BCD-To-Decimal Decoder Binary-To-Octal Decoder

The MC14028B decoder is constructed so that an 8421 BCD code on the four inputs provides a decimal (one-of-ten) decoded output, while a 3-bit binary input provides a decoded octal (one-of-eight) code output with D forced to a logic "0". Expanded decoding such as binary-to-hexadecimal (one-of-sixteen), etc., can be achieved by using other MC14028B devices. The part is useful for code conversion, address decoding, memory selection control, demultiplexing, or readout decoding.

Features

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–power TTL Loads or One Low–Power Schottky TTL Load Over the Rated Temperature Range
- Positive Logic Design
- Low Outputs on All Illegal Input Combinations
- Similar to CD4028B
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- This Device is Pb-Free and is RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Parameter	Symbol	Value	Unit
DC Supply Voltage Range	V _{DD}	-0.5 to +18.0	V
Input or Output Voltage Range (DC or Transient)	V _{in} , V _{out}	-0.5 to V _{DD} + 0.5	V
Input or Output Current (DC or Transient) per Pin	I _{in} , I _{out}	±10	mA
Power Dissipation per Package (Note 1)	PD	500	mW
Ambient Temperature Range	T _A	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Lead Temperature (8–Second Soldering)	ΤL	260	°C

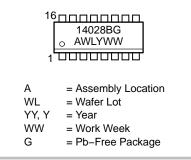
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: –7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range V_{SS} \leq (V_{in} or V_{out}) \leq V_{DD}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor®

http://onsemi.com



SOIC-16 D SUFFIX CASE 751B

PIN ASSIGNMENT

Q4 [1•] V _{DD}
Q2 [2	15] Q3
Q0 [3	14] Q1
Q7 [4	13] в
Q9 [5	12]С
Q5 [6	11] D
Q6 [7	10] A
v _{ss} [8	9] Q8

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

TRUTH TABLE

D	С	В	Α	Q9	Q8	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0
0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	1	0	0	0	0	0	0
0	1	1	1	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	1	1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14028BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14028BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
NLV14028BDR2G*	SOIC-16 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

			-55	S°C		25°C	125	°C		
Characteristic	Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Мах	Unit
Output Voltage "0" Level $V_{in} = V_{DD}$ or 0	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
"1" Level V _{in} = 0 or V _{DD}	V _{OH}	5.0 10 15	4.95 9.95 14.95		4.95 9.95 14.95	5.0 10 15		4.95 9.95 14.95	_ _ _	Vdc
$\label{eq:Voltage} \begin{array}{ll} \text{Input Voltage} & \text{``0'' Level} \\ (V_O = 4.5 \text{ or } 0.5 \text{ Vdc}) \\ (V_O = 9.0 \text{ or } 1.0 \text{ Vdc}) \\ (V_O = 13.5 \text{ or } 1.5 \text{ Vdc}) \end{array}$	V _{IL}	5.0 10 15		1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
"1" Level ($V_O = 0.5 \text{ or } 4.5 \text{ Vdc}$) ($V_O = 1.0 \text{ or } 9.0 \text{ Vdc}$) ($V_O = 1.5 \text{ or } 13.5 \text{ Vdc}$)	V _{IH}	5.0 10 15	3.5 7.0 11		3.5 7.0 11	2.75 5.50 8.25		3.5 7.0 11	- - -	Vdc
$\begin{array}{l} \mbox{Output Drive Current} \\ (V_{OH} = 2.5 \mbox{ Vdc}) \\ (V_{OH} = 4.6 \mbox{ Vdc}) \\ (V_{OH} = 9.5 \mbox{ Vdc}) \\ (V_{OH} = 13.5 \mbox{ Vdc}) \end{array}$	I _{ОН}	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2		-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8		-1.7 -0.36 -0.9 -2.4	- - -	mAdc
$\begin{array}{l} (V_{OL} = 0.4 \; Vdc) & \text{Sink} \\ (V_{OL} = 0.5 \; Vdc) \\ (V_{OL} = 1.5 \; Vdc) \end{array}$	I _{OL}	5.0 10 15	0.64 1.6 4.2		0.51 1.3 3.4	0.88 2.25 8.8		0.36 0.9 2.4	- - -	mAdc
Input Current	l _{in}	15	-	±0.1	-	±0.00001	±0.1	-	±1.0	μAdc
Input Capacitance (V _{in} = 0)	C _{in}	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	I _{DD}	5.0 10 15	- - -	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μAdc
Total Supply Current (Note 3, 4) (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)	Ι _Τ	5.0 10 15			I _T = (I _T = (0.3 μA/kHz) 0.6 μA/kHz) 0.9 μA/kHz)	f + I _{DD} f + I _{DD}	-		μAdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

The formulas given are for the typical characteristics only at 25°C.
To calculate total supply current at loads other than 50 pF: I_T(C_L) = I_T(50 pF) + (C_L - 50) Vfk where: I_T is in μA (per package), C_L in pF, V = (V_{DD} - V_{SS}) in volts, f in kHz is input frequency, and k = 0.001.

SWITCHING CHARACTERISTICS (Note 5) (C_L = 50 pF, T_A = 25° C)

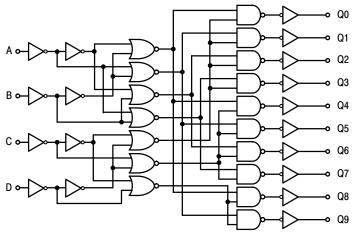
Characteristic	Symbol	V _{DD}	Min	Typ (Note 6)	Max	Unit
Output Rise and Fall Time t_{TLH} , $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ t_{TLH} , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$ t_{TLH} , $t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$	t _{TLH} , t _{THL}	5.0 10 15	_ _ _	100 50 40	200 100 80	ns
Propagation Delay Time t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 215 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 97 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 65 \text{ ns}$	t _{PLH} , t _{PHL}	5.0 10 15	- - -	300 130 90	600 260 180	ns

5. The formulas given are for the typical characteristics only at 25°C.

6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Inputs B, C, and D switching in respect to a BCD code.

· t_{TLH}


All outputs connected to respective

C_L loads. f in respect to a system clock.

Figure 1. Dynamic Signal Waveforms

– t_{THL}

LOGIC DIAGRAM

APPLICATIONS INFORMATION

Expanded decoding can be performed by using the MC14028B and other CMOS Integrated Circuits. The circuit in Figure 2 converts any 4–bit code to a decimal or hexadecimal code. The accompanying table shows the input binary combinations, the associated "output numbers" that go "high" when selected, and the "redefined output numbers" needed for the proper code. For example: For the combination DCBA = 0111 the output number 7 is redefined for the 4–bit binary, 4–bit gray, excess–3, or excess–3 gray codes as 7, 5, 4, or 2, respectively. Figure 3 shows a 6–bit binary 1–of–64 decoder using nine MC14028B circuits and two MC14069UB inverters.

The MC14028B can be used in decimal digit displays, such as, neon readouts or incandescent projection indicators as shown in Figure 4.

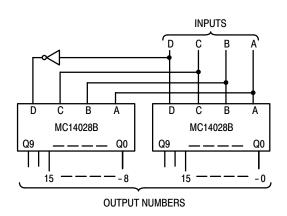
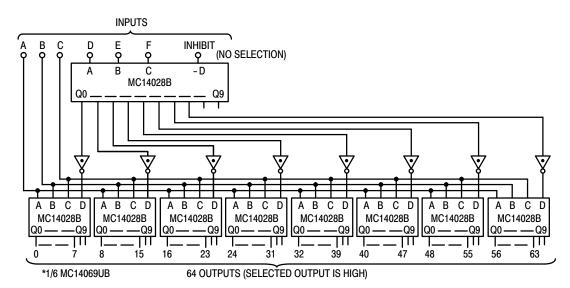



Figure 2. Code Conversion Circuit and Truth Table

														Code Out		Rede lumb									
																				Hex	adeci	mal	D	ecima	al
	Inp	uts								Out	put N	lumb	ers							± ≥	it V	s-3	s-3 V	ç	-
D	с	в	A	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	4-Bit Binary	4–Bit Gray	Excess-	Excess–3 Gray	Aiken	4221
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0			0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1			1	1
0	0 0	1	0	0 0	0 0	0 1	1	0 0	0 0	2	3 2	0	0 3	2 3	2										
	-	1	1	-	-	-	-	-	-	-	-	-	, e	-	-		Ŭ	-	-	-		-	-	-	
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	4	7	1	4	4	
0	1	0	1 0	0 0	0 1	1 0	0 0	0 0	0 0	0 0	0 0	5 6	6 4	2 3	1		3 4								
0	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	7	5	4	2		-
1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	8	15	5			┟──┦
1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	9	14	6			5
1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	10	12	7	9		6
1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	11	13	8		5	
1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	12	8	9	5	6	
1	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	13	9		6	7	7
1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14	11		8	8	8
1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15	10		7	9	9

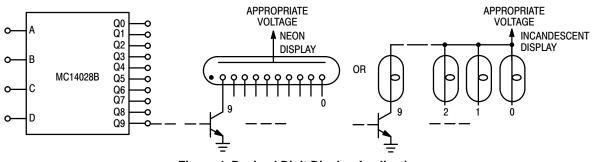
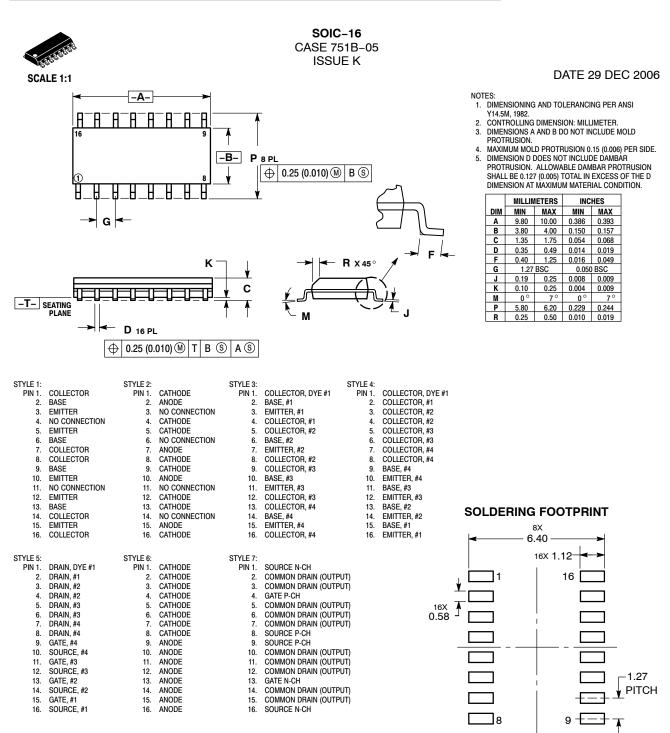



Figure 4. Decimal Digit Display Application

DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.								
DESCRIPTION:	SOIC-16		PAGE 1 OF 1						
ON Semiconductor and (IN) are trac ON Semiconductor reserves the right	lemarks of Semiconductor Components Indu: to make changes without further notice to an	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation	and/or other countries. or guarantee regarding						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative