ECOSPARK® Ignition IGBT

300 mJ, 400 V, N-Channel Ignition IGBT

Features

- SCIS Energy = 300 mJ at $T_J = 25$ °C
- Logic Level Gate Drive
- This Device is Pb-Free and is RoHS Compliant
- AEC-Q101 Qualified and PPAP Capable

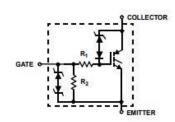
Applications

- Automotive Ignition Coil Driver Circuits
- High Current Ignition System
- Coil on Plug Applications

MAXIMUM RATINGS (T_J = 25°C Unless Otherwise Stated)

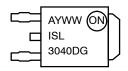
Parameter	Symbol	Value	Units
Collector to Emitter Breakdown Voltage (I _C = 1 mA)	BV _{CER}	400	V
Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	BV _{ECS}	24	V
ISCIS = 14.2 A, L = 3.0 mHz, R _{GE} = 1 K Ω (Note 1), T _C = 25°C	E _{SCIS25}	300	mJ
$\begin{array}{l} \text{ISCIS} = 10.6 \text{ A, L} = 3.0 \text{ mHz,} \\ \text{R}_{\text{GE}} = 1 \text{ K}\Omega \text{ (Note 2), T}_{\text{C}} = 150^{\circ}\text{C} \end{array}$	E _{SCIS150}	170	mJ
Collector Current Continuous, at V _{GE} = 4.0 V, T _C = 25°C	IC25	21	Α
Collector Current Continuous, at V _{GE} = 4.0 V, T _C = 110°C	IC110	17	Α
Gate to Emitter Voltage Continuous	V_{GEM}	±10	V
Power Dissipation Total, T _C = 25°C	PD	150	W
Power Dissipation Derating, T _C > 25°C	PD	1	W/°C
Operating Junction and Storage Temperature	T _J , T _{STG}	–55 to 175	°C
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	TL	300	°C
Reflow soldering according to JESD020C	T _{PKG}	260	°C
HBM-Electrostatic Discharge Voltage at100 pF, 1500 Ω	ESD	4	kV
CDM–Electrostatic Discharge Voltage at 1 Ω	ESD	2	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Self Clamped inductive Switching Energy (ESCIS25) of 300 mJ is based on the test conditions that is starting $T_J = 25^{\circ}C$, L = 3 mHz, ISCIS = 14.2 A, $V_{CC} = 100 \text{ V}$ during inductor charging and $V_{CC} = 0 \text{ V}$ during time in clamp.
- 2. Self Clamped inductive Switching Energy (ESCIS150) of 170 mJ is based on the test conditions that is starting $T_J = 150^{\circ}C$, L = 3 mHz, ISCIS = 10.6 A, $V_{CC} = 100$ V during inductor charging and $V_{CC} = 0$ V during time in clamp.

1

ON Semiconductor®


www.onsemi.com

DPAK (SINGLE GAUGE) CASE 369C

MARKING DIAGRAM

ISL3040DG = Device Code = Assembly Location Α

= Year = Work Week WW G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

THERMAL RESISTANCE RATINGS

Characteristic	Symbol	Max	Units
Junction-to-Case - Steady State (Drain) (Notes 1, 3 and 4)	$R_{ heta JC}$	1	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C Unless Otherwise Specified)

	Unit
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V
$ T_J = 25^{\circ}C $ Gate to Emitter Breakdown Voltage $ BV_{GES} = \pm 2 \text{ mA} $ $ \pm 12 \pm 14 - 25 \text{ Collector to Emitter Leakage Current} $ $ I_{CER} $	V
Collector to Emitter Leakage Current I_{CER} $V_{CE} = 175 \text{ V}, \\ R_{GE} = 1 \text{ K}\Omega$ $T_J = 25^{\circ}\text{C}$ $ -$ 25 Emitter to Collector Leakage Current I_{ECS} $V_{EC} = 24 \text{ V}$ $T_J = 25^{\circ}\text{C}$ $ -$ 1 Series Gate Resistance R_1 $T_J = 150^{\circ}\text{C}$ $ -$ 40 Series Gate Resistance R_2 $T_J = 150^{\circ}\text{C}$ $ -$ 40 ON CHARACTERISTICS Collector to Emitter Saturation Voltage $V_{CE(SAT)}$ $I_{CE} = 6 \text{ A}, V_{GE} = 4 \text{ V}$ $-$ 1.25 1.68	V
$R_{GE} = 1 \text{ K}\Omega \qquad \qquad T_{J} = 150^{\circ}\text{C} \qquad - \qquad - \qquad 1$ Emitter to Collector Leakage Current $I_{ECS} \qquad V_{EC} = 24 \text{ V} \qquad \qquad T_{J} = 25^{\circ}\text{C} \qquad - \qquad - \qquad 1$ $T_{J} = 150^{\circ}\text{C} \qquad - \qquad - \qquad 40$ Series Gate Resistance $R_{1} \qquad \qquad - \qquad 70 \qquad - \qquad -$ Gate to Emitter Resistance $R_{2} \qquad \qquad 10 \text{ K} \qquad - \qquad 26 \text{ K}$ DN CHARACTERISTICS $Collector to Emitter Saturation Voltage \qquad V_{CE(SAT)} \qquad I_{CE} = 6 \text{ A, V}_{GE} = 4 \text{ V} \qquad - \qquad 1.25 \qquad 1.68$	V
Emitter to Collector Leakage Current I_{ECS} $V_{EC} = 24 \text{ V}$ $T_{J} = 150^{\circ}\text{C}$ $ 1$ $T_{J} = 150^{\circ}\text{C}$ $ 1$ $T_{J} = 150^{\circ}\text{C}$ $ 1$ $T_{J} = 150^{\circ}\text{C}$ $ -$	μΑ
Series Gate Resistance R_1 $T_J = 150^{\circ}C$ $ -$ 40 Series Gate Resistance R_2 $-$ 70 $-$ Gate to Emitter Resistance R_2 10 K $-$ 26 k ON CHARACTERISTICS Collector to Emitter Saturation Voltage $V_{CE(SAT)}$ $I_{CE} = 6 \text{ A}, V_{GE} = 4 \text{ V}$ $-$ 1.25 1.68	mA
Series Gate Resistance R1 - 70 - Gate to Emitter Resistance R2 10 K - 26 k DN CHARACTERISTICS Collector to Emitter Saturation Voltage V _{CE(SAT)} I _{CE} = 6 A, V _{GE} = 4 V - 1.25 1.68	mA
Gate to Emitter Resistance R ₂ 10 K - 26 K ON CHARACTERISTICS Collector to Emitter Saturation Voltage V _{CE(SAT)} I _{CE} = 6 A, V _{GE} = 4 V - 1.25 1.68	
DN CHARACTERISTICS Collector to Emitter Saturation Voltage V _{CE(SAT)} I _{CE} = 6 A, V _{GE} = 4 V	Ω
Collector to Emitter Saturation Voltage V _{CE(SAT)} I _{CE} = 6 A, V _{GE} = 4 V - 1.25 1.69	Ω
IJ=25°C	5 V
Collector to Emitter Saturation Voltage $V_{CE(SAT)}$ $I_{CE} = 10 \text{ A}, V_{GE} = 4.5 \text{ V}$ $-$ 1.58 1.80 $T_{J} = 150^{\circ}\text{C}$) V
Collector to Emitter Saturation Voltage $V_{CE(SAT)}$ $I_{CE} = 15 \text{ A}, V_{GE} = 4.5 \text{ V}$ $-$ 1.90 2.20 $T_{J} = 150^{\circ}\text{C}$) V
DYNAMIC CHARACTERISTICS	
Gate Charge $ Q_{G(ON)} I_{CE} = 10 \text{ A, V}_{CE} = 12 \text{ V, V}_{GE} = 5 \text{ V} \qquad - \qquad 17 \qquad - $	nC
Gate to Emitter Threshold Voltage $V_{GE(TH)}$ $I_{CE} = 1 \text{ mA}$, $T_{J} = 25 ^{\circ}\text{C}$ 1.3 - 2.2	V
$V_{CE} = V_{GE}$ $T_{J} = 150^{\circ}C$ 0.75 - 1.8	\neg
Gate to Emitter Plateau Voltage V _{GEP} V _{CE} = 12 V, I _{CE} = 10 A - 3.0 -	V
SWITCHING CHARACTERISTICS	
Current Turn–On Delay Time–Resistive $td_{(ON)R}$ $V_{CE} = 14 \text{ V}, R_L = 1 \Omega$ – 0.7 4	μs
Current Rise Time–Resistive t_{rR} $V_{GE} = 5 \text{ V, } R_{G} = 470 \Omega$ $-$ 2.1 7	
Current Turn-Off Delay Time-Inductive td _{(OFF)L} V _{CE} = 300 V, L = 1 mH, - 4.8 15	\dashv
Current Fall Time–Inductive $ \begin{array}{c cccc} V_{GE} = 5 \text{ V}, \ R_G = 470 \ \Omega \\ I_{CE} = 6.5 \text{ A}, \ T_J = 25^{\circ}\text{C} \end{array} \qquad - \qquad 2.8 \qquad 15 $	\dashv

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Diameter	Tape Width	Qty
ISL9V3040G1	ISL9V3040D3STV	DPAK (Pb-Free)	330 mm	16 mm	2500

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

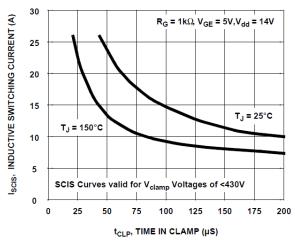


Figure 1. Self Clamped Inductive Switching Current vs. Time in Clamp

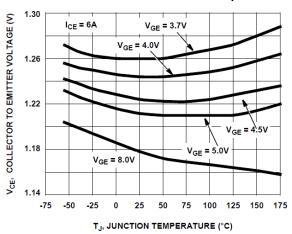


Figure 3. Collector to Emitter On–State Voltage vs. Junction Temperature

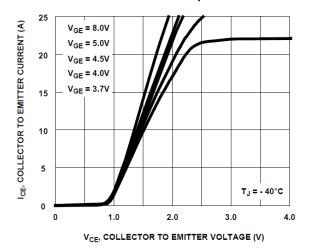


Figure 5. Collector to Emitter On–State Voltage vs. Collector Current

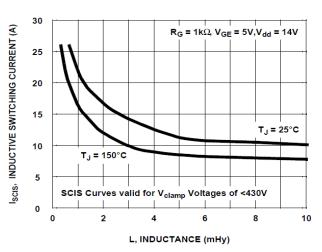


Figure 2. Self Clamped Inductive Switching Current vs. Inductance

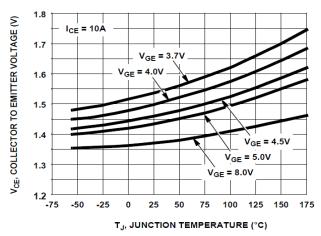


Figure 4. Collector to Emitter On-State Voltage vs. Junction Temperature

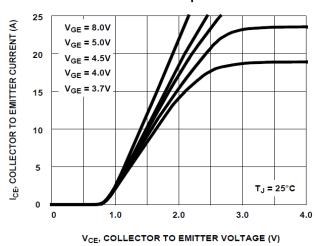


Figure 6. Collector to Emitter On- State Voltage vs. Collector Current

TYPICAL CHARACTERISTICS (continued)

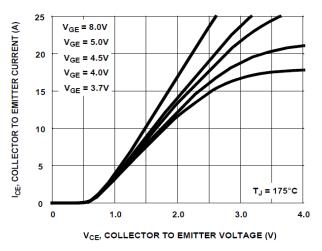


Figure 7. Collector to Emitter On–State Voltage vs. Collector Current

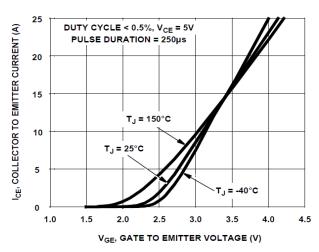


Figure 8. Transfer Characteristics

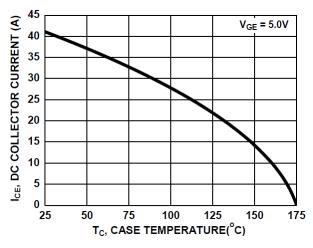


Figure 9. DC Collector Current vs. Case Temperature

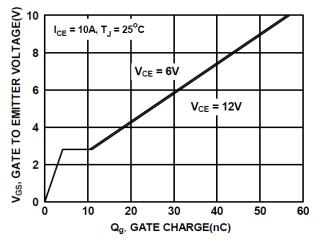


Figure 10. Gate Charge

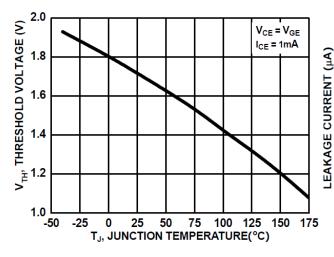


Figure 11. Threshold Voltage vs. Junction Temperature



Figure 12. Leakage Current vs. Junction Temperature

TYPICAL CHARACTERISTICS (continued)

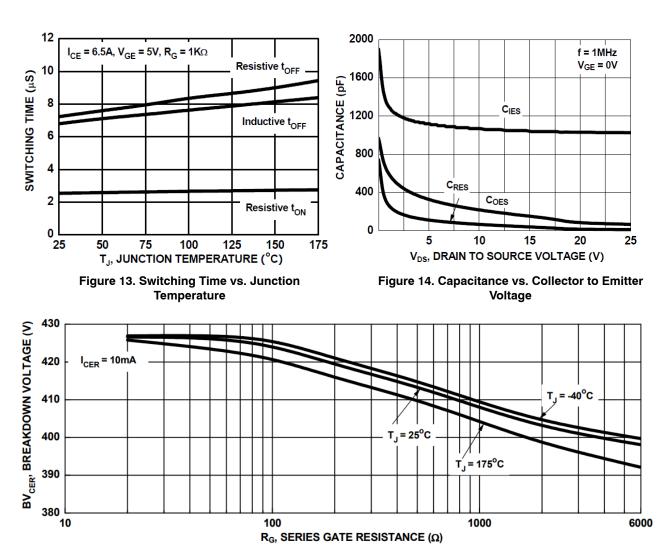


Figure 15. Break down Voltage vs. Series Resistance

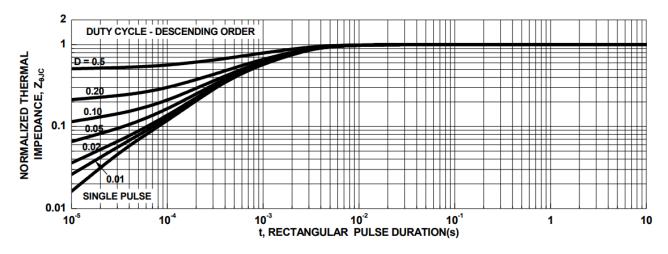
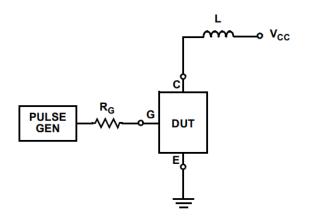



Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

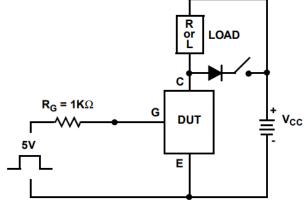


Figure 17. Inductive Switching Test Circuit

Figure 18. $t_{\mbox{\scriptsize ON}}$ and $t_{\mbox{\scriptsize OFF}}$ Switching Test Circuit

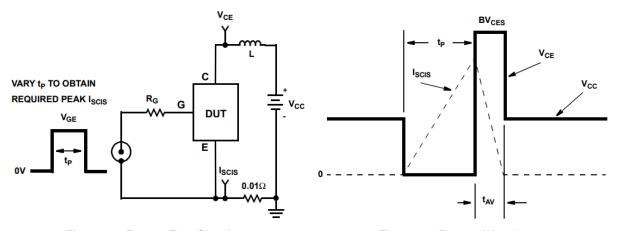


Figure 19. Energy Test Circuit

Figure 20. Energy Waveforms

В

NOTE 7

| \oplus | 0.005 (0.13) lacktriangledown C

Ħ

Α1

- h3

Ո

TOP VIEW

L3

b2 e

L2 GAUGE

DPAK (SINGLE GAUGE) CASE 369C **ISSUE F** SCALE 1:1 Α

DETAIL A

C SEATING

C-

SIDE VIEW

DATE 21 JUL 2015

NOTES:

z

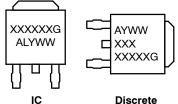
BOTTOM VIEW

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.028	0.045	0.72	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
E	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29 BSC		
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.114 REF		2.90 REF		
L2	0.020 BSC		0.51 BSC		
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

ALTERNATE CONSTRUCTIONS **DETAIL A** ROTATED 90° CW **GENERIC** STYLE 1: STYLE 2: STYLE 3: STYLE 4: STYLE 5: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE PIN 1. GATE 2. ANODE 3. CATHODE 4. ANODE PIN 1. GATE 2. DRAIN

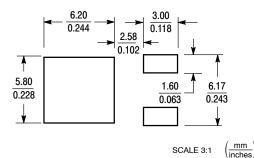

Z

BOTTOM VIEW

С

3. EMITTE 4. COLLE	ER .	3. SOURCE 4. DRAIN	3. AN	ODE THODE	3. GATE 4. ANODE	3.	CATHODE ANODE
STYLE 6: PIN 1. MT1 2. MT2 3. GATE	STYLE 7: PIN 1. GATE 2. COLLE 3. EMITT	PII ECTOR	'LE 8: N 1. N/C 2. CATHODE 3. ANODE		ODE THODE SISTOR ADJUS	2.	0: CATHODE ANODE CATHODE
4. MT2	COLLE	ECTOR	CATHODE	4. CA	THODE	4.	ANODE

MARKING DIAGRAM*


XXXXXX = Device Code = Assembly Location Α L = Wafer Lot Υ = Year WW = Work Week

*This information is generic. Please refer to device data sheet for actual part marking.

= Pb-Free Package

G

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative