3.3 V ECL +2 Divider ## Description The MC100LVEL32 is an integrated ÷2 divider. The LVEL32 is functionally identical to the EL32, but operates from a 3.3 V supply. The reset pin is asynchronous and is asserted on the rising edge. Upon power-up, the internal flip-flop will attain a random state; the reset allows for the synchronization of multiple LVEL32's in a system. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. #### **Features** - 510 ps Propagation Delay - 2.6 GHz Typical Maximum Frequency - ESD Protection: - ♦ > 4 KV Human Body Model - > 200 V Machine Model - The 100 Series Contains Temperature Compensation - PECL Mode Operating Range: $V_{CC} = 3.0 \text{ V}$ to 3.8 V with $V_{EE} = 0 \text{ V}$ - NECL Mode Operating Range: $V_{CC} = 0 \text{ V}$ with $V_{EE} = -3.0 \text{ V}$ to -3.8 V - Internal Input Pulldown Resistors - Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test - Moisture Sensitivity: - Level 1 for SOIC-8 - Level 3 for TSSOP-8 - Level 1 for DFN−8 - For Additional Information, see Application Note AND8003/D - Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34 - Transistor Count = 111 Devices - · These Devices are Pb-Free, Halogen Free and are RoHS Compliant ## ON Semiconductor® #### www.onsemi.com SOIC-8 NB D SUFFIX TSSOP-8 DT SUFFIX CASE 751-07 CASE 948R-02 DFN-8 MN SUFFIX CASE 506AA #### MARKING DIAGRAMS* SOIC-8 NB TSSOP-8 DFN-8 A = Assembly Location L = Wafer Lot Y = Year W = Work Week M = Date Code = Pb-Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. ### ORDERING INFORMATION | Device | Package | Shipping† | |------------------|------------------------|------------------| | MC100LVEL32DG | SOIC-8 NB
(Pb-Free) | 98 Units / Tube | | MC100LVEL32DR2G | SOIC-8 NB
(Pb-Free) | 2500 Tape & Reel | | MC100LVEL32DTG | TSSOP-8
(Pb-Free) | 100 Units / Tube | | MC100LVEL32DTR2G | TSSOP-8
(Pb-Free) | 2500 Tape & Reel | | MC100LVEL32MNR4G | DFN-8
(Pb-Free) | 1000 Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Figure 1. Logic Diagram and Pinout Assessment **Table 1. PIN DESCRIPTION** | Pin | Function | |-----------------|--| | CLK*, CLK** | ECL Differential Clock Inputs | | Q, Q | ECL Differential Data ÷2 Outputs | | Reset* | ECL Asynch Reset | | V _{BB} | Reference Voltage Output | | V _{CC} | Positive Supply | | V _{EE} | Negative Supply | | EP | (DFN8 only) Thermal exposed pad
must be connected to a sufficient ther-
mal conduit. Electrically connect to the
most negative supply (GND) or leave
unconnected, floating open. | ^{*}Pin will default low when left open, per internal 75 K pull-down to Table 2. MAXIMUM RATINGS | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |----------------------|--|--|--------------------------------------|-------------------|------| | V _{CC} | PECL Mode Power Supply | V _{EE} = 0 V | | 8 to 0 | V | | V _{EE} | NECL Mode Power Supply | V _{CC} = 0 V | | -8 to 0 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $V_I \leq V_{CC} \\ V_I \geq V_{EE}$ | 6 to 0
-6 to 0 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $V_I \leq V_{CC} \\ V_I \geq V_{EE}$ | 6 to 0
-6 to 0 | V | | I _{out} | Output Current | Continuous
Surge | | 50
100 | mA | | I _{BB} | V _{BB} Sink/Source | | | ±0.5 | mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | SOIC-8 NB
SOIC-8 NB | 190
130 | °C/W | | θ_{JC} | Thermal Resistance (Junction-to-Case) | Standard Board | SOIC-8 NB | 41 to 44 ±5% | °C/W | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | TSSOP-8
TSSOP-8 | 185
140 | °C/W | | θ_{JC} | Thermal Resistance (Junction-to-Case) | Standard Board | TSSOP-8 | 41 to 44 ±5% | °C/W | | θ_{JA} | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | DFN-8
DFN-8 | 129
84 | °C/W | | T _{sol} | Wave Solder (Pb-Free) | < 2 to 3 sec @ 260°C | | 265 | °C | | θ_{JC} | Thermal Resistance (Junction-to-Case) | (Note 1) | DFN-8 | 35 to 40 | °C/W | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) V_{EE} . ** Pin will default to $V_{CC}/2$ when left open per internal 75 KΩ pull-down to V_{EE} and 75 KΩ pull-up to V_{CC} . Table 3. LVPECL DC CHARACTERISTICS (V_{CC} = 3.3 V; V_{EE} = 0.0 V (Note 1)) | | | | -40°C | | | 25°C | | | 85°C | | | |-----------------|---|-------------|-------|------------|-------------|------|------------|-------------|------|------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | IEE | Power Supply Current | | 29 | 35 | | 29 | 35 | | 31 | 36 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 2215 | 2295 | 2420 | 2275 | 2345 | 2420 | 2275 | 2345 | 2420 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 1470 | 1605 | 1745 | 1490 | 1595 | 1680 | 1490 | 1595 | 1680 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 2135 | | 2420 | 2135 | | 2420 | 2135 | | 2420 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 1490 | | 1825 | 1490 | | 1825 | 1490 | | 1825 | mV | | V _{BB} | Output Voltage Reference | 1.92 | | 2.04 | 1.92 | | 2.04 | 1.92 | | 2.04 | V | | VIHCMR | Input HIGH Voltage Common Mode
Range (Differential Configuration) (Note 3)
V _{PP} < 500 mV
V _{PP} ≥ 500 mV | 1.2
1.4 | | 3.1
3.1 | 1.1
1.3 | | 3.1
3.1 | 1.1
1.3 | | 3.1
3.1 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μА | | I _{IL} | Input LOW Current CLK CLK | 0.5
-600 | | | 0.5
-600 | | | 0.5
-600 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ±0.3 V. - Outputs are terminated through a 50 \(\Omega\) resistor to \(\V_{CC}\). The \(V_{IHCMR}\) range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between \(V_{PP}\) min and 1 \(V.\). Table 4. LVNECL DC CHARACTERISTICS (V_{CC} = 0.0 V; V_{EE} = -3.3 V (Note 1)) | | | | -40°C | | | 25°C | | | 85°C | | | |-----------------|--|--------------|-------|--------------|--------------|-------|--------------|--------------|-------|--------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 29 | 35 | | 29 | 35 | | 31 | 36 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | -1085 | -1005 | -880 | -1025 | -955 | -880 | -1025 | -955 | -880 | mV | | V _{OL} | Output LOW Voltage (Note 2) | -1830 | -1695 | -1555 | -1810 | -1705 | -1620 | -1810 | -1705 | -1620 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1165 | | -880 | -1165 | | -880 | -1165 | | -880 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | -1810 | | -1475 | -1810 | | -1475 | -1810 | | -1475 | mV | | V _{BB} | Output Voltage Reference | -1.38 | | -1.26 | -1.38 | | -1.26 | -1.38 | | -1.26 | ٧ | | VIHCMR | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 3)
V _{PP} < 500 mV
V _{PP} ≥ 500 mV | -2.1
-1.9 | | -0.2
-0.2 | -2.1
-1.9 | | -0.2
-0.2 | -2.1
-1.9 | | -0.2
-0.2 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current
CLK
CLK | 0.5
-600 | | | 0.5
-600 | | | 0.5
-600 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ± 0.3 V. 2. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V. - 3. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between Vppmin and 1 V. Table 5. AC CHARACTERISTICS ($V_{CC} = 3.3 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -3.3 \text{ V}$ (Note 1)) | | | | -40°C | | 25°C | | 85°C | | | | | |--------------------------------------|--|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f _{max} | Maximum Toggle Frequency | 2.2 | 2.5 | | 2.4 | 2.6 | | 2.6 | 2.8 | | GHz | | t _{PLH}
t _{PHL} | Propagation Delay CLK to Q (Differential)
CLK to Q (Single-Ended)
Reset to Q | 350
300
440 | 500
500
555 | 530
580
640 | 370
320
450 | 510
510
540 | 550
600
650 | 410
360
480 | 540
540
580 | 590
640
680 | ps | | t _{RR} | Reset Recovery | 175 | 50 | | 175 | 50 | | 175 | 50 | | ps | | tpW | Minimum Pulse Width Reset | 500 | 300 | | 500 | 300 | | 500 | 300 | | ps | | t _{JITTER} | Random Clock Jitter (RMS) | | 2.0 | | | 2.0 | | | 2.0 | | ps | | V _{PP} | Input Swing (Differential Swing) (Note 2) | 150 | | 1000 | 150 | | 1000 | 150 | | 1000 | mV | | t _r
t _f | Output Rise / Fall Times Q (20%-80%) | 120 | 225 | 320 | 120 | 225 | 320 | 120 | 225 | 320 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. VEE can vary ±0.3 V. - 2. V_{PP}(min) is input swing measured single-ended on each input in differential configuration. Figure 1. Timing Diagram Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices) ## Resource Reference of Application Notes AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPS I/O SPICE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AND8001/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices #### PACKAGE DIMENSIONS SOIC-8 NB **D SUFFIX** CASE 751-07 ISSUE AK #### NOTES: - JTES: DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) - 4. MAXIMUM MOLD FROTHOGION 6.15 (5.55), PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL TOTAL DEMENSION AT IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07. | | MILLIN | IETERS | INCHES | | | | |-----|--------|--------|-----------|-------|--|--| | DIM | MIN | MAX | MIN | MAX | | | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | | O | 1.35 | 1.75 | 0.053 | 0.069 | | | | ۵ | 0.33 | 0.51 | 0.013 | 0.020 | | | | G | 1.27 | 7 BSC | 0.050 BSC | | | | | Η | 0.10 | 0.25 | 0.004 | 0.010 | | | | J | 0.19 | 0.25 | 0.007 | 0.010 | | | | K | 0.40 | 1.27 | 0.016 | 0.050 | | | | M | 0 ° | 8 ° | 0 ° | 8 ° | | | | N | 0.25 | 0.50 | 0.010 | 0.020 | | | | s | 5.80 | 6.20 | 0.228 | 0.244 | | | #### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS TSSOP-8 DT SUFFIX CASE 948R-02 ISSUE A #### NOTES: - OTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTTUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE - DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIN | METERS | INC | HES | | |-----|--------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 2.90 | 3.10 | 0.114 | 0.122 | | | В | 2.90 | 3.10 | 0.114 | 0.122 | | | С | 0.80 | 1.10 | 0.031 | 0.043 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.40 | 0.70 | 0.016 | 0.028 | | | G | 0.65 | BSC | 0.026 | BSC | | | K | 0.25 | 0.40 | 0.010 | 0.016 | | | L | 4.90 | BSC | 0.193 BSC | | | | м | 0 ° | 6° | 0° | 6° | | #### PACKAGE DIMENSIONS ### DFN-8 MN SUFFIX CASE 506AA ISSUE D #### **BOTTOM VIEW** ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. Phone: 81-3-5817-1050 ON Semiconductor and 🕠 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### PUBLICATION ORDERING INFORMATION #### LITERATURE FULFILLMENT Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NOTES DIM Α Α1 Α3 b D D2 Ε **E**2 K 0.80 0.20 REF 2.00 BSC 1.10 1.30 2.00 BSC 0.20 0.25 0.20 0.30 0.70 0.90 0.50 BSC DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 . CONTROLLING DIMENSION: MILLIMETERS. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS MILLIMETERS MIN MAX 1.00 0.00 0.05