# Presettable 4-Bit Down Counters

The MC14526B binary counter is constructed with MOS P-channel and N-channel enhancement mode devices in a monolithic structure.

This device is presettable, cascadable, synchronous down counter with a decoded "0" state output for divide—by—N applications. In single stage applications the "0" output is applied to the Preset Enable input. The Cascade Feedback input allows cascade divide—by—N operation with no additional gates required. The Inhibit input allows disabling of the pulse counting function. Inhibit may also be used as a negative edge clock.

This complementary MOS counter can be used in frequency synthesizers, phase-locked loops, and other frequency division applications requiring low power dissipation and/or high noise immunity.

#### **Features**

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Logic Edge-Clocked Design: Incremented on Positive Transition of Clock or Negative Transition of Inhibit
- Asynchronous Preset Enable
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- This Device is Pb-Free and is RoHS Compliant

# **MAXIMUM RATINGS**

| Rating                                            | Symbol                                | Value                    | Unit |
|---------------------------------------------------|---------------------------------------|--------------------------|------|
| DC Supply Voltage Range                           | $V_{DD}$                              | -0.5 to +18.0            | V    |
| Input or Output Voltage Range (DC or Transient)   | V <sub>in</sub> ,<br>V <sub>out</sub> | $-0.5$ to $V_{DD} + 0.5$ | ٧    |
| Input or Output Current (DC or Transient) per Pin | I <sub>in</sub> , I <sub>out</sub>    | ±10                      | mA   |
| Power Dissipation per Package (Note 1)            | $P_{D}$                               | 500                      | mW   |
| Operating Temperature Range                       | T <sub>A</sub>                        | -55 to +125              | °C   |
| Storage Temperature Range                         | T <sub>stg</sub>                      | -65 to +150              | °C   |
| Lead Temperature<br>(8–Second Soldering)          | TL                                    | 260                      | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Package: -7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation,  $V_{in}$  and  $V_{out}$  should be constrained to the range  $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either  $V_{SS}$  or  $V_{DD}$ ). Unused outputs must be left open.



# ON Semiconductor®

http://onsemi.com



SOIC-16 WB DW SUFFIX CASE 751G

#### MARKING DIAGRAM



A = Assembly Location

WL, L = Wafer Lot
 YY, Y = Year
 WW, W = Work Week
 G = Pb-Free Package

# ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

#### **FUNCTION TABLE**

|       | Inputs |         |                  | Inputs Output       |     | Output                      |  |
|-------|--------|---------|------------------|---------------------|-----|-----------------------------|--|
| Clock | Reset  | Inhibit | Preset<br>Enable | Cascade<br>Feedback | "0" | Resulting<br>Function       |  |
| Х     | Н      | Х       | L                | L                   | L   | Asynchronous reset*         |  |
| X     | Н      | X       | Н                | L                   | Н   | Asynchronous reset          |  |
| Х     | Н      | X       | Х                | Н                   | Н   | Asynchronous reset          |  |
| Х     | L      | Х       | Н                | Х                   | L   | Asynchronous preset         |  |
|       | L      | Н       | √ L              | Х                   | L   | Decrement inhibited         |  |
| L     | L      |         | L                | X 🔼                 | L   | Decrement inhibited         |  |
|       | L      | L       | <u> </u>         | L                   | L   | No change** (inactive edge) |  |
| Н     | L      |         | ح L              | L -                 | L   | No change** (inactive edge) |  |
|       | L      | L       | L                | Lڔ                  | L   | Decrement**                 |  |
| Н     | L      |         | L                | L                   | L   | Decrement**                 |  |

X = Don't Care NOTES:

#### PIN DESCRIPTIONS

**Preset Enable (Pin 3)** — If Reset is low, a high level on the Preset Enable input asynchronously loads the counter with the programmed values on P0, P1, P2, and P3.

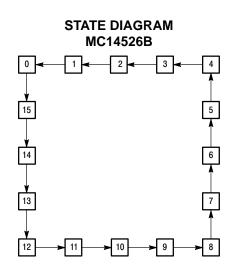
**Inhibit** (**Pin 4**) — A high level on the Inhibit input prevents the Clock from decrementing the counter. With Clock (pin 6) held high, Inhibit may be used as a negative edge clock input.

**Clock** (**Pin 6**) — The counter decrements by one for each rising edge of Clock. See the Function Table for level requirements on the other inputs.

**Reset (Pin 10)** — A high level on Reset asynchronously forces Q0, Q1, Q2, and Q3 low and, if Cascade Feedback is high, causes the "0" output to go high.

"0" (Pin 12) — The "0" (Zero) output issues a pulse one clock period wide when the counter reaches terminal count (Q0 = Q1 = Q2 = Q3 = low) if Cascade Feedback is high and Preset Enable is low. When presetting the counter to a value

other than all zeroes, the "0" output is valid after the rising edge of Preset Enable (when Cascade Feedback is high). See the Function Table.


Cascade Feedback (Pin 13) — If the Cascade Feedback input is high, a high level is generated at the "0" output when the count is all zeroes. If Cascade Feedback is low, the "0" output depends on the Preset Enable input level. See the Function Table.

**P0**, **P1**, **P2**, **P3** (**Pins 5**, **11**, **14**, **2**) — These are the preset data inputs. P0 is the LSB.

Q0, Q1, Q2, Q3 (Pins 7, 9, 15, 1) — These are the synchronous counter outputs. Q0 is the LSB.

 $V_{SS}$  (Pin 8) — The most negative power supply potential. This pin is usually ground.

 $V_{DD}$  (Pin 16) — The most positive power supply potential.  $V_{DD}$  may range from 3.0 to 18 V with respect to  $V_{SS}$ .



<sup>\*</sup> Output "0" is low when reset goes high only it PE and CF are low.

<sup>\*\*</sup> Output "0" is high when reset is low, only if CF is high and count is 0000.

# $\textbf{ELECTRICAL CHARACTERISTICS} \ (Voltages \ Referenced \ to \ V_{SS})$

|                                                                                                                                                                                                            |             |                 | $V_{DD}$               | -55                           | 5°C                  |                               | 25°C                                                 |                      | 125                           | 5°C                  |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|------------------------|-------------------------------|----------------------|-------------------------------|------------------------------------------------------|----------------------|-------------------------------|----------------------|------|
| Characteristic                                                                                                                                                                                             |             | Symbol          | Vdc                    | Min                           | Max                  | Min                           | Typ<br>(Note 2)                                      | Max                  | Min                           | Max                  | Unit |
| Output Voltage<br>V <sub>in</sub> = V <sub>DD</sub> or 0                                                                                                                                                   | "0" Level   | V <sub>OL</sub> | 5.0<br>10<br>15        | -<br>-<br>-                   | 0.05<br>0.05<br>0.05 | -<br>-<br>-                   | 0<br>0<br>0                                          | 0.05<br>0.05<br>0.05 | -<br>-<br>-                   | 0.05<br>0.05<br>0.05 | Vdc  |
| $V_{in} = 0$ or $V_{DD}$                                                                                                                                                                                   | "1" Level   |                 |                        |                               |                      |                               |                                                      |                      |                               |                      |      |
| Output Voltage $V_{in} = V_{DD}$ or 0                                                                                                                                                                      | "0" Level   | V <sub>OH</sub> | 5.0<br>10<br>15        | 4.95<br>9.95<br>14.95         | -<br>-<br>-          | 4.95<br>9.95<br>14.95         | 5.0<br>10<br>15                                      |                      | 4.95<br>9.95<br>14.95         | -<br>-<br>-          | Vdc  |
| V <sub>in</sub> = 0 or V <sub>DD</sub>                                                                                                                                                                     | "1" Level   |                 |                        |                               |                      |                               |                                                      |                      |                               |                      |      |
| Input Voltage<br>(V <sub>O</sub> = 4.5 or 0.5 Vdc)<br>(V <sub>O</sub> = 9.0 or 1.0 Vdc)<br>(V <sub>O</sub> = 13.5 or 1.5 Vdc)                                                                              | "0" Level   | V <sub>IL</sub> | 5.0<br>10<br>15        | -<br>-<br>-                   | 1.5<br>3.0<br>4.0    | -<br>-<br>-                   | 2.25<br>4.50<br>6.75                                 | 1.5<br>3.0<br>4.0    | -<br>-<br>-                   | 1.5<br>3.0<br>4.0    | Vdc  |
| $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$<br>$(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$<br>$(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$                                                                       | "1" Level   |                 |                        |                               |                      |                               |                                                      |                      |                               |                      |      |
| Input Voltage<br>(V <sub>O</sub> = 4.5 or 0.5 Vdc)<br>(V <sub>O</sub> = 9.0 or 1.0 Vdc)<br>(V <sub>O</sub> = 13.5 or 1.5 Vdc)                                                                              | "0" Level   | V <sub>IH</sub> | 5.0<br>10<br>15        | 3.5<br>7.0<br>11              | -<br>-<br>-          | 3.5<br>7.0<br>11              | 2.75<br>5.50<br>8.25                                 | -<br>-<br>-          | 3.5<br>7.0<br>11              | -<br>-<br>-          | Vdc  |
| $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$<br>$(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$<br>$(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$                                                                       | "1" Level   |                 |                        |                               |                      |                               |                                                      |                      |                               |                      |      |
| Output Drive Current $ \begin{aligned} (V_{OH} = 2.5 \text{ Vdc}) \\ (V_{OH} = 4.6 \text{ Vdc}) \\ (V_{OH} = 4.6 \text{ Vdc}) \\ (V_{OH} = 9.5 \text{ Vdc}) \\ (V_{OH} = 13.5 \text{ Vdc}) \end{aligned} $ | Source      | I <sub>OH</sub> | 5.0<br>5.0<br>10<br>15 | -3.0<br>-0.64<br>-1.6<br>-4.2 | -<br>-<br>-<br>-     | -2.4<br>-0.51<br>-1.3<br>-3.4 | -4.2<br>-0.88<br>-2.25<br>-8.8                       | -<br>-<br>-<br>-     | -1.7<br>-0.36<br>-0.9<br>-2.4 | -<br>-<br>-<br>-     | mAdc |
| $(V_{OL} = 0.4 \text{ Vdc})$<br>$(V_{OL} = 0.5 \text{ Vdc})$<br>$(V_{OL} = 1.5 \text{ Vdc})$                                                                                                               | Sink        | I <sub>OL</sub> | 5.0<br>10<br>15        | 0.64<br>1.6<br>4.2            | -<br>-<br>-          | 0.51<br>1.3<br>3.4            | 0.88<br>2.25<br>8.8                                  | -<br>-<br>-          | 0.36<br>0.9<br>2.4            | -<br>-<br>-          | mAdc |
| Input Current                                                                                                                                                                                              |             | I <sub>in</sub> | 15                     | -                             | ±0.1                 | _                             | ±0.00001                                             | ±0.1                 | -                             | ±1.0                 | μAdc |
| Input Capacitance<br>(V <sub>in</sub> = 0)                                                                                                                                                                 |             | C <sub>in</sub> | _                      | _                             | -                    | -                             | 5.0                                                  | 7.5                  | -                             | -                    | pF   |
| Quiescent Current<br>(Per Package)                                                                                                                                                                         |             |                 | 5.0<br>10<br>15        | -<br>-<br>-                   | 5.0<br>10<br>20      | -<br>-<br>-                   | 0.005<br>0.010<br>0.015                              | 5.0<br>10<br>20      | -<br>-<br>-                   | 150<br>300<br>600    | μAdc |
| Total Supply Current (Notes 3 (Dynamic plus Quiescent, Pe (C <sub>L</sub> = 50 pF on all outputs, al switching)                                                                                            | er Package) |                 | 5.0<br>10<br>15        |                               |                      | $I_T = (3$                    | I<br>I.7 μA/kHz) f<br>B.4 μA/kHz) f<br>5.1 μA/kHz) f | + I <sub>DD</sub>    |                               |                      | μAdc |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

3. The formulas given are for the typical characteristics only at 25°C.

4. To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where:  $I_T$  is in  $\mu A$  (per package),  $C_L$  in pF,  $V = (V_{DD} - V_{SS})$  in volts, f in kHz is input frequency, and k = 0.001.

# SWITCHING CHARACTERISTICS ( $C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$ ) (Note 5)

| Characteristic                                                                                                                                                                                                                                                                                                   | Symbol                                                      | V <sub>DD</sub> | Min               | Typ<br>(Note 6)    | Max                | Unit |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------|-------------------|--------------------|--------------------|------|
| Output Rise and Fall Time $t_{TLH}, t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns} \\ t_{TLH}, t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns} \\ t_{TLH}, t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns} \\ \end{cases}$                                                                           | t <sub>TLH</sub> ,<br>t <sub>THL</sub><br>(Figures 4, 5)    | 5.0<br>10<br>15 | -<br>-<br>-       | 100<br>50<br>40    | 200<br>100<br>80   | ns   |
| Propagation Delay Time (Inhibit Used as Negative Edge Clock) Clock or Inhibit to Q  tplh, tphl = (1.7 ns/pF) C <sub>L</sub> + 465 ns tplh, tphl = (0.66 ns/pF) C <sub>L</sub> + 197 ns tplh, tphl = (0.5 ns/pF) C <sub>L</sub> + 135 ns Clock or Inhibit to "0" tplh, tphl = (1.7 ns/pF) C <sub>L</sub> + 155 ns | t <sub>PLH</sub> ,<br>t <sub>PHL</sub><br>(Figures 4, 5, 6) | 5.0<br>10<br>15 | -<br>-<br>-       | 550<br>225<br>160  | 1100<br>450<br>320 | ns   |
| $t_{PLH}$ , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 87 \text{ ns}$<br>$t_{PLH}$ , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 65 \text{ ns}$                                                                                                                                                                              |                                                             | 5.0<br>10<br>15 | -<br>-<br>-       | 240<br>130<br>100  | 480<br>260<br>200  |      |
| Propagation Delay Time<br>Pn to Q                                                                                                                                                                                                                                                                                | t <sub>PLH</sub> ,<br>t <sub>PHL</sub><br>(Figures 4, 7)    | 5.0<br>10<br>15 | -<br>-<br>-       | 260<br>120<br>100  | 520<br>240<br>200  | ns   |
| Propagation Delay Time<br>Reset to Q                                                                                                                                                                                                                                                                             | t <sub>PHL</sub><br>(Figure 8)                              | 5.0<br>10<br>15 | -<br>-<br>-       | 250<br>110<br>80   | 500<br>220<br>160  | ns   |
| Propagation Delay Time Preset Enable to "0"                                                                                                                                                                                                                                                                      | t <sub>PHL</sub> ,<br>t <sub>PLH</sub><br>(Figures 4, 9)    | 5.0<br>10<br>15 | -<br>-<br>-       | 220<br>100<br>80   | 440<br>200<br>160  | ns   |
| Clock or Inhibit Pulse Width                                                                                                                                                                                                                                                                                     | t <sub>w</sub><br>(Figures 5, 6)                            | 5.0<br>10<br>15 | 250<br>100<br>80  | 125<br>50<br>40    | -<br>-<br>-        | ns   |
| Clock Pulse Frequency (with PE = low)                                                                                                                                                                                                                                                                            | f <sub>max</sub> (Figures 4, 5, 6)                          | 5.0<br>10<br>15 | -<br>-<br>-       | 2.0<br>5.0<br>6.6  | 1.5<br>3.0<br>4.0  | MHz  |
| Clock or Inhibit Rise and Fall Time                                                                                                                                                                                                                                                                              | t <sub>r</sub> ,<br>t <sub>f</sub><br>(Figures 5, 6)        | 5.0<br>10<br>15 | -<br>-<br>-       | -<br>-<br>-        | 15<br>5<br>4       | μs   |
| Setup Time<br>Pn to Preset Enable                                                                                                                                                                                                                                                                                | t <sub>su</sub><br>(Figure 1)                               | 5.0<br>10<br>15 | 90<br>50<br>40    | 40<br>15<br>10     | _<br>_<br>_        | ns   |
| Hold Time Preset Enable to Pn                                                                                                                                                                                                                                                                                    | t <sub>h</sub><br>(Figure 2)                                | 5.0<br>10<br>15 | 30<br>30<br>30    | –15<br>–5<br>0     | -<br>-<br>-        | ns   |
| Preset Enable Pulse Width                                                                                                                                                                                                                                                                                        | t <sub>w</sub><br>(Figure 3)                                | 5.0<br>10<br>15 | 250<br>100<br>80  | 125<br>50<br>40    | -<br>-<br>-        | ns   |
| Reset Pulse Width                                                                                                                                                                                                                                                                                                | t <sub>w</sub><br>(Figure 8)                                | 5.0<br>10<br>15 | 350<br>250<br>200 | 175<br>125<br>100  | -<br>-<br>-        | ns   |
| Reset Removal Time                                                                                                                                                                                                                                                                                               | t <sub>rem</sub><br>(Figure 8)                              | 5.0<br>10<br>15 | 10<br>20<br>30    | -110<br>-30<br>-20 | -<br>-<br>-        | ns   |

<sup>5.</sup> The formulas given are for the typical characteristics only at 25°C.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

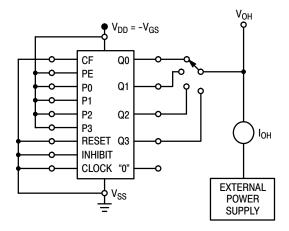



Figure 1. Typical Output Source Characteristics Test Circuit

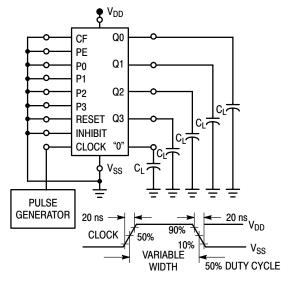
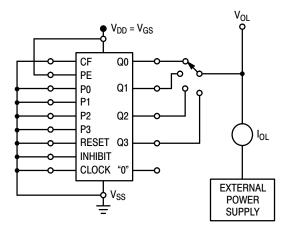
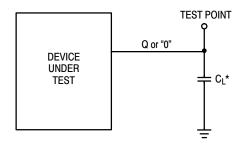
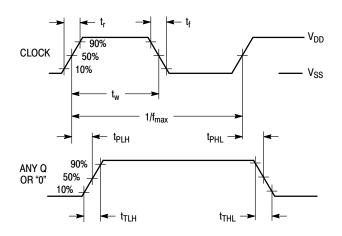



Figure 3. Power Dissipation



Figure 2. Typical Output Sink Characteristics Test Circuit



\*Includes all probe and jig capacitance.

Figure 4. Test Circuit

# **SWITCHING WAVEFORMS**



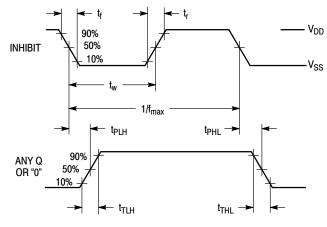



Figure 5.

Figure 6.

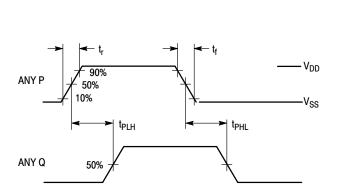
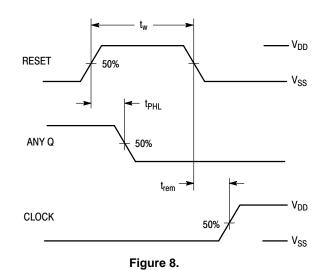




Figure 7.



V<sub>DD</sub> - GND - P

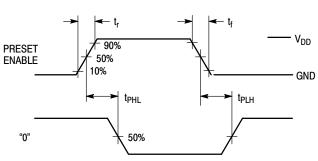



Figure 9.

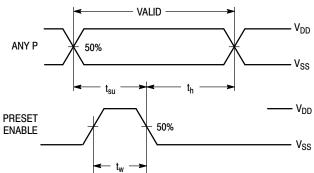
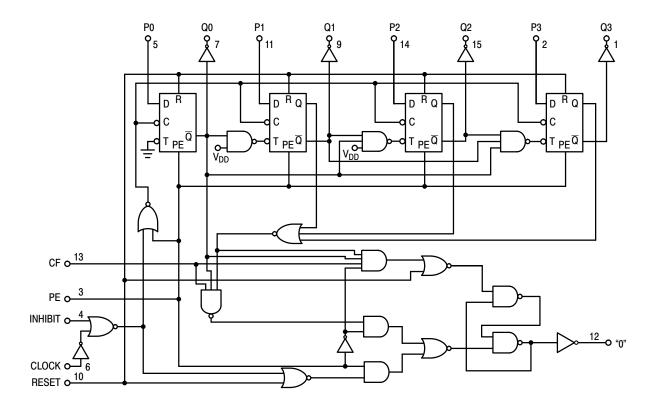




Figure 10.

# MC14526B LOGIC DIAGRAM (Binary Down Counter)



## **APPLICATIONS INFORMATION**

### Divide-By-N, Single Stage

Figure 11 shows a single stage divide—by—N application. To initialize counting a number, N is set on the parallel inputs (P0, P1, P2, and P3) and reset is taken high asynchronously. A zero is forced into the master and slave of each bit and, at the same time, the "0" output goes high. Because Preset Enable is tied to the "0" output, preset is enabled. Reset must be released while the Clock is high so the slaves of each bit may receive N before the Clock goes low. When the Clock goes low and Reset is low, the "0" output goes low (if P0 through P3 are unequal to zero).

The counter downcounts with each rising edge of the Clock. When the counter reaches the zero state, an output pulse occurs on "0" which presets N. The propagation delays from the Clock's rising and falling edges to the "0" output's rising and falling edges are about equal, making the "0" output pulse approximately equal to that of the Clock pulse.

The Inhibit pin may be used to stop pulse counting. When this pin is taken high, decrementing is inhibited.

#### Cascaded, Presettable Divide-By-N

Figure 12 shows a three stage cascade application. Taking Reset high loads N. Only the first stage's Reset pin (least significant counter) must be taken high to cause the preset for all stages, but all pins could be tied together, as shown.

When the first stage's Reset pin goes high, the "0" output is latched in a high state. Reset must be released while Clock is high and time allowed for Preset Enable to load N into all stages before Clock goes low.

When Preset Enable is high and Clock is low, time must be allowed for the zero digits to propagate a Cascade Feedback to the first non–zero stage. Worst case is from the most significant bit (M.S.B.) to the L.S.B., when the L.S.B. is equal to one (i.e. N=1).

After N is loaded, each stage counts down to zero with each rising edge of Clock. When any stage reaches zero and the leading stages (more significant bits) are zero, the "0" output goes high and feeds back to the preceding stage. When all stages are zero, the Preset Enable automatically loads N while the Clock is high and the cycle is renewed.

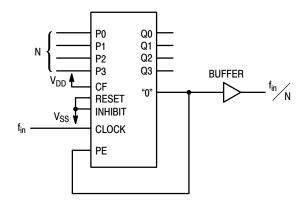



Figure 11. ÷ N Counter

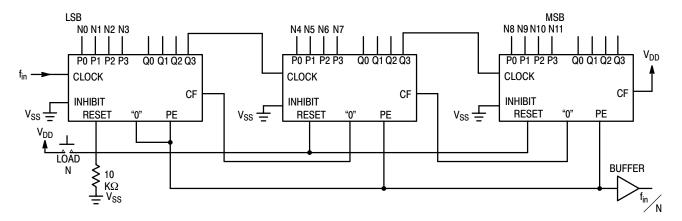
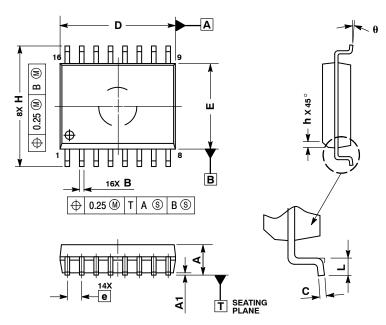
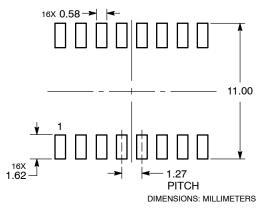



Figure 12. 3 Stages Cascaded

# **ORDERING INFORMATION**


| Device        | Package                 | Shipping <sup>†</sup> |
|---------------|-------------------------|-----------------------|
| MC14526BDWG   | SOIC-16 WB<br>(Pb-Free) | 47 Units / Rail       |
| MC14526BDWR2G | SOIC-16 WB<br>(Pb-Free) | 1000 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

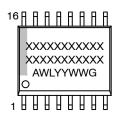



SOIC-16 WB CASE 751G-03 ISSUE D

**DATE 12 FEB 2013** 



# **SOLDERING FOOTPRINT**




#### NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
  2. INTERPRET DIMENSIONS AND TOLERANCES
  PER ASME Y14.5M, 1994.
- DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION.
- MOLID PROTRUSION.
  MAXIMUM MOLID PROTRUSION 0.15 PER SIDE.
  DIMENSION B DOES NOT INCLUDE DAMBAR
  PROTRUSION. ALLOWABLE DAMBAR
  PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

|     | MILLIMETERS |       |  |  |  |  |
|-----|-------------|-------|--|--|--|--|
| DIM | MIN         | MAX   |  |  |  |  |
| Α   | 2.35        | 2.65  |  |  |  |  |
| A1  | 0.10        | 0.25  |  |  |  |  |
| В   | 0.35        | 0.49  |  |  |  |  |
| С   | 0.23        | 0.32  |  |  |  |  |
| D   | 10.15       | 10.45 |  |  |  |  |
| Е   | 7.40        | 7.60  |  |  |  |  |
| е   | 1.27        | BSC   |  |  |  |  |
| Н   | 10.05       | 10.55 |  |  |  |  |
| h   | 0.25        | 0.75  |  |  |  |  |
| L   | 0.50        | 0.90  |  |  |  |  |
| q   | 0 ° 7 °     |       |  |  |  |  |

# **GENERIC MARKING DIAGRAM\***



XXXXX = Specific Device Code = Assembly Location Α

WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42567B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | SOIC-16 WB  |                                                                                                                                                                                   | PAGE 1 OF 1 |  |

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative