Complementary Darlington Silicon Power Transistors

These devices are designed for use as general purpose amplifiers, low frequency switching and motor control applications.

Features

- High DC Current Gain @ 10 Adc $h_{FE} = 400$ Min (All Types)
- Collector-Emitter Sustaining Voltage
 - V_{CEO(sus)} = 150 Vdc (Min) MJH11018, 17 = 200 Vdc (Min) — MJH11020, 19
 - = 250 Vdc (Min) MJH11022, 21
- Low Collector–Emitter Saturation Voltage $V_{CE(sat)} = 1.2 \text{ V} (\text{Typ}) @ I_C = 5.0 \text{ A}$ $= 1.8 \text{ V} (\text{Typ}) @ I_C = 10 \text{ A}$
- Monolithic Construction
- These are Pb–Free Devices

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Collector–Emitter Voltage MJH11018, MJH11017 MJH11020, MJH11019 MJH11022, MJH11021	V _{CEO}	150 200 250	Vdc
Collector–Base Voltage MJH11018, MJH11017 MJH11020, MJH11019 MJH11022, MJH11021	V _{CB}	150 200 250	Vdc
Emitter-Base Voltage	V _{EB}	5.0	Vdc
Collector Current – Continuous – Peak (Note 1)	Ι _C	15 30	Adc
Base Current	Ι _Β	0.5	Adc
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above 25°C	PD	150 1.2	W ₩/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.83	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle $\leq 10\%$.

COMPLEMENTARY SILICON POWER TRANSISTORS 150–250 VOLTS, 150 WATTS

NOTE: Effective June 2012 this device will be available only in the TO–247 package. Reference FPCN# 16827.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MARKING DIAGRAMS

ORDERING INFORMATION

Device Order Number	Package Type	Shipping
MJH11017G	TO-218 (Pb-Free)	30 Units / Rail
MJH11018G	TO-218 (Pb-Free)	30 Units / Rail
MJH11019G	TO-218 (Pb-Free)	30 Units / Rail
MJH11020G	TO-218 (Pb-Free)	30 Units / Rail
MJH11021G	TO-218 (Pb-Free)	30 Units / Rail
MJH11022G	TO-218 (Pb-Free)	30 Units / Rail
MJH11017G	TO-247 (Pb-Free)	30 Units / Rail
MJH11018G	TO-247 (Pb-Free)	30 Units / Rail
MJH11019G	TO-247 (Pb-Free)	30 Units / Rail
MJH11020G	TO–247 (Pb–Free)	30 Units / Rail
MJH11021G	TO-247 (Pb-Free)	30 Units / Rail
MJH11022G	TO-247 (Pb-Free)	30 Units / Rail

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Char	acteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage (Note $(I_C = 0.1 \text{ Adc}, I_B = 0)$	≥ 2) MJH11017, MJH11018 MJH11019, MJH11020 MJH11021, MJH11022	V _{CEO(sus)}	150 200 250		Vdc
	MJH11017, MJH11018 MJH11019, MJH11020 MJH11021, MJH11022	I _{CEO}	- - -	1.0 1.0 1.0	mAdc
	Γ _J = 150°C)	ICEV	_ _	0.5 5.0	mAdc
Emitter Cutoff Current (V_{BE} = 5.0 Vdc I _C =	0)	I _{EBO}	-	2.0	mAdc
ON CHARACTERISTICS (Note 2)					
DC Current Gain ($I_C = 10$ Adc, $V_{CE} = 5.0$ Vdc) ($I_C = 15$ Adc, $V_{CE} = 5.0$ Vdc)		h _{FE}	400 100	15,000 -	-
$\label{eq:collector-Emitter Saturation Voltage} \begin{array}{c} \mbox{Collector-Emitter Saturation Voltage} \\ \mbox{(I}_{C} = 10 \mbox{ Adc, I}_{B} = 100 \mbox{ mA}) \\ \mbox{(I}_{C} = 15 \mbox{ Adc, I}_{B} = 150 \mbox{ mA}) \end{array}$		V _{CE(sat)}		2.5 4.0	Vdc
Base–Emitter On Voltage (I _C = 10 A, V _{CE} = 5.0 Vdc)		V _{BE(on)}	-	2.8	Vdc
Base–Emitter Saturation Voltage ($I_C = 15$	Adc, I _B = 150 mA)	V _{BE(sat)}	-	3.8	Vdc
DYNAMIC CHARACTERISTICS					
Current–Gain Bandwidth Product ($I_C = 10$	Adc, V _{CE} = 3.0 Vdc, f = 1.0 MHz)	f _T	3.0	-	-
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz)	MJH11018, MJH11020, MJH11022 MJH11017, MJH11019, MJH11021	C _{ob}		400 600	pF
Small–Signal Current Gain (I_C = 10 Adc, V_{CE} = 3.0 Vdc, f = 1.0 kHz)		h _{fe}	75	-	-
SWITCHING CHARACTERISTICS					
			Тур	oical	
Char	acteristic	Symbol	NPN	PNP	Unit
Delay Time		t _d	150	75	ns

Delay Time		t _d	150	75	ns
Rise Time	(V _{CC} = 100 V, I _C = 10 A, I _B = 100 mA	tr	1.2	0.5	μs
Storage Time	$V_{BE(off)} = 5.0 V$) (See Figure 2)	ts	4.4	2.7	μs
Fall Time		t _f	2.5	2.5	μs

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

Duty Cycle = 1.0%

For NPN test circuit, reverse diode and voltage polarities.

Figure 2. Switching Times Test Circuit

Figure 3. Thermal Response

Figure 4. Maximum Rated Forward Bias Safe Operating Area (FBSOA)

FORWARD BIAS

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 4 is based on $T_{J(pk)} = 150^{\circ}$ C; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}$ C. $T_{J(pk)}$ may be calculated from the data in Figure 3. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

Figure 5. Maximum Rated Reverse Bias Safe Operating Area (RBSOA)

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn–off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage–current conditions during reverse biased turn–off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 5 gives RBSOA characteristics.

Figure 6. DC Current Gain

Figure 7. Collector Saturation Region

Figure 8. "On" Voltages

PNP

NPN

Figure 9. Darlington Schematic

SOT-93 (TO-218) CASE 340D-02 **ISSUE E**

DATE 01/03/2002

PIN 1. BASE 2. COLLECTOR 3. 4. EMITTER COLLECTOR

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α		20.35		0.801
В	14.70	15.20	0.579	0.598
C	4.70	4.90	0.185	0.193
D	1.10	1.30	0.043	0.051
Ε	1.17	1.37	0.046	0.054
G	5.40	5.55	0.213	0.219
Н	2.00	3.00	0.079	0.118
J	0.50	0.78	0.020	0.031
K	31.00 REF		1.220 REF	
L		16.20		0.638
Q	4.00	4.10	0.158	0.161
S	17.80	18.20	0.701	0.717
U	4.00 REF		0.157	REF
۷	1.75 REF		0.0	69

MARKING DIAGRAM

А = Assembly Location Y = Year ww = Work Week

XXXXX = Device Code

Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98ASB42643B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOT-93 PAGE 1 OF 1 ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

PIN 1. ANODE 2. CATHODE

ANODE
ANODE
CATHODE

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

DOCUMENT NUMBER:	98ASB15080C	Electronic versions are uncontrolled except whe	n
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. Print versions are uncontrolled except when stamped	ted
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	TO-247	PAGE 1 OF	2

DOCUMENT NUMBER: 98ASB15080C

PAGE 2 OF 2

ISSUE	REVISION	DATE
D	CHANGE OF OWNERSHIP FROM MOTOROLA TO ON SEMICONDUCTOR. DIM A WAS 20.80–21.46/0.819–0.845. DIM K WAS 19.81–20.32/0.780–0.800. UPDATED STYLE 1, ADDED STYLES 2, 3, & 4. REQ. BY L. HAYES.	25 AUG 2000
E	DIM E MINIMUM WAS 2.20/0.087. DIM K MINIMUM WAS 20.06/0.790. ADDED GENERIC MARKING DIAGRAM. REQ. BY S. ALLEN.	26 FEB 2010
F	ADDED STYLES 5 AND 6. REQ. BY J. PEREZ.	26 OCT 2011

ON Semiconductor and with a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without function special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal analleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative