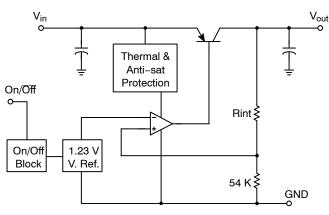
Voltage Regulator - Low Dropout, On/Off Control 300 mA

MC33375, NCV33375 Series


The MC33375 series are micropower low dropout voltage regulators available in a wide variety of output voltages as well as packages, SOT-223 and SOP-8. These devices feature a very low quiescent current and are capable of supplying output currents up to 300 mA. Internal current and thermal limiting protection are provided by the presence of a short circuit at the output and an internal thermal shutdown circuit.

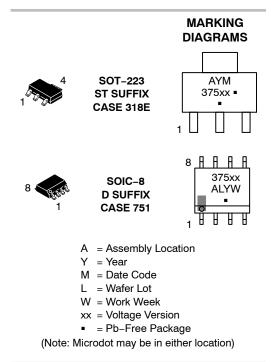
The MC33375 has a control pin that allows a logic level signal to turn-off or turn-on the regulator output.

Due to the low input-to-output voltage differential and bias current specifications, these devices are ideally suited for battery powered computer, consumer, and industrial equipment where an extension of useful battery life is desirable.

Features:

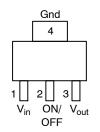
- Low Quiescent Current (0.3 μA in OFF mode; 125 μA in ON mode)
- Low Input–to–Output Voltage Differential of 25 mV at $I_0 = 10$ mA, and 260 mV at $I_0 = 300$ mA
- Extremely Tight Line and Load Regulation
- Stable with Output Capacitance of only 0.33 μF for 2.5 V Output Voltage
- Internal Current and Thermal Limiting
- Logic Level ON/OFF Control
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These are Pb-Free Devices

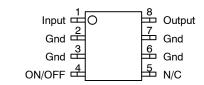
This device contains 41 active transistors


Figure 1. Simplified Block Diagram

ON Semiconductor®

www.onsemi.com


LOW DROPOUT MICROPOWER VOLTAGE REGULATOR



ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

PIN CONNECTIONS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	V _{CC}	13	Vdc
Power Dissipation and Thermal Characteristics $T_A = 25^{\circ}C$			
Maximum Power Dissipation Case 751 (SOP-8) D Suffix	PD	Internally Limited	W
Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case Case 318E (SOT-223) ST Suffix	${\sf R}_{ heta {\sf JA}} \ {\sf R}_{ heta {\sf JC}}$	160 25	°C/W °C/W
Thermal Resistance, Junction-to-Air Thermal Resistance, Junction-to-Case	$R_{ extsf{ heta}JA}$ $R_{ extsf{ heta}JC}$	245 15	°C/W °C/W
Output Current	Ι _Ο	300	mA
Maximum Junction Temperature	TJ	150	°C
Operating Ambient Temperature Range	T _A	– 40 to +125	°C
Storage Temperature Range	T _{stg}	– 65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

	Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage 1.8 V Suffix 2.5 V Suffix 3.0 V Suffix 3.3 V Suffix 5.0 V Suffix	$I_{O} = 0 \text{ mA to } 250 \text{ mA}$ $T_{A} = 25^{\circ}\text{C}, V_{in} = [V_{O} + 1] \text{ V}$	Vo	1.782 2.475 2.970 3.267 4.950	1.80 2.50 3.00 3.30 5.00	1.818 2.525 3.030 3.333 5.05	Vdc
1.8 V Suffix 2.5 V Suffix 3.0 V Suffix 3.3 V Suffix 5.0 V Suffix	$V_{in} = [V_O + 1] V, 0 < I_O < 100 mA$ 2% Tolerance from $T_J = -40$ to +125°C		1.764 2.450 2.940 3.234 4.900	- - - -	1.836 2.550 3.060 3.366 5.100	
Line Regulation	$V_{in} = [V_O + 1] V$ to 12 V, $I_O = 250 \text{ mA}$, All Suffixes $T_A = 25^{\circ}C$	Reg _{line}	_	2.0	10	mV
Load Regulation	$V_{in} = [V_O + 1] V$, $I_O = 0$ mA to 250 mA, All Suffixes $T_A = 25^{\circ}C$	Reg _{load}	_	5.0	25	mV
$\begin{array}{l} Dropout \mbox{ Voltage } (\\ I_O = 10 \mbox{ mA} \\ I_O = 100 \mbox{ mA} \\ I_O = 250 \mbox{ mA} \\ I_O = 300 \mbox{ mA} \end{array}$	Note 3) T _J = −40°C to +125°C	V _{in} – V _O	- - -	25 115 220 260	100 200 400 500	mV
Ripple Rejection (120 Hz) V _{in(peak-peak)} = [V _O + 1.5] V to [V _O + 5.5] V	-	65	75	-	dB
Output Noise Volt $C_L = 1.0 \ \mu F$ $C_L = 200 \ \mu F$	age I _O = 50 mA (10 Hz to 100 kHz)	Vn	-	160 46	-	μVrm
CURRENT PAR	AMETERS					
Quiescent Curren	t ON Mode V _{in} = [V _O + 1] V, I _O = 0 mA	I _{QOn}	-	125	200	μA
Quiescent Curren	t OFF Mode	I _{QOff}	-	0.3	4.0	μΑ
Quiescent Curren 3.0 V Suffix 3.3 V Suffix 5.0 V Suffix	t ON Mode SAT $V_{in} = [V_O - 0.5] V$, $I_O = 0 \text{ mA}$ (Notes 2, 4)	I _{QSAT}		1500 1500 1500	2000 2000 2000	μΑ
Current Limit	$V_{in} = [V_O + 1] V, V_O Shorted$	I _{LIMIT}	-	450	-	mA
ON/OFF INPUT	8					
Logic "0" (Regu	ge Iator On) V _{out} = V _O ± 2% Iator Off) V _{out} < 0.03 V Iator Off) V _{out} < 0.05 V (1.8 V Option)	V _{CTRL}	2.4 _ _	- - -	_ 0.5 0.3	V
THERMAL SHU	TDOWN				-	•
Thermal Shutdow	n	-	-	150	-	°C

ELECTRICAL CHARACTERISTICS	(C _L = 1.0) μF, T _A = 25°C	, for min/max values	$T_J = -40^{\circ}C \text{ to } +125^{\circ}C,$	Note 1)
----------------------------	-----------------------	-----------------------------	----------------------	---	---------

1. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible. 2. Quiescent Current is measured where the PNP pass transistor is in saturation. $V_{in} = [V_0 - 0.5]$ V guarantees this condition. 3. For 1.8 V version V_{DO} is constrained by the minimum input voltage of 2.5 V. 4. For 1.8 V and 2.5 V versions, I_{QSAT} is constrained by the minimum input voltage of 2.5 V.

DEFINITIONS

Load Regulation – The change in output voltage for a change in load current at constant chip temperature.

Dropout Voltage – The input/output differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output drops 100 mV below its nominal value (which is measured at 1.0 V differential), dropout voltage is affected by junction temperature, load current and minimum input supply requirements.

Output Noise Voltage – The RMS AC voltage at the output with a constant load and no input ripple, measured over a specified frequency range.

Maximum Power Dissipation – The maximum total dissipation for which the regulator will operate within specifications.

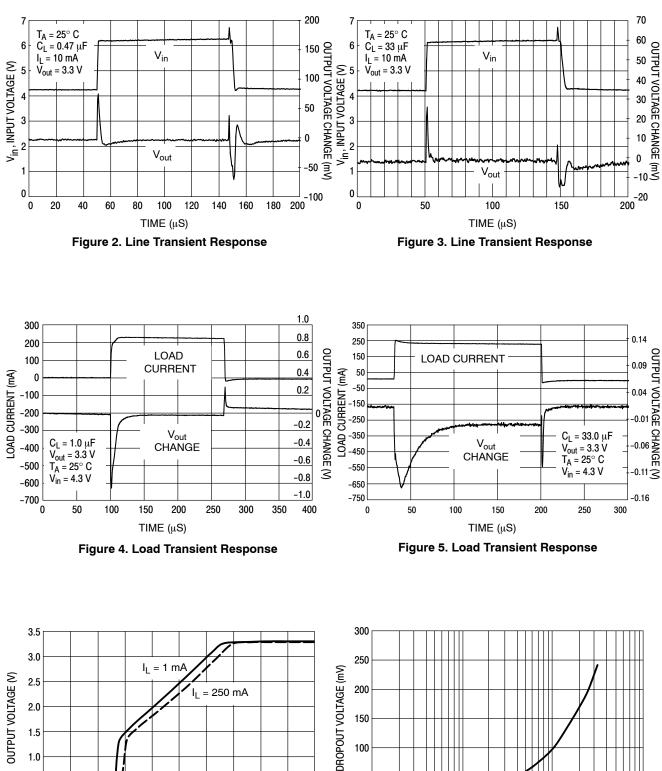
Quiescent Current – Current which is used to operate the regulator chip and is not delivered to the load.

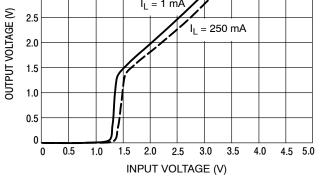
Line Regulation – The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Maximum Package Power Dissipation – The maximum package power dissipation is the power dissipation level at which the junction temperature reaches its maximum value i.e. 150° C. The junction temperature is rising while the difference between the input power (V_{CC} X I_{CC}) and the output power (V_{out} X I_{out}) is increasing.

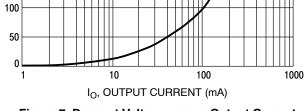
Depending on ambient temperature, it is possible to calculate the maximum power dissipation and so the maximum current as following:

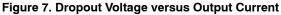
$$\mathsf{Pd} = \frac{\mathsf{T}_{\mathsf{J}} - \mathsf{T}_{\mathsf{A}}}{\mathsf{R}_{\theta}\mathsf{J}\mathsf{A}}$$

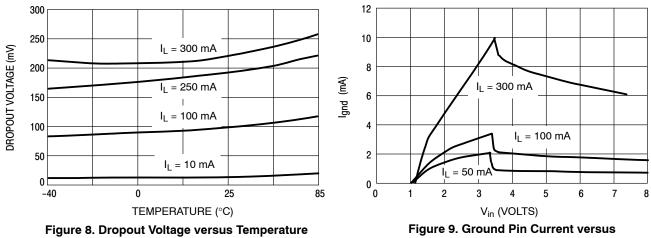

The maximum operating junction temperature T_J is specified at 150°C, if $T_A = 25$ °C, then P_D can be found. By neglecting the quiescent current, the maximum power dissipation can be expressed as:

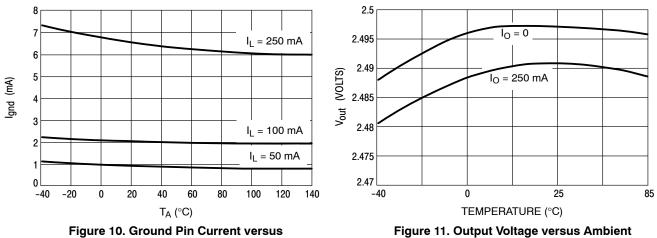

$$I_{out} = \frac{P_D}{V_{CC} - V_{out}}$$

The thermal resistance of the whole circuit can be evaluated by deliberately activating the thermal shutdown of the circuit (by increasing the output current or raising the input voltage for example).


Then you can calculate the power dissipation by subtracting the output power from the input power. All variables are then well known: power dissipation, thermal shutdown temperature (150°C for MC33375) and ambient temperature.

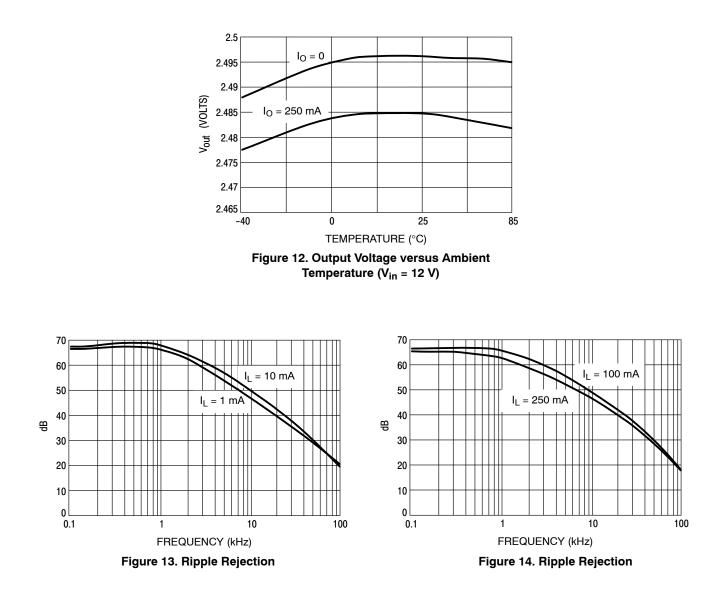

$$\mathsf{R}_{\theta \mathsf{J}\mathsf{A}} = \frac{\mathsf{T}_{\mathsf{J}} - \mathsf{T}_{\mathsf{A}}}{\mathsf{P}_{\mathsf{D}}}$$





200

150



Input Voltage

Ambient Temperature

Figure 11. Output Voltage versus Ambien Temperature (V_{in} = V_{out} + 1V)

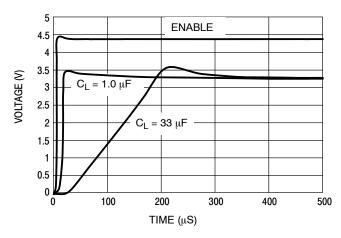


Figure 15. Enable Transient

1.8 V Option

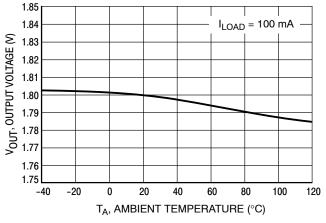


Figure 16. Output Voltage versus Temperature

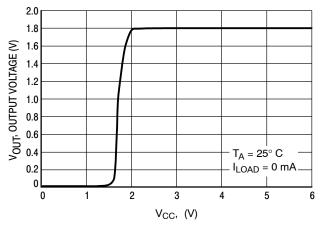


Figure 17. Output Voltage versus Input Voltage

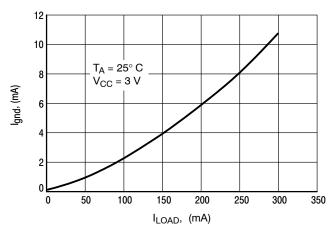


Figure 18. Ground Current versus Load Current

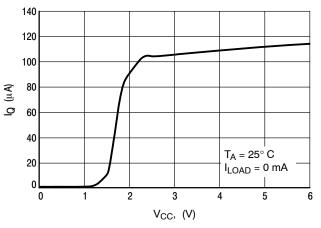
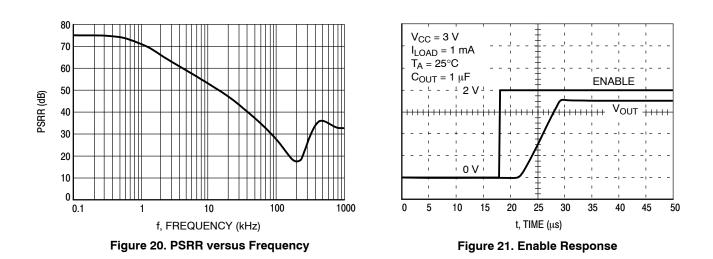



Figure 19. Quiescent Current versus Input Voltage

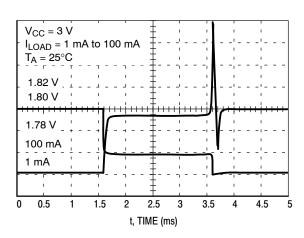
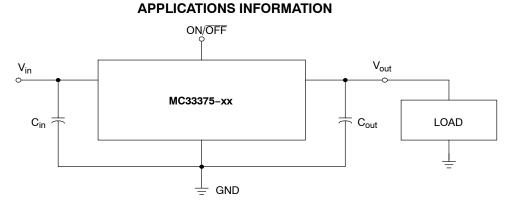
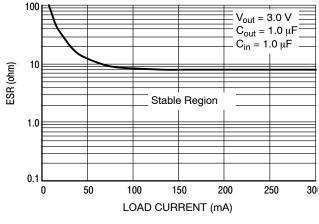
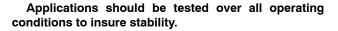


Figure 22. Load Transient Response




Figure 23. Typical Application Circuit

The MC33375 regulators are designed with internal current limiting and thermal shutdown making them user-friendly. Figure 15 is a typical application circuit. The output capability of the regulator is in excess of 300 mA, with a typical dropout voltage of less than 260 mV. Internal protective features include current and thermal limiting.


EXTERNAL CAPACITORS

These regulators require only a 0.33 μ F (or greater) capacitance between the output and ground for stability for 1.8 V, 2.5 V, 3.0 V, and 3.3 V output voltage options. Output voltage options of 5.0 V require only 0.22 µF for stability. The output capacitor must be mounted as close as possible to the MC33375. If the output capacitor must be mounted further than two centimeters away from the MC33375, then a larger value of output capacitor may be required for stability. A value of 0.68 µF or larger is recommended. Most type of aluminum, tantalum, or multilayer ceramic will perform adequately. Solid tantalums or appropriate multilayer ceramic capacitors are recommended for operation below 25°C. An input bypass capacitor is recommended to improve transient response or if the regulator is connected to the supply input filter with long wire lengths, more than 4 inches. This will reduce the circuit's sensitivity to the input line impedance at high

frequencies. A 0.33 μ F or larger tantalum, mylar, ceramic, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with shortest possible lead or track length directly across the regulator's input terminals. Figure 16 shows the ESR that allows the LDO to remain stable for various load currents.

THERMAL PROTECTION

Internal thermal limiting circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When activated, typically at 150°C, the output is disabled. There is no hysteresis built into the thermal protection. As a result the output will appear to be oscillating during thermal limit. The output will turn off until the temperature drops below the 150°C then the output turns on again. The process will repeat if the junction increases above the threshold. This will continue until the existing conditions allow the junction to operate below the temperature threshold.

Thermal limit is not a substitute for proper heatsinking.

The internal current limit will typically limit current to 450 mA. If during current limit the junction exceeds 150°C, the thermal protection will protect the device also. **Current limit is not a substitute for proper heatsinking.**

OUTPUT NOISE

In many applications it is desirable to reduce the noise present at the output. Reducing the regulator bandwidth by increasing the size of the output capacitor will reduce the noise on the MC33375.

ON/OFF PIN

When this pin is pulled low, the MC33375 is off. This pin should not be left floating. The pin should be pulled high for the MC33375 to operate.

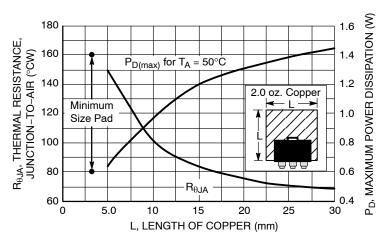
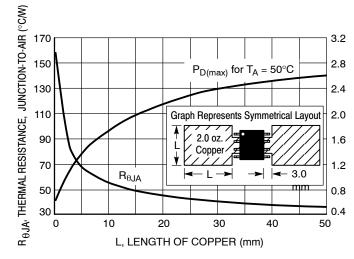



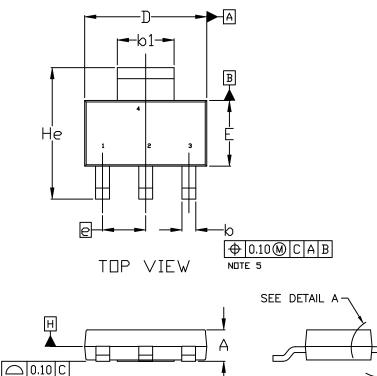
Figure 25. SOT-223 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

ORDERING INFORMATION

		Operating Temperature Range,		_
Device	Туре	Tolerance	Package	Shipping [†]
MC33375ST-1.8T3G	1.8 V		SOT-223	1000 / Tana & Daal
NCV33375ST1.8T3G*	(Fixed Voltage)		(Pb-Free)	4000 / Tape & Reel
MC33375D-2.5G			SOIC-8 (Pb-Free)	98 Units / Rail
MC33375D-2.5R2G	2.5 V		SOIC-8	
NCV33375D-2.5R2G*	(Fixed Voltage)		(Pb-Free)	2500 / Tape & Reel
MC33375ST-2.5T3G			SOT-223 (Pb-Free)	4000 / Tape & Reel
MC33375D-3.0G			SOIC-8 (Pb-Free)	98 Units / Rail
MC33375D-3.0R2G	3.0 V (Fixed Voltage)	1% Tolerance at T _A = 25°C	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC33375ST-3.0T3G		2% Tolerance at T _J from -40 to +125°C	SOT-223 (Pb-Free)	4000 / Tape & Reel
MC33375D-3.3G			SOIC-8 (Pb-Free)	98 Units / Rail
MC33375D-3.3R2G	3.3 V		SOIC-8	
NCV33375D-3.3R2G*	(Fixed Voltage)		(Pb-Free)	2500 / Tape & Reel
MC33375ST-3.3T3G			SOT-223	
NCV33375ST3.3T3G*			(Pb-Free)	4000 / Tape & Reel
MC33375D-5.0G			SOIC-8 (Pb-Free)	98 Units / Rail
MC33375D-5.0R2G	5.0 V		SOIC-8 (Pb-Free)	2500 / Tape & Reel
NCV33375D-5.0R2G*	(Fixed Voltage)		SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC33375ST-5.0T3G			SOT-223 (Pb-Free)	4000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable


DEVICE MARKING

Device	Version	Marking (1st line)
MC33375, NCV33375	1.8 V	37518
MC33375, NCV33375	2.5 V	37525
MC33375	3.0 V	37530
MC33375, NCV33375	3.3 V	37533
MC33375, NCV33375	5.0 V	37550

SCALE 1:1

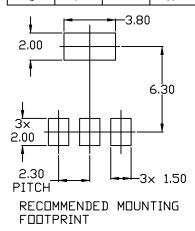
1

SIDE VIEW

DETAIL A

A1

SOT-223 (TO-261) CASE 318E-04 **ISSUE R**


FRONT VIEW

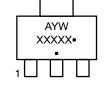
DATE 02 OCT 2018

NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS D & E DO NOT INCLUDE MOLD з. FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- AI IS DEFINED AS THE VERTICAL DISTANCE 5. FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- POSITIONAL TOLERANCE APPLIES TO 6. DIMENSIONS & AND &1.

	MILLIMETERS			
DIM	MIN.	NDM.	MAX.	
A	1.50	1.63	1.75	
A1	0.02	0.06	0.10	
b	0.60	0.75	0.89	
b1	2.90	3.06	3.20	
с	0.24	0.29	0.35	
D	6.30	6.50	6.70	
E	3.30	3.50	3.70	
e		5.30 B2C	;	
L	0.20			
L1	1.50	1.75	2.00	
He	6.70	7.00	7.30	
θ	0*		10°	

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2			
ON Semiconductor and mare trac	ON Semiconductor and image trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries					

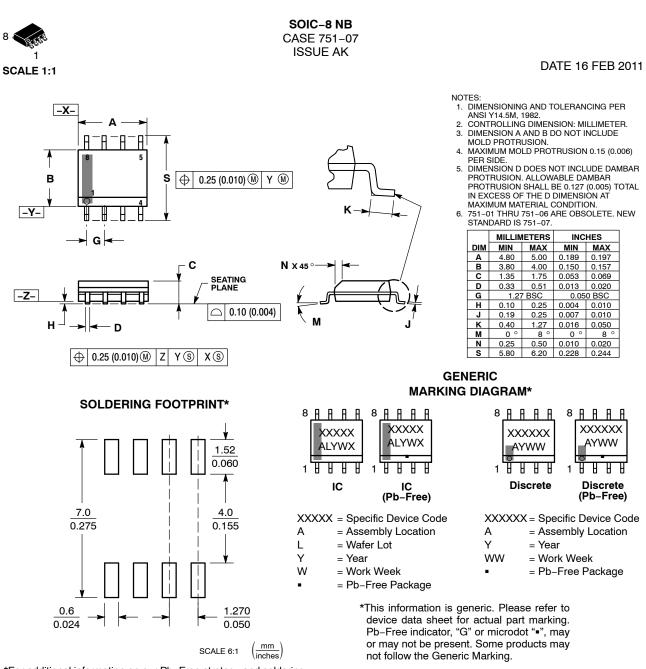

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	Style 9: Pin 1. Input 2. Ground 3. Logic 4. Ground	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	Style 12: Pin 1. Input 2. Output 3. NC 4. Output	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*



- A = Assembly Location
- Y = Year
- W = Work Week
- XXXXX = Specific Device Code
- = Pb-Free Package
- (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2		
ON Semiconductor and 🕕 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of the applications are used equivarent or encoder to the applications are used equivarent or encoder to the applications and of the applications are used equivarent or encoder to the applications and of the applications are used equivarent or encoder to the applications and of the applications are used equivarent or encoder to the applications are used equivarent or encoder to the applications are used equivarent or the applications and of the applications are used equivarent or encoder to the applications are used encoder to the applications and the applications are used encoder to the applications and the applications are used encoder to the applications are used encoder to the applications and the applications are used encoder to the applications ar					

the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2		
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product on incidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically		

© Semiconductor Components Industries, LLC, 2019

SOIC-8 NB CASE 751-07 **ISSUE AK**

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR З. 4. EMITTER EMITTER 5. 6. BASE 7 BASE 8. EMITTER STYLE 5: PIN 1. DRAIN 2. DRAIN З. DRAIN DRAIN 4. 5. GATE 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6. BASE, DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. 4. TXE 5. RXE 6. VFF GND 7. 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 З. CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C З. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. EMITTER, #1 BASE, #2 2. З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 З. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: PIN 1. GROUND BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND BIAS 2 INPUT 6. 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. 5. P-DRAIN 6. P-DRAIN N-DRAIN 7. 8. N-DRAIN STYLE 18: PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. 8. CATHODE STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC I/O LINE 3 4. 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt ENABLE З. 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: PIN 1. DRAIN 1 DRAIN 1 2 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1
STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd
STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1
STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON
STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1
STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT
STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN

DATE 16 FEB 2011

STYLE 4: ANODE ANODE PIN 1. 2. ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE, #2 З. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE SOURCE 2. 3. 4. GATE 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE 2. EMITTER З. COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE CATHODE COLLECTOR/ANODE 6. 7. COLLECTOR/ANODE 8. STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET 3. 4. GND 5. 6. V MON VBULK 7. VBULK 8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2	
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product o cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding circuit, and specifically	

SOURCE 1/DRAIN 2

7.

8. GATE 1

7.

8

rights of others.

COLLECTOR, #1

COLLECTOR, #1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative