP10, INTP11		$2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	1			
Key interrupt input low-level width	tKR	KR0 to KR7		$2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	250			ns
RESET low-level width	tRSL				10			$\mu \mathrm{s}$

Note 1. Following conditions must be satisfied on low level interface of EVDD < VDD.
$2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq 2.7 \mathrm{~V}$: MIN. 125 ns
Note 2. When duty is 50%.

Remark fмск: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m : Unit number $(m=0)$, n : Channel number ($\mathrm{n}=0$ to 3))

AC Timing Test Points

External System Clock Timing

TI/TO Timing

TIOO to TIO3

TO00 to TO03

Interrupt Request Input Timing

Key Interrupt Input Timing

$\overline{\text { RESET }}$ Input Timing

3.5 Peripheral Functions Characteristics

AC Timing Test Points

3.5.1 Serial array unit

(1) during communication at same potential (UART mode) When P01, P30, P31 and P54 are used as TxDq pin
($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Transfer rate		Theoretical value of the maximum transfer rate$\mathrm{fMCK}=\mathrm{fcLK}=24 \mathrm{MHz}$		fmCk/12 ${ }^{\text {Notes } 1,2}$	bps
				2.0	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
Note 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:
HS (high-speed main) mode:
$2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq 2.7 \mathrm{~V}$: MAX. 1.3 Mbps

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

When P20 is used as TxD1 pin
$\left(\mathrm{TA}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Transfer rate		$\begin{aligned} & \hline 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} \\ & \qquad \begin{array}{l} \text { Theoretical value of the maximum } \\ \text { transfer rate } \\ \text { fmCK }=\text { fCLK }=24 \mathrm{MHz} \end{array} \end{aligned}$		fmck/16 ${ }^{\text {Note }}$	bps
				1.5	Mbps
		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Theoretical value of the maximum transfer rate $f M C K=f C L K=24 M H z$		fmck/20Note	bps
				1.2	Mbps
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Theoretical value of the maximum transfer rate fмCK $=$ fcLK $=16 \mathrm{MHz}$		fmck/16Note	bps
				1.0	Mbps

Note Transfer rate in the SNOOZE mode is 4800 bps only. When froco $=48 \mathrm{MHz}$, SNOOZE mode is not supported.

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q : UART number ($q=0$ and 1), g : PIM and POM number ($g=0,2,3$ and 5)
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03)
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

When P01, P32, P53, P54 and P56 are used as SOmn pins
$\left(\mathrm{TA}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 \geq 4/fcLk	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	250		ns
			$2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	500		ns
SCKp high-/low-level width	tкH1, tkL1	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		tkcrı/2-24		ns
		$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		tкcy1/2-36		ns
		$2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		tксү1/2-76		ns
SIp setup time (to SCKp \uparrow) Note 1	tsık1	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		66		ns
		$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$				ns
		$2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		133		ns
SIp hold time (from SCKp \uparrow) Note 2	tksı1			38		ns
Delay time from SCKp \downarrow to SOp output Note 3	tksor	$\mathrm{C}=30 \mathrm{pF}$ Note			50	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. \quad is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p : CSI number ($p=00,01,10$ and 11), m : Unit number ($m=0$), n : Channel number ($n=0$ to 3), g : PIM and POM numbers ($\mathrm{g}=0,2,3$ to 5 and 12)
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03))

When P20 is used as SO10 pin

($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tKCY1	tксү1 \geq 4/fcLk	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1000		ns
			$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	1200		ns
SCKp high-/low-level width	tKH1, tKı1	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		tксү1/2-24		ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		tксу1/2-36		ns
		$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$		tксу1/2-76		ns
SIp setup time (to SCKp \uparrow) Note 1	tsik1	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		66		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		133		ns
SIp hold time (from SCKp \uparrow) Note 2	tkSI1			38		ns
Delay time from SCKp \downarrow to SOp output Note 3	tksol	$\mathrm{C}=30 \mathrm{pF}$ Note			180	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn = 1 and CKPmn $=1$. The Slp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and $C K P m n=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number ($p=00,01,10$ and 11), m : Unit number ($m=0$), n : Channel number ($n=0$ to 3), g: PIM and POM numbers ($\mathrm{g}=0,2,3$ to 5 and 12)
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m : Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03)
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

When P01, P32, P53, P54 and P56 are used as SOmn pins
($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time Note 4	tKcy2	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$	$\mathrm{fmck}>20 \mathrm{MHz}$	16/fмск		ns
			$\mathrm{fmCK} \leq 20 \mathrm{MHz}$	12/fмск		ns
		$2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$	$\mathrm{fmCK}^{>} 16 \mathrm{MHz}$	16/fмск		ns
			$\mathrm{fmCK} \leq 16 \mathrm{MHz}$	12/fмск		ns
		$2.4 \mathrm{~V} \leq \mathrm{EVDD}<2.7 \mathrm{~V}$		12/fмск and 1000		ns
SCKp high-/low-level width	tKH2, tKL2	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		tкcy2/2-14		ns
	tKH2, tKL2	$2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$		tкıY2/2-16		ns
		$2.4 \mathrm{~V} \leq \mathrm{EVDD}<2.7 \mathrm{~V}$		tксү2/2-36		ns
SIp setup time (to SCKp \uparrow) Note 1	tSIK2	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		1/fмск +40		ns
		$2.4 \mathrm{~V} \leq \mathrm{EVDD}<2.7 \mathrm{~V}$		1/fмск + 60		ns
SIp hold time (from SCKp \uparrow) Note 1	tKSI2			1/fмек + 62		ns
Delay time from SCKp \downarrow to SOp output Note 2	tKSO2	$\mathrm{C}=30 \mathrm{pF}$ Note 3	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$		$2 /$ ¢мСк +66	ns
			$2.4 \mathrm{~V} \leq \mathrm{EV} D \mathrm{c}<2.7 \mathrm{~V}$		$2 /$ ¢мск + 113	ns

Note 1. When DAPmn $=0$ and $C K P m n=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKpl" and the SIp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow^{\prime \prime}$ when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. C is the load capacitance of the SOp output lines.
Note 4. The maximum transfer rate when using the SNOOZE mode is 1 Mbps .
Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p : CSI number ($\mathrm{p}=00,01,10$ and 11), m : Unit number ($\mathrm{m}=0$), n : Channel number ($\mathrm{n}=0$ to 3), g : PIM and POM numbers ($\mathrm{g}=0,2,3$ to 5 and 12)
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00$ to 03))
($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
$\overline{\mathrm{SSIOO}}$ setup time	tssik	DAPmn $=0$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	240		ns
			$2.4 \mathrm{~V} \leq \mathrm{VdD}<2.7 \mathrm{~V}$	400		ns
		DAPmn = 1	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1/fмск + 240		ns
			$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1/ғмск +400		ns
$\overline{\mathrm{SSIOO}}$ hold time	tkssı	DAPmn $=0$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1/fмск + 240		ns
			$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1/fмск + 400		ns
		DAPmn $=1$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	240		ns
			$2.4 \mathrm{~V} \leq \mathrm{VdD}<2.7 \mathrm{~V}$	400		ns

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number ($\mathrm{p}=00,01,10$ and 11), m : Unit number ($\mathrm{m}=0$), n : Channel number ($\mathrm{n}=0$ to 3), g : PIM and POM numbers ($\mathrm{g}=0,2,3$ to 5,12)

When P20 is used as SO10 pin

($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD}=\mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time Note 4	tKCY2	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	fмск > 20 MHz	20/fмск		ns
			fMCK $\leq 20 \mathrm{MHz}$	18/fмск		ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$	fmck $>16 \mathrm{MHz}$	20/fMCK and 1000		ns
			$\mathrm{fmCK} \leq 16 \mathrm{MHz}$	18/fmск		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$		18/fмск and 1200		ns
SCKp high-/low-level width	tKH2, tKL2	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		tкcy2/2-14		ns
	tKH2, tKL2	$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$		tксү2/2-16		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$		tксү2/2-36		ns
SIp setup time (to SCKp \uparrow) Note 1	tSIK2	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1/fmCK +40		ns
		$2.4 \mathrm{~V} \leq \mathrm{VdD}<2.7 \mathrm{~V}$		1/fmск + 60		ns
SIp hold time (from SCKp \uparrow) Note 1	tKSI2			1/fм́ㅡ +62		ns
Delay time from SCKp \downarrow to SOp output Note 2	tKSO2	$\mathrm{C}=30 \mathrm{pF} \text { Note } 3$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		2/fММСК + 190	ns
			$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$		2/fмск +250	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp \downarrow " and the SIp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn = 0 and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. C is the load capacitance of the SOp output lines.
Note 4. The maximum transfer rate when using the SNOOZE mode is 1 Mbps .

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p : CSI number $(\mathrm{p}=00,01,10$ and 11), m : Unit number $(\mathrm{m}=0)$, n : Channel number $(\mathrm{n}=0$ to 3$)$, g : PIM and POM numbers ($\mathrm{g}=0,2,3$ to 5 and 12)
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00$ to 03))

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSIOO))

Remark p: CSI number ($p=00,01,10$ and 11)

CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. $\mathrm{p}: \mathrm{CSI}$ number $(\mathrm{p}=00,01,10$ and 11)
Remark 2. m : Unit number, n : Channel number ($\mathrm{mn}=00$ to 03)
(4) During communication at same potential (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
$\left(\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		400 Note 1	kHz
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$		100 Note 1	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1200		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	4600		ns
Hold time when SCLr = " H "	tHIGH	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1200		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	4600		ns
Data setup time (reception)	tsu: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmck +220 Note 2		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	1/fmск + 580 Note 2		ns
Data hold time (transmission)	thD: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	0	770	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	0	1420	ns

Note 1. The value must be equal to or less than fMCK/4.
Note 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N -ch open drain output (EVDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register \mathbf{g} (PIMg) and port output mode register h (POMh).

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode connection diagram (during communication at same potential)

Simplified $I^{2} \mathrm{C}$ mode serial transfer timing (during communication at same potential)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (SDAr) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SDAr, SCLr) load capacitance
Remark 2. r : IIC number ($r=00,01,10$ and 11), g : PIM number ($g=0,3$ and 5), h: POM number ($h=0,3$ and 5)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ($m=0$),
n : Channel number ($\mathrm{n}=0$ to 3), $\mathrm{mn}=00$ to 03)
(5) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3.0 \mathrm{~V}$) (UART mode) (dedicated baud rate generator output)
($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
Transfer rate		Reception	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V} \end{aligned}$		fmck/12 Note 1	bps
			Theoretical value of the maximum transfer rate $\mathrm{fmCK}_{\mathrm{M}}=\mathrm{fCLK}$ Note 3		2.0	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$		fmck/12 Note 1	bps
			Theoretical value of the maximum transfer rate fmck $=$ fcLk Note 3		2.0	Mbps
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$		fmск/12 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate fmck $=$ fcLk Note 3		1.3	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.
Note 2. Use it with EVDD $\geq \mathrm{Vb}$.
Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode: $24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (EVdD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. $\mathrm{Vb}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
Remark 2. q : UART number ($q=0$ and 1), g : PIM and POM numbers ($g=0,2,3,5,12$)
Remark 3. fМск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03))
$\left(\mathrm{TA}^{2}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(2/2)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
Transfer rate		Transmission	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$		Note 1	bps
			Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{b}}=2.7 \mathrm{~V}$		2.6Note 2	Mbps
			$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$		Note 3	bps
			Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{b}}=2.3 \mathrm{~V}$		1.2 Note 4	Mbps
			$2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{b}}=1.6 \mathrm{~V}$		0.43 Note 7	Mbps

Note 1. The smaller maximum transfer rate derived by using $\mathrm{fMCK} / 6$ or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}$ and $2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$

$$
1
$$

Maximum transfer rate $=\frac{}{\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{2.2}{\mathrm{Vb}_{b}}\right)\right\} \times 3}[\mathrm{bps}]$

($\left.\frac{1}{\text { Transfer rate }}\right) \times$ Number of transferred bits

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
Note 3. The smaller maximum transfer rate derived by using $f \mathrm{MCK} / 6$ or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 4.0 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$

1

Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{2.0}{\mathrm{Vb}_{\mathrm{b}}}\right)\right\}}{} \times 100$ [\%]

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
Note 5. Use it with EVDD $\geq \mathrm{Vb}$.

Note 6. The smaller maximum transfer rate derived by using $\mathrm{f}_{\mathrm{MCK}} / 6$ or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}$ and $1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$

1
Maximum transfer rate $=\frac{}{\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{1.5}{\mathrm{Vb}}\right)\right\} \times 3}[\mathrm{bps}]$

$$
\text { Baud rate error (theoretical value) }=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \operatorname{Rb} \times \ln \left(1-\frac{1.5}{\mathrm{~V}_{b}}\right)\right\}}{}
$$

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (EVDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (TxDq) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (TxDq) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. q : UART number ($q=0$ and 1), g : PIM and POM number ($g=0,2,3,5$ and 12)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03) $)$
(6) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.0 \mathrm{~V}$) (CSI mode) (master mode, SCKp... internal clock output)
($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tKCY1 \geq 4/ffLK	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	600		ns
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1000		ns
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	2300		ns
SCKp high-level width	tkH1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tксү1/2-150		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tксү1/2-340		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		tксү1/2-916		ns
SCKp low-level width	tkL1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$		tк¢ү1/2-24		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tксу1/2-36		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		tк¢ү1/2-100		ns

Caution Select the TTL input buffer for the SIp pin and the N -ch open drain output (EVDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For $\mathrm{VIH}^{\mathrm{V}}$ and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the page after the next page.)
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=0 \mathrm{~V}\right)$
(2/2)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SIp setup time (to SCKp \uparrow) Note 1	tsıк1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	162		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	354		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	958		ns
SIp hold time (from SCKp \uparrow) ${ }^{\text {Note } 1}$	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{E} \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	38		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$			ns
Delay time from SCKp \downarrow to SOp output Note 1	tksol	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{E} \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		200	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		390	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		966	ns
SIp setup time (to SCKpl) Note 2	tsık1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	88		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	220		ns
SIp hold time (from SCKpl) Note 2	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD}^{\mathrm{V}} 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	38		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$			ns
Delay time from SCKp \uparrow to SOp output Note 2	tkso1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		50	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{VDD}^{<} 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$			ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
Note 2. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. Use it with $E V D D \geq V_{b}$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (EVdD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register \mathbf{g} (POMg). For Vif and ViL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SCKp, SOp) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. p : CSI number $(\mathrm{p}=00,01,10$ and 11), m: Unit number $(m=0), \mathrm{n}$: Channel number $(\mathrm{n}=0$ to 3$)$, g : PIM and POM numbers $(\mathrm{g}=0,2,3$ to 5 and 12)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03))

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn =0.)

Remark p: CSI number $(p=00,01,10$ and 11$)$, m: Unit number $(m=0), n$: Channel number $(n=0$ to 3$)$, g : PIM and POM numbers $(g=0,2,3$ to 5 and 12)
(7) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3.0 \mathrm{~V}$) (CSI mode) (slave mode, SCKp... external clock input)
($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V} \end{aligned}$	20 MHz < fmck $\leq 24 \mathrm{MHz}$	24/fмск		ns
			$8 \mathrm{MHz}<\mathrm{fmCK} \leq 20 \mathrm{MHz}$	20/fмск		ns
			$4 \mathrm{MHz}<\mathrm{fmCK} \leq 8 \mathrm{MHz}$	16/fмск		ns
			fмск $\leq 4 \mathrm{MHz}$	12/fмск		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$	20 MHz < fмск $\leq 24 \mathrm{MHz}$	32/fмск		ns
			16 MHz < fмск $\leq 20 \mathrm{MHz}$	28/fмск		ns
			$8 \mathrm{MHz}<\mathrm{fmCk}^{5} 16 \mathrm{MHz}$	24/ғмск		ns
			$4 \mathrm{MHz}<$ fмск $\leq 8 \mathrm{MHz}$	16/ғмск		ns
			fмск $\leq 4 \mathrm{MHz}$	12/fмск		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2 \end{aligned}$	20 MHz < fмск $\leq 24 \mathrm{MHz}$	72/fmск		ns
			$16 \mathrm{MHz}<$ fmck $\leq 20 \mathrm{MHz}$	64/fмск		ns
			$8 \mathrm{MHz}<\mathrm{fmCk}^{5} 16 \mathrm{MHz}$	52/fмск		ns
			4 MHz < fmck $\leq 8 \mathrm{MHz}$	32/fмск		ns
			fмск $\leq 4 \mathrm{MHz}$	20/fмск		ns
SCKp high-/low-level width	tKH2, tк⿺辶 2	$4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$		tксү2/2-24		ns
		$2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$		tксү2/2-36		ns
		$2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2$		tксү2/2-100		ns
SIp setup time (to SCKp \uparrow) Note 3	tsik2	$2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}^{2} 4.0 \mathrm{~V}$		1/fмск + 40		ns
		$2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note 2		1/fмск + 60		ns
SIp hold time (from SCKp \uparrow) Note 4	tks 12			1/fмск + 62		ns
Delay time from SCKp \downarrow to SOp output Note 5	tkso2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V} \\ & \mathrm{Cb}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			2/fмск + 240	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			2/fмск + 428	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2 \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$			$2 / \mathrm{fmск}+1146$	ns

(Notes, Caution and Remarks are listed on the next page.)

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
Note 2. Use it with EVDD $\geq \mathrm{Vb}$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 5. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (EVdD tolerance) mode for the SOp pin by using port input mode register $g(\mathrm{PIMg})$ and port output mode register g (POMg). For ViH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

Remark 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$: Communication line (SOp) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SOp) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. p : CSI number ($\mathrm{p}=00,01,10$ and 11), m : Unit number $(\mathrm{m}=0)$, n : Channel number $(\mathrm{n}=0$ to 3), g : PIM and POM numbers $(g=0,2,3$ to 5 and 12)
Remark 3. $\ddagger М с к$: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00$ to 03))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn $=0$.)

Remark p: CSI number $(p=00,01,10$ and 11$)$, m: Unit number $(m=0), n$: Channel number $(n=0$ to 3$)$, g : PIM and POM numbers $(g=0,2,3$ to 5 and 12)
(8) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.0 \mathrm{~V}$) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = 0 V)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		400 Note 1	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		400 Note 1	kHz
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega \end{aligned}$		100 Note 1	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		100 Note 1	kHz
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V} \mathrm{~b} \leq 2.0 \mathrm{~V} \text { Note 2, } \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		100 Note 1	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1200		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1200		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	4600		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V} \mathrm{~b} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	4600		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V} \mathrm{~b} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	4650		ns
Hold time when SCLr = "H"	thigh	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	620		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	500		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega \end{aligned}$	2700		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	2400		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	1830		ns
Data setup time (reception)	tsu:dat	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmck + 340 Note 3		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmск + 340 Note 3		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{~b} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	1/fмск +760 Note 3		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fмск + 760 Note 3		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	1/fмск + 570 Note 3		ns
Data hold time (transmission)	thd: DAT	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	770	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V} \mathrm{~b} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	770	ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega \end{aligned}$	0	1420	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V} \mathrm{~b} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	1420	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	0	1215	ns

Note 1. The value must be equal to or less than fMCK/4.
Note 2. Use it with $E V_{D D} \geq \mathrm{Vb}_{\mathrm{b}}$.
Note 3. Set the fmck value to keep the hold time of $\operatorname{SCLr}=$ "L" and $S C L r=$ "H".

Caution Select the TTL input buffer and the N-ch open drain output (EVDD tolerance) mode for the SDAr pin and the N-ch open drain output (EVdd tolerance) mode for the SCLr pin by using port input mode register \mathbf{g} (PIMg) and port output mode register \mathbf{g} (POMg). For VıH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified $I^{2} \mathrm{C}$ mode connection diagram (during communication at different potential)

Simplified ${ }^{2}{ }^{2} \mathrm{C}$ mode serial transfer timing (during communication at different potential)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SDAr, SCLr) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. r: IIC number ($r=00,01,10$ and 11), g : PIM, POM number ($g=0,3$ and 5)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ($m=0$),
n : Channel number ($\mathrm{n}=0$ to 3), $\mathrm{mn}=00$ to 03)

3.5.2 Serial interface IICA

($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIORO2) in the peripheral I/O redirection register 0 (PIORO) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, Vol1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.
Standard mode: $\quad C b=400 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$
Fast mode: $\quad \mathrm{Cb}=320 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$

IICA serial transfer timing

Remark $n=0,1$

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVrefm	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVrefm
ANIO to ANI3	Refer to 3.6.1 (1).	Refer to 3.6.1 (3).	Refer to 3.6.1 (4).
ANI16 to ANI22	Refer to 3.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 3.6.1 (1).		-

(1) When reference voltage (+) = AVREFPIANIO (ADREFP1 $=0$, ADREFPO $=1$), reference voltage (-) $=$ AVrefm/ANI1 (ADREFM = 1), target pin: ANI2 and ANI3, internal reference voltage, and temperature sensor output voltage
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, Reference voltage (+) = AVREFP, Reference voltage (-) $=A V$ refm $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution AVREFP $=$ VdD Note 3	$2.4 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$		1.2	± 3.5	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI2 and ANI3	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{S}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{S}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{S}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution AVRefp $=$ Vdd Note 3	$2.4 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			± 0.25	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution AVREFP $=$ VDD Note 3	$2.4 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			± 0.25	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution AVrefp $=$ Vdd Note 3	$2.4 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$			± 2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP $=$ VDD Note 3	$2.4 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			± 1.5	LSB
Analog input voltage	VAIN	ANI2 and ANI3		0		AVrefp	V
		Internal reference voltage$(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$		VbGR Note 4			V
		Temperature sensor output voltage$(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$		VTMPS25 Note 4			V

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\%FSR) to the full-scale value.
Note 3. When AVREFP < VDD, the MAX. values are as follows.

Overall error:
Zero-scale error/Full-scale error: Add ± 1.0 LSB to the MAX. value when $A V$ REFP $=$ VDD. Add $\pm 0.05 \%$ FSR to the MAX value when AVREFP $=$ VDD Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AVREFP = VDD.
Note 4. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.
(2) When reference voltage (+) $=$ AVREFP/ANIO (ADREFP1 $=0$, ADREFP0 $=1$), reference voltage (-) $=$ AVRefm/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22
(TA = -40 to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$,
Reference voltage (+) = AVrefp, Reference voltage (-) = AVrefm $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution $E V_{D D} \leq A V_{\text {REFP }}=$ VDD $^{\text {Notes } 3,4}$	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq 5.5 \mathrm{~V}$		1.2	± 5.0	LSB
Conversion time	tconv	10-bit resolution Target ANI pin: ANI16 to ANI22	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution EVdD \leq AVREFP $=$ VDD Notes 3, 4	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq 5.5 \mathrm{~V}$			± 0.35	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution EVDD \leq AVrefp $=$ VDD Notes 3, 4	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq 5.5 \mathrm{~V}$			± 0.35	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution EVDD \leq AVrefp $=$ VDD Notes 3, 4	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq 5.5 \mathrm{~V}$			± 3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution $\mathrm{EVDD} \leq \mathrm{A}_{\text {REFP }}=\mathrm{VDD}_{\mathrm{D}}$ Notes 3,4	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq 5.5 \mathrm{~V}$			± 2.0	LSB
Analog input voltage	Vain	ANI16 to ANI22		0		AVREfP and EVdD	V

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\%FSR) to the full-scale value.
Note 3. When EVDD \leq AVREFP < VDD, the MAX. values are as follows.
Overall error: Add ± 1.0 LSB to the MAX. value when AV REFP $=$ VDD.
Zero-scale error/Full-scale error: Add $\pm 0.05 \%$ FSR to the MAX. value when AVrefp $=$ Vdd. Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when $A V R E F P=$ Vdd.
Note 4. When AVREFP < EVDD \leq VDd, the MAX. values are as follows.
Overall error: \quad Add ± 4.0 LSB to the MAX. value when $A V_{R E F P}=\operatorname{VDD}$. Zero-scale error/Full-scale error: Add $\pm 0.20 \%$ FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AVREFP = VDD.
(3) When reference voltage $(+)=\operatorname{VDD}(\operatorname{ADREFP} 1=0$, ADREFP0 $=0$), reference voltage $(-)=\operatorname{Vss}$ (ADREFM $=0$), target pin: ANIO to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$,
Reference voltage (+) = Vdd, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$		1.2	± 7.0	LSB
Conversion time	tconv	10-bit resolution Target pin: ANIO to ANI3, ANI16 to ANI22	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{S}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
		10-bit resolution Target pin: internal reference voltage, and temperature sensor output voltage	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.60	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.60	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.0	LSB
Analog input voltage	Vain	ANIO to ANI3		0		VdD	V
		ANI16 to ANI22		0		EVDD	V
		Internal reference voltage$(2.4 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V})$		VBGR Note 3			V
		Temperature sensor output voltage$(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$		$V_{\text {TMPS25 }}$ Note 3			V

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\% FSR) to the full-scale value.
Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.
(4) When reference voltage (+) = Internal reference voltage (ADREFP1 $=1$, ADREFP0 $=0$), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANIO to ANI3, ANI16 to ANI22
(T A $=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD}=0 \mathrm{~V}$,

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resolution | RES | | | 8 | | |
| Conversion time | tconV | | 17 | | 39 | $\mu \mathrm{~s}$ |
| Zero-scale error Notes 1, 2 | Ezs | | | | ± 0.60 | $\%$ FSR |
| Integral linearity error Note 1 | ILE | | | | ± 2.0 | LSB |
| Differential linearity error Note 1 | DLE | 8-bit resolution | | | ± 1.0 | LSB |
| Analog input voltage | VAIN | | 0 | | VBGR Note 3 | V |

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\% FSR) to the full-scale value.
Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.
Note 4. When reference voltage $(-)=$ Vss, the MAX. values are as follows.

Zero-scale error:	Add $\pm 0.35 \%$ FSR to the MAX. value when reference voltage $(-)=$ AVREFM.
Integral linearity error:	Add ± 0.5 LSB to the MAX. value when reference voltage $(-)=$ AVREFM.
Differential linearity error:	Add ± 0.2 LSB to the MAX. value when reference voltage $(-)=$ AVREFM.

3.6.2 Temperature sensor characteristics/internal reference voltage characteristic

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register $=80 \mathrm{H}, \mathrm{TA}=+25^{\circ} \mathrm{C}$		1.05		V
Internal reference voltage	VBGR	Setting ADS register $=81 \mathrm{H}$	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature	-3.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Operation stabilization wait time	tAMP	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	5			$\mu \mathrm{~s}$

3.6.3 D/A converter (channel 1)

($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+105^{\circ} \mathrm{C}, \mathbf{2 . 4} \mathrm{V} \leq \mathrm{EVss} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES					8	bit
Overall error	AINL	Rload $=4 \mathrm{M} \Omega$	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.5	LSB
		Rload $=8 \mathrm{M} \Omega$	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.5	LSB
Settling time	tSET	Cload $=20 \mathrm{pF}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			3	$\mu \mathrm{S}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			6	$\mu \mathrm{S}$

3.6.4 Comparator

(Comparator 0: TA $=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)
(Comparator 1: TA = -40 to +105² $\mathrm{C}, \mathbf{2 . 4} \mathrm{V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage range	VIREFO	IVREFO pin		0		VdD - 1.4 Note 1	V
	Viref1	IVREF1 pin		1.4 Note 1		VDD	V
	VICMP	IVCMP0 pin		-0.3		VDD +0.3	V
		IVCMP1 pin		-0.3		$E V_{D D}+0.3$	V
Output delay	td	$\begin{aligned} & \text { VDD }=3.0 \mathrm{~V} \\ & \text { Input slew rate }>50 \mathrm{mV} / \mu \mathrm{S} \end{aligned}$	Comparator high-speed mode, standard mode			1.2	$\mu \mathrm{s}$
			Comparator high-speed mode, window mode			2.0	$\mu \mathrm{s}$
			Comparator low-speed mode, standard mode		3		$\mu \mathrm{S}$
			Comparator low-speed mode, window mode		4		$\mu \mathrm{s}$
Operation stabilization wait time	tcmp			100			$\mu \mathrm{S}$
Reference voltage declination in channel 0 of internal DAC Note 2	$\triangle \mathrm{VIDAC}$					± 2.5	LSB

Note 1. In window mode, make sure that Vref1 - Vrefo $\geq 0.2 \mathrm{~V}$.
Note 2. Only in CMPO

3.6.5 PGA

($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input offset voltage	Viopga					± 10	mV
Input voltage range	VIPGA			0		$\begin{gathered} 0.9 \times \\ \text { VDD/Gain } \end{gathered}$	V
Output voltage range	VıohPGA			$0.93 \times$ VDD			V
	Violpga					$0.07 \times \mathrm{VDD}$	V
Gain error		x4, x8				± 1	\%
		x16				± 1.5	\%
		x32				± 2	\%
Slew rate	SRRPGA	Rising When $\mathrm{VIN}=0.1 \mathrm{Vdo} /$ gain to $0.9 \mathrm{Vdo} /$ gain. 10 to 90% of output voltage amplitude	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V} \\ & \text { (Other than } \mathrm{x} 32 \text {) } \end{aligned}$	3.5			$\mathrm{V} / \mu \mathrm{s}$
			$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$ (x 32)	3.0			
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 4.0 \mathrm{~V}$	0.5			
	SRfpgA	Falling When Vin= $0.1 \mathrm{Vdo} /$ gain to $0.9 \mathrm{Vdo} /$ gain. 90 to 10% of output voltage amplitude	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V} \\ & \text { (Other than } \mathrm{x} 32 \text {) } \end{aligned}$	3.5			
			$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$ (x 32)	3.0			
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 4.0 \mathrm{~V}$	0.5			
Reference voltage stabilization wait timeNote	tpga	x4, x8				5	$\mu \mathrm{s}$
		x16, x32				10	$\mu \mathrm{s}$

Note Time required until a state is entered where the DC and AC specifications of the PGA are satisfied after the PGA operation has been enabled (PGAEN = 1).

3.6.6 POR circuit characteristics

$\left(\mathrm{TA}=-40\right.$ to $+105^{\circ} \mathrm{C}$, Vss $\left.=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	The power supply voltage is rising.	1.45	1.51	1.57	V
	VPDR	The power supply voltage is falling. Note 1	1.44	1.50	1.56	V
Minimum pulse width Note 2	TPW1	Other than STOP/SUB HALT/SUB RUN	300			$\mu \mathrm{~s}$
	TPW2	STOP/SUB HALT/SUB RUN	300			$\mu \mathrm{~s}$

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 3.4 AC Characteristics.
Note 2. Minimum time required for a POR reset when VdD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPor while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.7 LVD circuit characteristics

(1) LVD Detection VoItage of Reset Mode and Interrupt Mode
($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVDo	The power supply voltage is rising.	3.90	4.06	4.22	V
			The power supply voltage is falling.	3.83	3.98	4.13	V
		VLVD1	The power supply voltage is rising.	3.60	3.75	3.90	V
			The power supply voltage is falling.	3.53	3.67	3.81	V
		VLvD2	The power supply voltage is rising.	3.01	3.13	3.25	V
			The power supply voltage is falling.	2.94	3.06	3.18	V
		VLVD3	The power supply voltage is rising.	2.90	3.02	3.14	V
			The power supply voltage is falling.	2.85	2.96	3.07	V
		VLVD4	The power supply voltage is rising.	2.81	2.92	3.03	V
			The power supply voltage is falling.	2.75	2.86	2.97	V
		VLVD5	The power supply voltage is rising.	2.71	2.81	2.92	V
			The power supply voltage is falling.	2.64	2.75	2.86	V
		VLVD6	The power supply voltage is rising.	2.61	2.71	2.81	V
			The power supply voltage is falling.	2.55	2.65	2.75	V
		VLVD7	The power supply voltage is rising.	2.51	2.61	2.71	V
			The power supply voltage is falling.	2.45	2.55	2.65	V
Minimum pulse width		tıw		300			$\mu \mathrm{s}$
Detection delay time						300	$\mu \mathrm{s}$

(2) LVD Detection Voltage of Interrupt \& Reset Mode
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Interrupt and reset mode	VLVddo	VPOC0, VPOC1, VPOC2 $=0,1,1$, falling reset voltage		2.64	2.75	2.86	V
	VLVDD1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
			Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
			Falling interrupt voltage	2.85	2.96	3.07	V
	VLVDD3	LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
			Falling interrupt voltage	3.83	3.98	4.13	V

3.6.8 Power supply voltage rising slope characteristics

$\left(\mathrm{TA}=-\mathbf{4 0}\right.$ to $\left.+105^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SvDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

3.8 Flash Memory Programming Characteristics

($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
System clock frequency	fCLK	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years	$\mathrm{TA}^{\prime}=85^{\circ} \mathrm{C}$	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year	$\mathrm{TA}_{A}=25^{\circ} \mathrm{C}$		1,000,000		
		Retained for 5 years	$\mathrm{TA}^{\prime}=85^{\circ} \mathrm{C}$	100,000			
		Retained for 20 years	$\mathrm{TA}^{\prime}=85^{\circ} \mathrm{C}$	10,000			

Note 1. 1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
Note 2. When using flash memory programmer and Renesas Electronics self-programming library
Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

3.9 Dedicated Flash Memory Programmer Communication (UART)

($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.
Transfer rate		During serial programming	115,200		$1,000,000$

3.10 Timing of Entry to Flash Memory Programming Modes

($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.
How long from when an external reset ends until the initial communication settings are specified Note 1	tsuINIT	POR and LVD reset must end before the external reset ends.			100
How long from when the TOOLO pin is placed at the low level until an external reset ends Note 1	tsu	POR and LVD reset must end before the external reset ends.	10		
How long the TOOLO pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory) Notes 1,2	tHD	POR and LVD reset must end before the external reset ends.	1	$\mu \mathrm{~m}$	

Note 1. Deassertion of the POR and LVD reset signals must precede deassertion of the pin reset signal.
Note 2. This excludes the flash firmware processing time ($723 \mu \mathrm{~s}$).

$<1>$ The low level is input to the TOOLO pin.
$<2>$ The external reset ends (POR and LVD reset must end before the external reset ends).
$<3>$ The TOOLO pin is set to the high level.
$<4>$ Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.
tsu: How long from when the TOOLO pin is placed at the low level until a pin reset ends
thD: How long to keep the TOOLO pin at the low level from when the external resets end (excluding the processing time of the firmware to control the flash memory)

4. PACKAGE DRAWINGS

4.1 10-pin package

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP10-4.4×3.6-0.65	PLSP0010JA-A	P10MA-65-CAC-2	0.05

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.
detail of lead end

	(UNIT:mm)
ITEM	DIMENSIONS
A	3.60 ± 0.10
B	0.50
C	0.65 (T.P.)
D	0.24 ± 0.08
E	0.10 ± 0.05
F	1.45 MAX.
G	1.20 ± 0.10
H	6.40 ± 0.20
I	4.40 ± 0.10
J	1.00 ± 0.20
K	$0.17_{-0.0}^{+0.08}$
L	0.50
M	0.13
N	0.10
P	$3^{\circ}{ }_{-3^{\circ}}^{\circ}$
T	0.25 (T.P.)
U	0.60 ± 0.15
V	0.25 MAX.
W	0.15 MAX.

[^2]
4.2 16-pin package

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-SSOP16-4.4×5-0.65	PRSP0016JC-B	P16MA-65-FAB	0.08

detail of lead end

Referance Symbol	Dimension in Millimeters		
	Min	Nom	Max
D	4.85	5.00	5.15
D_{1}	5.05	5.20	5.35
E	4.20	4.40	4.60
$\mathrm{~A}_{2}$	-	1.50	-
A_{1}	0.075	0.125	0.175
A	-	-	1.725
$\mathrm{~b}_{\mathrm{p}}$	0.17	0.24	0.32
$\mathrm{~b}_{1}$	-	0.22	-
c	0.14	0.17	0.20
c_{1}	-	0.15	-
θ	0°	-	8°
H_{E}	6.20	6.40	6.60
e	-	0.65	-
x	-	-	0.13
y	-	-	0.10
Z_{D}	-	0.225	-
L	0.35	0.50	0.65
$\mathrm{~L}_{1}$	-	1.00	-

4.3 20-pin package

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-4.4×6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1

NOTE

1.Dimensions " 1^{1} " and " $※ 2$ " do not include mold flash.
2.Dimension "※3" does not include trim offset.

	(UNIT:mm)
ITEM	DIMENSIONS
D	6.50 ± 0.10
E	4.40 ± 0.10
HE	6.40 ± 0.20
A	1.45 MAX.
A1	0.10 ± 0.10
A2	1.15
e	0.65 ± 0.12
bp	$0.22_{-0.05}^{+0.10}$
c	$0.15_{-0}^{+0.05}$
L	0.50 ± 0.20
y	0.10
θ	0° to 10°

©2012 Renesas Electronics Corporation. All rights reserved.

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-TSSOP20-4.40×6.50-0.65	PTSP0020JI-A	0.08

NOTES:
1.DIMENSION 'D' AND 'E1' DOES NOT INCLUDE MOLD FLASH. 2. DIMENSION 'b' DOES NOT INCLUDE TRIM OFFSET.
3.DIMENSION 'D' AND 'E1' TO BE DETERMINED AT DATUM PLANE \boldsymbol{H}.

Reference Symbol	Dimension in Millimeters		
	Min.	Nom.	Max.
A	-	-	1.20
A1	0.05	-	0.15
A2	0.80	1.00	1.05
b	0.19	-	0.30
C	0.09	0.127	0.20
D	6.40	6.50	6.60
E1	4.30	4.40	4.50
E	6.40 BSC		
e	0.65 BSC		
L1	1.00 REF		
L	0.50	0.60	0.75
S	0.20	-	-
θ	0°	-	8°
aaa	0.10		
bbb	0.10		
ccc	0.05		
ddd	0.20		

4.4 24-pin package

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN24-4×4-0.50	PWQN0024KE-A	P24K8-50-CAB-3	0.04

Referance Symbol	Dimension in Millimeters		
	Min	Nom	Max
D	3.95	4.00	4.05
E	3.95	4.00	4.05
A	-	-	0.80
$\mathrm{~A}_{1}$	0.00	-	-
b	0.18	0.25	0.30
e	-	0.50	-
Lp	0.30	0.40	0.50
x	-	-	0.05
y	-	-	0.05
Z_{D}	-	0.75	-
Z_{E}	-	0.75	-
C_{2}	0.15	0.20	0.25
D_{2}	-	2.50	-
E_{2}	-	2.50	-

©2013 Renesas Electronics Corporation. All rights reserved.

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-HWQFN024-4×4-0.50	PWQN0024KF-A	0.04

Reference Symbol	Dimension in Millimeters		
	Min.	Nom.	Max.
A	-	-	0.80
A1	0.00	0.02	0.05
A3	0.203 REF.		
b	0.18	0.25	0.30
D	4.00 BSC		
E	4.00 BSC		
e	0.50 BSC		
L	0.35	0.40	0.45
K	0.20	-	-
D2	2.55	2.60	2.65
E2	2.55	2.60	2.65
aaa	0.15		
bbb	0.10		
ccc	0.10		
ddd	0.05		
eee	0.08		
fff	0.10		

4.5 25-pin package

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA25-3x3-0.50	PWLG0025KA-A	P25FC-50-2N2-2	0.01

DETAIL OF © PART

DETAIL OF (D) PART

(UNIT:mm)

ITEM	DIMENSIONS
D	3.00 ± 0.10
E	3.00 ± 0.10
w	0.20
e	0.50
A	0.69 ± 0.07
b	0.24 ± 0.05
x	0.05
y	0.08
$y 1$	0.20
$z D$	0.50
$z E$	0.50

© 2012 Renesas Electronics Corporation. All rights reserved.

Rev.	Date	Description	
		Page	Summary
0.50	Mar 312016	-	First Edition issued
1.00	Sep 282016	p. 7	Modification of Pin Configuration in 1.3.3 25-pin products
		p. 9	Addition of 1.5.1 20-pin products
		p. 10	Addition of product name and Modification of Block Diagram in 1.5.2 24-pin, 25pin products
		p. 12	Addition of ${ }^{2} \mathrm{C}$ bus in 1.6 Outline of Functions
		p. 15	Modification of Conditions of $\mathrm{I}_{\mathrm{OH} 1}$, $\mathrm{I}_{\mathrm{OL} 1}$ in 2.1 Absolute Maximum Ratings
		p. 16	Modification of High-speed on-chip oscillator clock frequency accuracy and addition of $\mathrm{D}_{\mathrm{IMT}}, \mathrm{D}_{\mathrm{IMV}}$ in 2.2.2 On-chip oscillator characteristics
		p. 17	Modification of Caution in 2.3.1 Pin characteristics
		p. 19	Modification of Input voltage, high and Input voltage, low in 2.3.1 Pin characteristics
		p.19, 20	Modification of Caution in 2.3.1 Pin characteristics
		$\begin{aligned} & \text { p.22, 23, } \\ & 24,26,27 \end{aligned}$	Modification of specifications in 2.3.2 Supply current characteristics
		p.29, 30	Modification of specification in 2.4 AC Characteristics
		p. 35	Modification of specifications in 2.5.1 Serial array unit (1)
		p. 39	Modification of specifications in 2.5.1 Serial array unit (3)
		p.40, 42	Modification of specification in 2.5.1 Serial array unit (4)
		p. 62	Addition of LP (Low-power main) mode in 2.5.2 Serial interface IICA (1)
		p. 64	Addition of LP (Low-power main) mode in 2.5.2 Serial interface IICA (2)
		p. 65	Addition of LP (Low-power main) mode in 2.5.2 Serial interface IICA (3)
		p. 70	Modification of Conditions in 2.6.2 Temperature sensor haracteristics/internal reference voltage characteristic
		p. 79	Addition of description in 3 ELECTRICAL SPECIFICATIONS (TA $=-40$ to $+105^{\circ} \mathrm{C}$)
		p. 82	Modification of High-speed on-chip oscillator clock frequency accuracy and addition of $\mathrm{D}_{\mathrm{IMT}}, \mathrm{D}_{\mathrm{IMV}}$ in 3.2.2 On-chip oscillator characteristics
		p. 83	Modification of Caution in 3.3.1 Pin characteristics
		p. 85	Modification of Input voltage, high and Input voltage, low in 3.3.1 Pin characteristics
		p.85, 86	Modification of Caution in 3.3.1 Pin characteristics
		p. 88 to 91	Modification of specifications in 3.3.2 Supply current characteristics
		p. 97	Modification of specifications and specification table in 3.5.1 Serial array unit (1)
		p. 103	Modification of specifications in 3.5.1 Serial array unit (3)
		p. 125	Modification of Conditions in 3.6.1 A/D converter characteristics (4)
		p. 126	Modification of Conditions in 3.6.2 Temperature sensor haracteristics/internal reference voltage characteristic
1.10	Dec 282016	p. 4	Modification of 1.2 Ordering Information
2.00	Feb 15, 2018	Throughout	Addition of specifications of 10-pin and 16-pin products
		p. 2	Modification of description in 1.1 Features
		p. 6	Modification of figure in 1.3.4 24-pin products
		p. 11	Modification of figure in 1.5.3 20-pin products
		p. 12	Modification of figure in 1.5.4 24-pin, 25-pin products

Rev.	Date	Description	
		Page	Summary
2.00	Feb 15, 2018	p.13, 14	Modification of table in 1.6 Outline of Functions
		p. 18	Modification of 2.2.2 On-chip oscillator characteristics
		p.19, 21	Modification of 2.3.1 Pin characteristics
		p. 24	Modification of 2.3.2 Supply current characteristics
		p. 32	Modification of 2.4 AC Characteristics
		p. 79	Modification of figure in 2.10 Timing of Entry to Flash Memory Programming Modes
		p. 84	Modification of 3.2.1 X1 characteristics
		p. 84	Modification of 3.2.2 On-chip oscillator characteristics
		p.85, 86, 87	Modification of 3.3.1 Pin characteristics
		p. 95	Modification of 3.4 AC Characteristics
		p. 99	Modification of note in 3.5.1 Serial array unit (1)
		p. 134	Modification of figure in 3.10 Timing of Entry to Flash Memory Programming Modes
2.20	Apr 26, 2019	p. 3	Addition of note in Figure 1-1 Part Number, Memory Size, and Package of RL78/G11
		p. 5	Modification of figure in 1.3.1 10-pin products
		p. 5	Modification of figure in 1.3.2 16-pin products
		p. 5	Modification of figure in 1.3.3 20-pin products
		p. 6	Modification of figure in 1.3.4 24-pin products
		p.13, 14	Modification of table in 1.6 Outline of Functions
		p. 16	Modification of specification in 2.1 Absolute Maximum Ratings
		p.19, 22	Modification of specification in 2.3.1 Pin characteristics
		p.25, 27	Modification of note 1 in 2.3.2 Supply current characteristics
		p.29, 30	Modification of specification and addition of note 14 in 2.3.2 Supply current characteristics, Peripheral Functions (Common to all products)
		p. 32	Modification of specification in 2.4 AC Characteristics
		p. 36	Modification of note 2 in 2.5.1 Serial array unit, (1) During communication at same potential (UART mode)
		p. 41	Modification of specification in 2.5.1 Serial array unit, (3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output), When P20 is used as SO10 pin
		p. 43	Modification of specification in 2.5.1 Serial array unit, (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input), When P01, P32, P53, P54 and P56 are used as SOmn pins
		p. 44	Modification of specification in 2.5.1 Serial array unit, (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input), When P20 is used as SO10 pin
		p. 47	Modification of specification in 2.5.1 Serial array unit, (5) During communication at same potential (simplified ${ }^{2} \mathrm{C}$ mode)
		p.53, 54	Modification of specification in 2.5.1 Serial array unit, (7) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.0 \mathrm{~V}$) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSIOO only)
		p. 60	Modification of note 3 in 2.5.1 Serial array unit, (9) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.0 \mathrm{~V}$) (CSI mode) (slave mode, SCKp... external clock input)

Rev.	Date	Description	
		Page	Summary
2.20	Apr 26, 2019	p. 69	Modification of note 3 in 2.6.1 A/D converter characteristics, (2) When reference voltage $(+)=A V_{\text {REFP }} /$ ANIO (ADREFP1 $=0$, ADREFPO $=1$), reference voltage $(-)$ $=A V_{\text {REFM }} /$ ANI1 (ADREFM $=1$), target pin: ANI16 to ANI22
		p. 70	Modification of specification in 2.6.1 A/D converter characteristics, (3) When reference voltage $(+)=\mathrm{V}_{\mathrm{DD}}$ (ADREFP1 $=0$, ADREFP0 $=0$), reference voltage ($)=\mathrm{V}_{\mathrm{SS}}($ ADREFM $=0)$, target pin: ANIO to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage
		p. 71	Modification of specification in 2.6.1 A/D converter characteristics, (4) When reference voltage $(+)=$ Internal reference voltage (ADREFP1 = 1, ADREFP0 $=$ 0), reference voltage $(-)=\mathrm{AV}_{\text {REFM }} /$ ANI1 (ADREFM $=1$), target pin: ANIO, ANI2 and ANI3, ANI16 to ANI22
		p. 72	Modification of title in 2.6.3 D/A converter (channel 1)
		p. 73	Modification of specification in 2.6.4 Comparator
		p. 82	Modification of specification in 3.1 Absolute Maximum Ratings
		p. 84	Modification of specification in 3.2.1 X1 characteristics
		p.85, 87, 88	Modification of specification in 3.3.1 Pin characteristics
		p. 93	Modification of specification in 3.3.2 Supply current characteristics, Peripheral Functions (Common to all products)
		p. 99	Modification of specification in 3.5.1 Serial array unit, (1) during communication at same potential (UART mode), When P20 is used as TxD1 pin
		p. 101	Modification of specification in 3.5.1 Serial array unit, (2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output), When P01, P32, P53, P54 and P56 are used as Somn pins
		p. 102	Modification of specification in 3.5.1 Serial array unit, (2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output), When P20 is used as SO10 pin
		p. 103	Modification of note 1 in 3.5.1 Serial array unit, (3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input), When P01, P32, P53, P54 and P56 are used as SOmn pins
		p. 105	Modification of specification and note 1 in 3.5.1 Serial array unit, (3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input), When P20 is used as SO10 pin
		p. 124	Modification of specification in 3.6.1 A/D converter characteristics, (1) When reference voltage $(+)=A V_{\text {REFP }} /$ ANIO (ADREFP1 $=0$, ADREFPO $=1$), reference voltage $(-)=$ AV $_{\text {REFM }} /$ ANI1 (ADREFM $=1$), target pin: ANI2 and ANI3, internal reference voltage, and temperature sensor output voltage
		p. 125	Modification of note 3 in 3.6.1 A/D converter characteristics, (2) When reference voltage $(+)=A V_{\text {REFP }} / A N I O(A D R E F P 1=0$, ADREFP0 $=1$), reference voltage $(-)$ $=A V_{\text {REFM }} /$ ANI1 (ADREFM $=1$), target pin: ANI16 to ANI22
		p. 127	Modification of specification in 3.6.1 A/D converter characteristics, (4) When reference voltage $(+)=$ Internal reference voltage (ADREFP1 = 1, ADREFP0 $=$ 0), reference voltage $(-)=A V_{\text {REFM }} /$ ANII (ADREFM $=1$), target pin: ANIO to ANI3, ANI16 to ANI22
		p. 128	Modification of title in 3.6.3 D/A converter (channel 1)
		p. 129	Modification of specification in 3.6.4 Comparator
		p. 131	Modification of specification in 3.6.6 POR circuit characteristics
		p. 132	Modification of specification in 3.6.7 LVD circuit characteristics, (1) LVD Detection Voltage of Reset Mode and Interrupt Mode

Rev.	Date	Description	
		Page	
2.30	June 30, 2020	p.3	Modification of Figure 1-1 Part Number, Memory Size, and Package of RL78/G11
		p.4	Modification of table in 1.2 Ordering Information
		p.5	Modification of description in 1.3.3 20-pin products
		p.26	Modification of specification in 2.3.2 Supply current characteristics
	p.138	Addition of package drawing in 4.3 20-pin package	
	p.140	Addition of package drawing in 4.4 24-pin package	

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash ${ }^{\circledR}$ technology licensed from Silicon Storage Technology, Inc.
All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesas

SALES OFFICES
Renesas Electronics Corporation
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics America Inc. Milpitas Campus
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics America Inc. San Jose Campus
6024 Silver Creek Valley Road, San Jose, CA 95138, USA
Tel: +1-408-284-8200, Fax: +1-408-284-2775
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Cent
Unit 1651
Penesas Electronics Taiwan Co Ltd
Renesas Electronics Taiwan Co., Ltd.
13F,No. 363, 10 , Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, \#06-02 Singapore 339949
Tel. $+65-6213-0200$, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit No 3A-1
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia
Tel: +60-3-5022-1288, Fax: +60-3-5022-1290
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: $+82-2-558-3737$, Fax: +82-2-558-5338

[^0]: Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

[^1]: Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

[^2]: © 2012 Renesas Electronics Corporation. All rights reserved.

