MC100LVEL13

3.3 V ECL Dual 1:3 Fanout Buffer

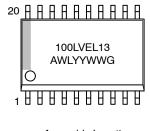
Description

The MC100LVEL13 is a dual, fully differential 1:3 fanout buffer. The Low Output-Output Skew of the device makes it ideal for distributing two different frequency synchronous signals.

The differential inputs have special circuitry which ensures device stability under open input conditions. When both differential inputs are left open the D input will pull down to V_{EE} , The \overline{D} input will bias around $V_{CC}/2$ and the Q output will go LOW.

Features

- 500 ps Typical Propagation Delays
- 50 ps Output-Output Skews
- ESD Protection: > 2 kV Human Body Model
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: V_{CC} = 3.0 V to 3.8 V with V_{EE} = 0 V
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -3.0 V$ to -3.8 V
- Internal Input Pulldown Resistors
- Q Output will Default LOW with Inputs Open or at $V_{\mbox{\scriptsize EE}}$
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity: Level 3 (Pb-Free)
- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count = 143 Devices
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

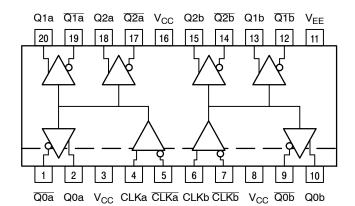

ON Semiconductor®

www.onsemi.com

SOIC-20 WB DW SUFFIX CASE 751D

MARKING DIAGRAM*

А	= Assembly Location
WL	= Wafer Lot
YY	= Year
WW	= Work Week
G	= Pb-Free Package


*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping†
MC100LVEL13DWG	SOIC-20 WB (Pb-Free)	38 Units / Tube
MC100LVEL13DWR2G	SOIC-20 WB (Pb-Free)	1000 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

MC100LVEL13

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Logic Diagram and Pinout: 20-Lead SOIC (Top View)

Table 2. MAXIMUM RATINGS

Table 1. PIN DESCRIPTION

PIN	FUNCTION
Qna, Qna	ECL Differential Clock Outputs
Qnb, Qnb	ECL Differential Clock Outputs
CLKn, CLKn	ECL Differential Clock Inputs
V _{CC}	Positive Supply
V_{EE}	Negative Supply

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8 to 0	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		–8 to 0	V
VI	$ \begin{array}{lll} \mbox{PECL Mode Input Voltage} & V_{EE} = 0 \ V & V_{I} \leq \\ \mbox{NECL Mode Input Voltage} & V_{CC} = 0 \ V & V_{I} \geq \\ \end{array} $		$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 to 0 -6 to 0	V V
I _{out}	Output Current	Continuous Surge		50 100	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-20 WB SOIC-20 WB	90 60	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-20 WB	30 to 35	°C/W
T _{sol}	Wave Solder (Pb-Free)	< 2 to 3 sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

		-40°C 25°C									
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		30	38		30	38		32	40	mA
V _{OH}	Output HIGH Voltage (Note 2)	2215	2295	2420	2275	2345	2420	2275	2345	2420	mV
V _{OL}	Output LOW Voltage (Note 2)	1470	1605	1745	1490	1595	1680	1490	1595	1680	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	2135		2420	2135		2420	2135		2420	mV
V _{IL}	Input LOW Voltage (Single-Ended)	1490		1825	1490		1825	1490		1825	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3) $V_{PP} < 500 \text{ mV}$ $V_{PP} \ge 500 \text{ mV}$	1.3 1.5		2.9 2.9	1.2 1.4		2.9 2.9	1.2 1.4		2.9 2.9	V
I _{IH}	Input HIGH Current			150			150			150	μA
Ι _{ΙL}	Input LOW Current CLKn CLKn	0.5 –300			0.5 300			0.5 300			μA

Table 3. LVPECL DC CHARACTERISTICS (V_{CC} = 3.3 V; V_{EE} = 0.0 V (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary \pm 0.3 V.

2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

3. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

		–40°C 25°C									
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		30	38		30	38		32	40	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3) $V_{PP} < 500 \text{ mV}$ $V_{PP} \ge 500 \text{ mV}$	-2.0 -1.8		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	V
I _{IH}	Input HIGH Current			150			150			150	μA
I _{IL}	Input LOW Current CLKn CLKn	0.5 -300			0.5 300			0.5 300			μΑ

Table 4. LVNECL DC CHARACTERISTICS ($V_{CC} = 0.0 \text{ V}$; $V_{EE} = -3.3 \text{ V}$ (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary \pm 0.3 V.

2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

 V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

MC100LVEL13

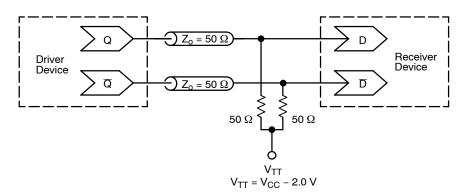
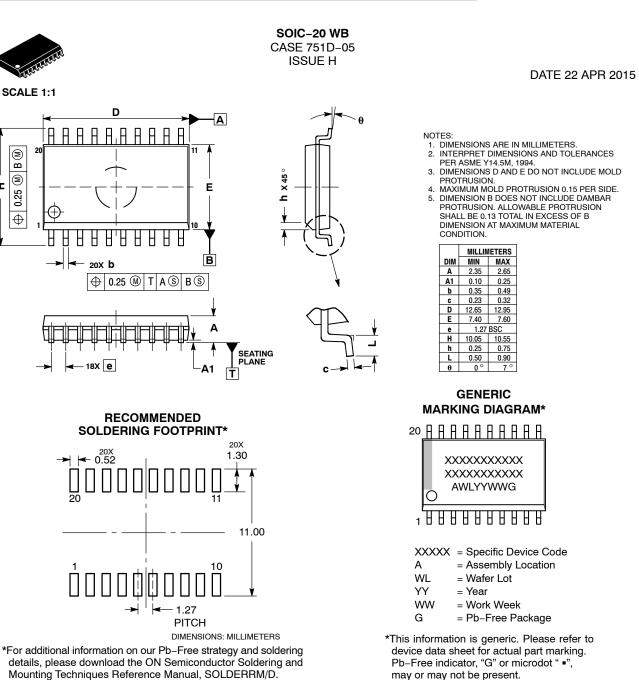

	-	-									
			-40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency		TBD			TBD			TBD		GHz
t _{PLH} t _{PHL}	Propagation Delay CLK to Q/Q	410		600	430	500	620	450		640	ps
t _{sk(O)}	Output–Output Skew Any Qa to Qa, Any Qb to Qb Any Qa to Any Qb			50 75			50 75			50 75	ps
t _{skew}	Duty Cycle Skew t _{PLH} -t _{PHL}			50			50			50	ps
t JITTER	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
V _{PP}	Input Swing (Note 2)	150		1000	150		1000	150		1000	mV
t _r t _f	Output Rise/Fall Times Q (20%-80%)	230		500	230		500	230		500	ps

Table 5. AC CHARACTERISTICS ($V_{CC} = 3.3 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -3.3 \text{ V}$ (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. V_{EE} can vary ±0.3 V.

2. V_{PP}(min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈40.


Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

т

DOCUMENT NUMBER:	98ASB42343B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	SOIC-20 WB	C-20 WB PAG						
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding circuit, and specifically					

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative