MC14543B

BCD-to-Seven Segment Latch/Decoder/Driver for Liquid Crystals

The MC14543B BCD-to-seven segment latch/decoder/driver is designed for use with liquid crystal readouts, and is constructed with complementary MOS (CMOS) enhancement mode devices. The circuit provides the functions of a 4-bit storage latch and an 8421 BCD-to-seven segment decoder and driver. The device has the capability to invert the logic levels of the output combination. The phase (Ph), blanking (BI), and latch disable (LD) inputs are used to reverse the truth table phase, blank the display, and store a BCD code, respectively. For liquid crystal (LC) readouts, a square wave is applied to the Ph input of the circuit and the electrically common backplane of the display. The outputs of the circuit are connected directly to the segments of the LC readout. For other types of readouts, such as light-emitting diode (LED), incandescent, gas discharge, and fluorescent readouts, connection diagrams are given on this data sheet.

Applications include instrument (e.g., counter, DVM etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

Features

- Latch Storage of Code
- Blanking Input
- Readout Blanking on All Illegal Input Combinations
- Direct LED (Common Anode or Cathode) Driving Capability
- Supply Voltage Range $=3.0 \mathrm{~V}$ to 18 V
- Capable of Driving 2 Low-power TTL Loads, 1 Low-power Schottky TTL Load or 2 HTL Loads Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4056A (with Pin 7 Tied to V_{SS}).
- Chip Complexity: 207 FETs or 52 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.
- This Device is $\mathrm{Pb}-$ Free and is RoHS Compliant

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

SOIC-16
D SUFFIX
CASE 751B

PIN ASSIGNMENT

MARKING DIAGRAM

$$
\begin{array}{ll}
\text { A } & =\text { Assembly Location } \\
\text { WL, L } & =\text { Wafer Lot } \\
\text { YY, Y } & =\text { Year } \\
\text { WW, W } & =\text { Work Week } \\
\text { G } & =\text { Pb-Free Package }
\end{array}
$$

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Parameter	Symbol	Value	Unit
DC Supply Voltage Range	V_{DD}	-0.5 to +18.0	V
Input Voltage Range, All Inputs	$\mathrm{V}_{\text {in }}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
DC Input Current per Pin	$\mathrm{I}_{\text {in }}$	± 10	mA
Power Dissipation per Package (Note 1)	P_{D}	500	mW
Operating Temperature Range	T_{A}	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Maximum Continuous Output Drive Current (Source or Sink)	$\mathrm{l}_{\text {OHmax }}$ $\mathrm{l}_{\text {OLmax }}$	10 (per Output)	mA
Maximum Continuous Output Power (Source or Sink) (Note 2)	$\mathrm{P}_{\text {OHmax }}$ $\mathrm{P}_{\text {OLmax }}$	70 (per Output)	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Package: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
2. $\mathrm{P}_{\mathrm{OHmax}}=\mathrm{I}_{\mathrm{OH}}\left(\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{DD}}\right)$ and $\mathrm{P}_{\mathrm{OLmax}}=\mathrm{I}_{\mathrm{OL}}\left(\mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{SS}}\right)$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

TRUTH TABLE

			pu							utp			
LD	BI	Ph*	D	C	B	A	a	b	c	d	e f	g	Display
X	1	0	X	X	X	X	0	0	0	0	00	0	Blank
1	0	0	0	0	0	0	1	1	1	1	11	0	0
1	0	0	0	0	0	1	0	1	1	0	00	0	1
1	0	0	0	0	1	0	1	1	0	1	10	1	2
1	0	0	0	0	1	1	1	1	1	1	00	1	3
1	0	0	0	1	0	0	0	1	1	0	01	1	4
1	0	0	0	1	0	1	1	0	1	1	01	1	5
1	0	0	0	1	1	0	1	0	1	1	11	1	6
1	0	0	0	1	1	1	1	1	1	0	00	0	7
1	0	0	1	0	0	0	1	1	1	1	11	1	8
1	0	0	1	0	0	1	1	1	1	1	01	1	9
1	0	0	1	0	1	0	0	0	0	0	00	0	Blank
1	0	0	1	0	1	1	0	0	0	0	00	0	Blank
1	0	0	1	1	0	0	0	0	0	0	00	0	Blank
1	0	0	1	1	0	1		0	0	0	00	0	Blank
1	0	0	1	1	1	0		0	0	0	00	0	Blank
1	0	0	1	1	1	1	0	0	0	0	00	0	Blank
0	0	0		X	X					**			**
\dagger	\dagger	\dagger		\dagger					oina e	of O ation	utput s		Display as above
X = Don't care													
$\dagger=$ Above Combinations													
* = For liquid crystal readouts, apply a square wave to Ph For common cathode LED readouts, select $\mathrm{Ph}=0$ For common anode LED readouts, select $\mathrm{Ph}=1$													
** = Depends upon the BCD code previously applied when LD $=1$													

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	V_{DD} Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		
			Min	Max	Min	Typ (Note 3)	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
"1" Level $V_{\text {in }}=0 \text { or } V_{D D}$	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{aligned} & \hline \text { Input Voltage "0" Level } \\ & \left(\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \end{aligned}$	V_{IL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	Vdc
Output Drive Current $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=0.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$	${ }^{\mathrm{IOH}}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ - \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{gathered} -2.4 \\ -0.51 \\ - \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{aligned} & -4.2 \\ & -0.88 \\ & -10.1 \\ & -2.25 \\ & -8.8 \end{aligned}$	- - -	$\begin{gathered} -1.7 \\ -0.36 \\ - \\ -0.9 \\ -2.4 \end{gathered}$	- - -	mAdc
$\left(V_{O L}=0.4 \mathrm{Vdc}\right)$ Sink $\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OL}}=9.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right)$	${ }^{\text {OL }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ - \\ 4.2 \end{gathered}$	-	$\begin{gathered} 0.51 \\ 1.3 \\ - \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 10.1 \\ 8.8 \end{gathered}$	- - -	$\begin{gathered} 0.36 \\ 0.9 \\ - \\ 2.4 \end{gathered}$	-	mAdc
Input Current	$\mathrm{l}_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
$\begin{aligned} & \text { Quiescent Current (Per Package) } \\ & V_{\text {in }}=0 \text { or } V_{D D}, \\ & I_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current (Note 4, 5) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	$\mathrm{I}^{\text {T }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(1.6 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(3.1 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(4.7 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Noise immunity specified for worst-case input combination.
$\begin{aligned} \text { Noise Margin for both " } 1 \text { " and " } 0 \text { " level }= & 1.0 \mathrm{~V} \min @ \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & 2.0 \mathrm{~V} \min @ \mathrm{~V}=10 \mathrm{~V} \\ & 2.5 \mathrm{~V} \text { min } @ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}\end{aligned}$
4. To calculate total supply current at loads other than 50 pF : $\mathrm{I}_{T}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{\mathrm{T}}(50 \mathrm{pF})+3.5 \times 10^{-3}\left(\mathrm{C}_{\mathrm{L}}-50\right) \mathrm{V}_{\mathrm{DD}}$ f where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}_{\mathrm{DD}}$ in V , and f in kHz is input frequency.
5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS (Note 6) ($\left.\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	$V_{\text {DD }}$	Min	Typ	Max	Unit
$\begin{aligned} & \text { Output Rise Time } \\ & \mathrm{t}_{\mathrm{T} L \mathrm{H}}=(3.0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+30 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+15 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(1.1 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+10 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}^{\text {LLH }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & \mathrm{t}_{\mathrm{T} H \mathrm{~L}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{T} H L}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}^{\text {THL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{aligned} & 200 \\ & 100 \\ & 80 \end{aligned}$	ns
$\begin{aligned} & \text { Turn-Off Delay Time } \\ & \text { tpLH }=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+520 \mathrm{~ns} \\ & \mathrm{t}_{\text {PLH }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+217 \mathrm{~ns} \\ & \mathrm{t}_{\text {PLH }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+160 \mathrm{~ns} \end{aligned}$	$t_{\text {PLL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & 605 \\ & 250 \\ & 185 \end{aligned}$	$\begin{aligned} & 1210 \\ & 500 \\ & 370 \end{aligned}$	ns
$\begin{aligned} & \text { Turn-On Delay Time } \\ & \text { tpHL }=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+420 \mathrm{~ns} \\ & \text { t PHL }=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+172 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+130 \mathrm{~ns} \end{aligned}$	$t_{\text {PHL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & 505 \\ & 205 \\ & 155 \end{aligned}$	$\begin{aligned} & 1650 \\ & 660 \\ & 495 \end{aligned}$	ns
Setup Time	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 350 \\ & 450 \\ & 500 \end{aligned}$		-	ns
Hold Time	$t_{\text {h }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 20 \end{aligned}$		-	ns
Latch Disable Pulse Width (Strobing Data)	$t_{\text {wh }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 250 \\ 100 \\ 80 \end{gathered}$	$\begin{gathered} \hline 125 \\ 50 \\ 40 \end{gathered}$	-	ns

6. The formulas given are for the typical characteristics only.

LOGIC DIAGRAM

Figure 1. Typical Output Source Characteristics

Inputs BI and Ph low, and Inputs D and LD high.
f in respect to a system clock.
All outputs connected to respective C_{L} loads.

Figure 3. Dynamic Power Dissipation Signal Waveforms

Figure 2. Typical Output Sink Characteristics
(a) Inputs D, Ph, and BI low, and Inputs A, B, and LD high.

(b) Inputs D, Ph, and BI low, and Inputs A and B high.

(c) Data DCBA strobed into latches

LD

Figure 4. Dynamic Signal Waveforms

MC14543B

CONNECTIONS TO VARIOUS DISPLAY READOUTS

LIQUID CRYSTAL (LC) READOUT

LIGHT EMITTING DIODE (LED) READOUT

NOTE: Bipolar transistors may be added for gain (for $\mathrm{V}_{\mathrm{DD}} \leq 10 \mathrm{~V}$ or $\mathrm{I}_{\text {out }} \geq 10 \mathrm{~mA}$).

INCANDESCENT READOUT

GAS DISCHARGE READOUT

CONNECTIONS TO SEGMENTS

$$
\begin{aligned}
& \begin{array}{l}
V_{D D}=\text { PIN } 16 \\
V_{S S}=\text { PIN } 8
\end{array}
\end{aligned}
$$

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC14543BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14543BDR2G	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
NLV14543BDR2G*	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

