3.3/5 V ECL Differential Phase-Frequency Detector # MC100LVEL40 #### **Description** The MC100LVEL40 is a three state phase frequency-detector intended for phase-locked loop applications which require a minimum amount of phase and frequency difference at lock. Advanced design significantly reduces the dead zone of the detector. For proper operation, the input edge rate of the R and V inputs should be less than 5 ns. The device is designed to work with a 3.3 V power supply. When the reference (R) and the feedback (FB) inputs are unequal in frequency and/or phase the differential up (U) and down (D) outputs will provide pulse streams which when subtracted and integrated provide an error voltage for control of a VCO. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open. For application information, refer to AND8040/D, "Phase Lock Loop Operation." The 100 Series Contains Temperature Compensation. #### **Features** - 250 MHz Typical Bandwidth - PECL Mode Operating Range: V_{CC} = 3.0 V to 5.5 V with V_{EE} = 0 V - NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = −3.0 V to −5.5 V - Internal Input Pulldown Resistor - This Devices are Pb-Free, Halogen Free and are RoHS Compliant ### ON Semiconductor® www.onsemi.com SO-20 DW SUFFIX CASE 751D #### **MARKING DIAGRAM** A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package #### **ORDERING INFORMATION** | Device | Package | Shipping | |----------------|----------------------|-----------------| | MC100LVEL40DWG | SOIC-20
(Pb-Free) | 38 Units / Tube | ^{*}For additional marking information, refer to Application Note <u>AND8002/D</u>. **Table 1. PIN DESCRIPTION** | PIN | FUNCTION | |--|--| | U, Ū
D, D
FB, FB
R, R
V _{BB}
V _{CC} , V _{CCO}
V _{EE}
NC | ECL Up Differential Outputs ECL Down Differential Outputs ECL Feedback Differential Inputs ECL Reference Differential Inputs Reference Voltage Output Positive Supply Negative Supply No Connect | Warning: All V_{CC} , V_{CCO} , and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 20-Lead Pinout (Top View) Figure 2. Logic Diagram #### **Table 2. ATTRIBUTES** | Characteristics | Value | |--|----------------------| | ESD Protection Human Body Model | > 2 kV | | Moisture Sensitivity (Note 1) | Pb-Free Pkg | | SOIC-20 | Level 3 | | Flammability Rating Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | Transistor Count | 356 Devices | | Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test | • | ^{1.} For additional information, see Application Note AND8003/D. **Table 3. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |----------------------|--|--|--|-------------------|----------| | V _{CC} | PECL Mode Power Supply | V _{EE} = 0 V | | 8 to 0 | V | | V _{EE} | NECL Mode Power Supply | V _{CC} = 0 V | | -8 to 0 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $V_{I} \leq V_{CC}$
$V_{I} \geq V_{EE}$ | 6 to 0
-6 to 0 | V
V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA
mA | | I _{BB} | V _{BB} Sink/Source | | | ±0.5 | mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | θJA | Thermal Resistance (Junction-to-Ambient) | 0 Ifpm
500 Ifpm | SOIC-20
SOIC-20 | 90
306 | °C/W | | θ_{JC} | Thermal Resistance (Junction-to-Case) | Standard Board | SOIC-20 | 30 to 35 | °C/W | | T _{sol} | Wave Solder (Pb-Free) | | | 265 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Table 4. LVPECL DC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}, V_{EE} = 0 \text{ V}$ (Note 2) | | | -40°C | | | 25°C | | | 85°C | | | | |-----------------|--|-------------|------|------------|-------------|------|------------|-------------|------|------------|--------------------------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 38 | 45 | | 38 | 47 | | 38 | 47 | mA | | V _{OH} | Output HIGH Voltage (Note 3) | 2215 | 2295 | 2420 | 2275 | 2345 | 2420 | 2275 | 2345 | 2420 | mV | | V _{OL} | Output LOW Voltage (Note 3) | 1470 | 1605 | 1745 | 1490 | 1595 | 1380 | 1490 | 1595 | 1680 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 2135 | | 2420 | 2135 | | 2420 | 2135 | | 2420 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 1490 | | 1825 | 1490 | | 1825 | 1490 | | 1825 | mV | | V _{BB} | Output Voltage Reference | 1.92 | | 2.04 | 1.92 | | 2.04 | 1.92 | | 2.04 | V | | VIHCMR | Input HIGH Voltage Common Mode
Range (Note 7)
Vpp < 500 mV
Vpp ≧ 500 mV | 1.3
1.5 | | 3.3
3.3 | 1.2
1.4 | | 3.3
3.3 | 1.2
1.4 | | 3.3
3.3 | V
V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current
Others
R, FB | 0.5
-300 | | | 0.5
-300 | | | 0.5
-300 | | | μ Α
μ Α | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ± 0.3 V. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2 V. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and Table 5. LVNECL DC CHARACTERISTICS V_{CC} = 0 V; V_{EE} = -3.0 V (Note 5) | | | | -40°C 25°C | | | | | | | | | |-----------------|--|--------------|------------|--------------|--------------|-------|--------------|--------------|-------|--------------|--------------------------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 38 | 45 | | 38 | 47 | | 38 | 47 | mA | | V _{OH} | Output HIGH Voltage (Note 6) | -1085 | -1005 | -880 | -1025 | -955 | -880 | -1025 | -955 | -880 | mV | | V _{OL} | Output LOW Voltage (Note 6) | -1830 | -1695 | -1555 | -1810 | -1705 | -1620 | -1810 | -1705 | -1620 | mV | | V _{IH} | Input HIGH Voltage
(Single-Ended) | -1165 | | -880 | -1165 | | -880 | -1165 | | -880 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | -1810 | | -1475 | -1810 | | -1475 | -1810 | | -1475 | mV | | V_{BB} | Output Voltage Reference | -1.38 | | -1.26 | -1.38 | | -1.26 | -1.38 | | -1.26 | V | | VIHCMR | Input HIGH Voltage Common
Mode Range (Note 7)
Vpp < 500 mV
Vpp ≧ 500 mV | -2.0
-1.8 | | -0.4
-0.4 | -2.1
-1.9 | | -0.4
-0.4 | -2.1
-1.9 | | -0.4
-0.4 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current
Others
R, FB | 0.5
-300 | | | 0.5
-300 | | | 0.5
-300 | | | μ Α
μ Α | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ± 0.3 V. All loading with 50 Ω resistor to V_{CC} 2 V. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and Table 6. AC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0 \text{ V}$; $V_{EE} = -3.3 \text{ V}$ (Note 8) | | | -40°C | | 25°C | | | 85°C | | | | | |--------------------------------------|---|-------------|-----|-------------|-------------|-----|-------------|-------------|-----|-------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | Fmax | Maximum Toggle Frequency | | TBD | | | TBD | | | TBD | | GHz | | t _{PLH}
t _{PHL} | Propagation Delay R to U, FB to D | 430
1200 | | 630
1400 | 450
1250 | | 650
1450 | 480
1370 | | 680
1590 | ps | | V _{PP} | Input Swing (Differential Configuration) (Note 9) | | | 1000 | 150 | | 1000 | 150 | | 1000 | mV | | t _{JITTER} | Cycle-to-Cycle Jitter | | TBD | | | TBD | | | TBD | | ps | | t _r , t _f | Output Rise/Fall Times | 175 | | 475 | 175 | | 475 | 175 | | 475 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - 8. V_{EE} can vary \pm 0.3 V. - 9. V_{PP(}min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈ 40. Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.) ### **Resource Reference of Application Notes** AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AN1672/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices SOIC-20 WB CASE 751D-05 **ISSUE H** **DATE 22 APR 2015** - DIMENSIONS ARE IN MILLIMETERS. INTERPRET DIMENSIONS AND TOLERANCES. - PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. - DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL | | MILLIMETERS | | | | | | | | |-----|-------------|-------|--|--|--|--|--|--| | DIM | MIN | MAX | | | | | | | | Α | 2.35 | 2.65 | | | | | | | | A1 | 0.10 | 0.25 | | | | | | | | b | 0.35 | 0.49 | | | | | | | | С | 0.23 | 0.32 | | | | | | | | D | 12.65 | 12.95 | | | | | | | | E | 7.40 | 7.60 | | | | | | | | е | 1.27 | BSC | | | | | | | | Н | 10.05 | 10.55 | | | | | | | | h | 0.25 | 0.75 | | | | | | | | L | 0.50 | 0.90 | | | | | | | | A | 0 ° | 7 ° | | | | | | | #### **RECOMMENDED SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Reposit
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | | |------------------|-------------|---|-------------|--|--|--| | DESCRIPTION: | SOIC-20 WB | | PAGE 1 OF 1 | | | | ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative