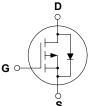

# oN Semiconductor® FQD5P10 P-Channel QFET<sup>®</sup> MOSFET -100 V, -3.6 A, 1.05Ω


#### Description

This P-Channel enhancement mode power MOSFET is produced using ON Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, audio amplifier, DC motor control, and variable switching power applications.

#### Features

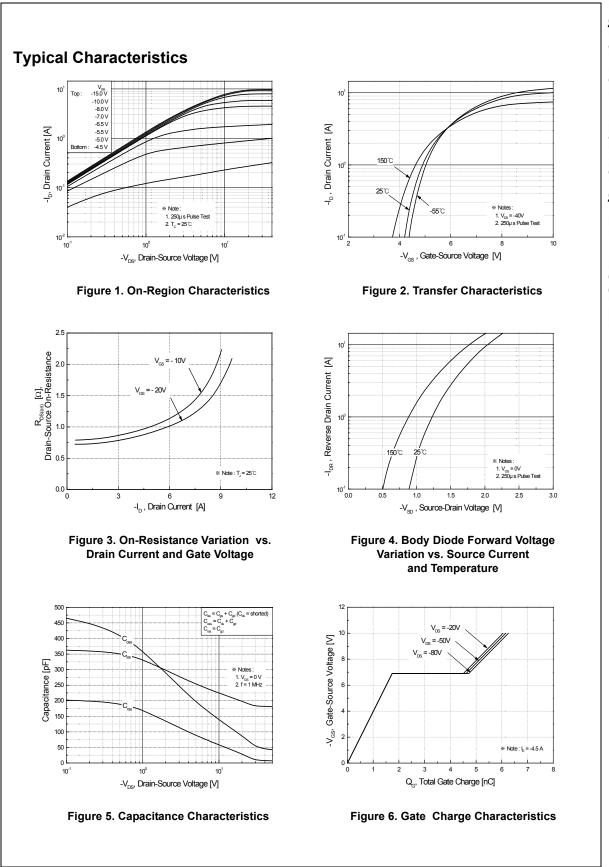
- -3.6 A, -100 V,  ${\sf R}_{\sf DS(on)}$  = 1.05  $\Omega$  (Max.) @ V\_{\sf GS} = -10 V,  ${\sf I}_{\sf D}$  = 1.8 A
- Low Gate Charge (Typ. 6.3 nC)
- Low Crss (Typ. 18 pF)
- 100% avalanche tested



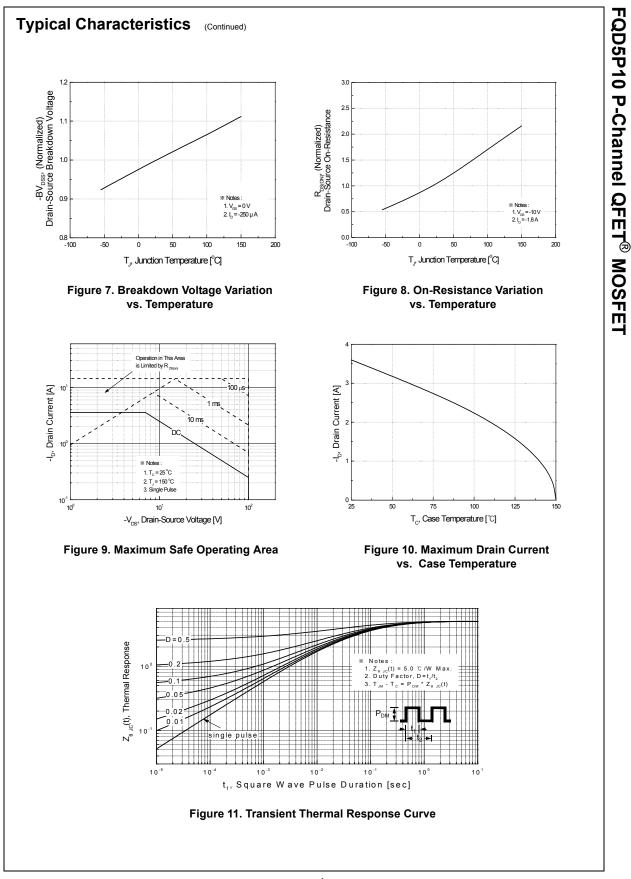


### Absolute Maximum Ratings T<sub>C</sub> = 25°C unless otherwise noted

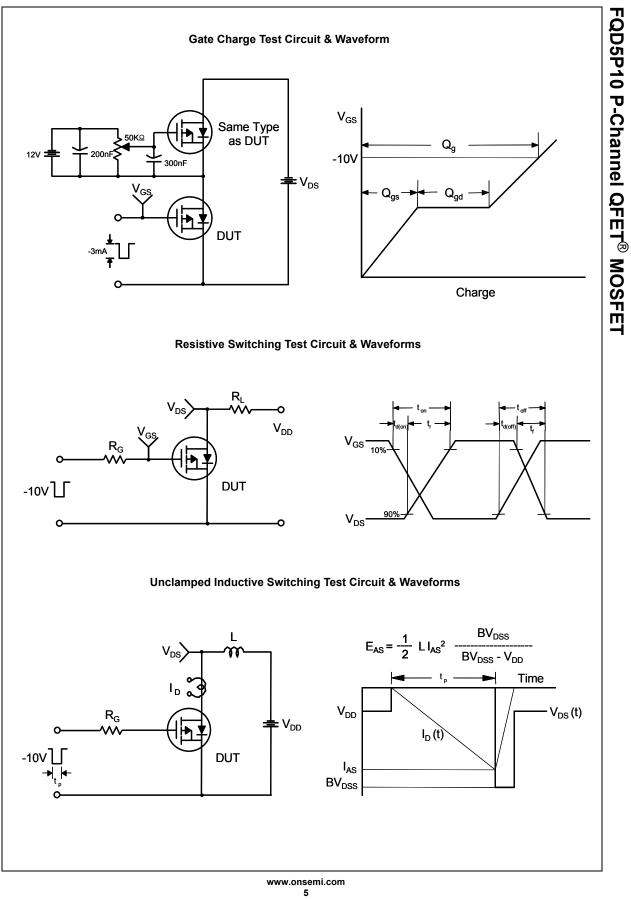
| Symbol                            |                                             | Parameter                                  |             | FQD5P10     | Unit |
|-----------------------------------|---------------------------------------------|--------------------------------------------|-------------|-------------|------|
| V <sub>DSS</sub>                  | Drain-Source V                              | oltage                                     |             | -100        | V    |
| ID                                | Drain Current                               | - Continuous (T <sub>C</sub> = 25          | °C)         | -3.6        | A    |
|                                   |                                             | - Continuous (T <sub>C</sub> = 10          | 0°C)        | -2.28       | А    |
| I <sub>DM</sub>                   | Drain Current                               | - Pulsed                                   | (Note 1)    | -14.4       | А    |
| V <sub>GSS</sub>                  | Gate-Source Voltage                         |                                            |             | ± 30        | V    |
| E <sub>AS</sub>                   | Single Pulsed A                             | Valanche Energy                            | (Note 2)    | 55          | mJ   |
| I <sub>AR</sub>                   | Avalanche Curr                              | rent                                       | (Note 1)    | -3.6        | А    |
| E <sub>AR</sub>                   | Repetitive Avala                            | anche Energy                               | (Note 1)    | 2.5         | mJ   |
| dv/dt                             | Peak Diode Re                               | covery dv/dt                               | (Note 3)    | -6.0        | V/ns |
| PD                                | Power Dissipation (T <sub>A</sub> = 25°C) * |                                            |             | 2.5         | W    |
|                                   | Power Dissipati                             | ion (T <sub>C</sub> = 25°C)                | 25          | W           |      |
|                                   |                                             | - Derate above 25°C                        | 0.2         | W/°C        |      |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and S                             | Storage Temperature Ra                     | nge         | -55 to +150 | °C   |
| TL                                | Maximum lead                                | temperature for soldering<br>for 5 seconds | g purposes, | 300         | °C   |

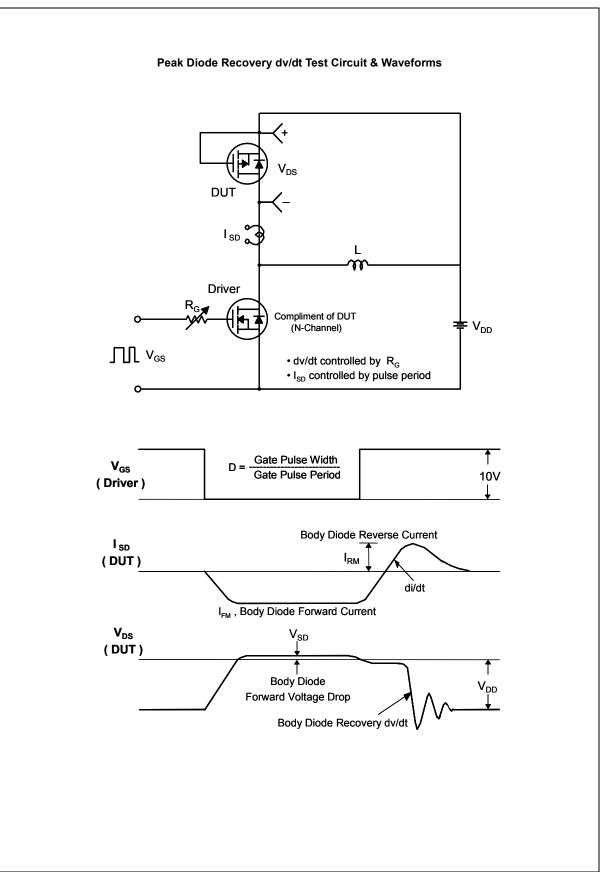

## **Thermal Characteristics**

| Symbol          | Parameter                                     | FQD5P10 | Unit |
|-----------------|-----------------------------------------------|---------|------|
| $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case, Max.    | 5.0     | °C/W |
| $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient *     | 50      | °C/W |
| $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient, Max. | 110     | °C/W |

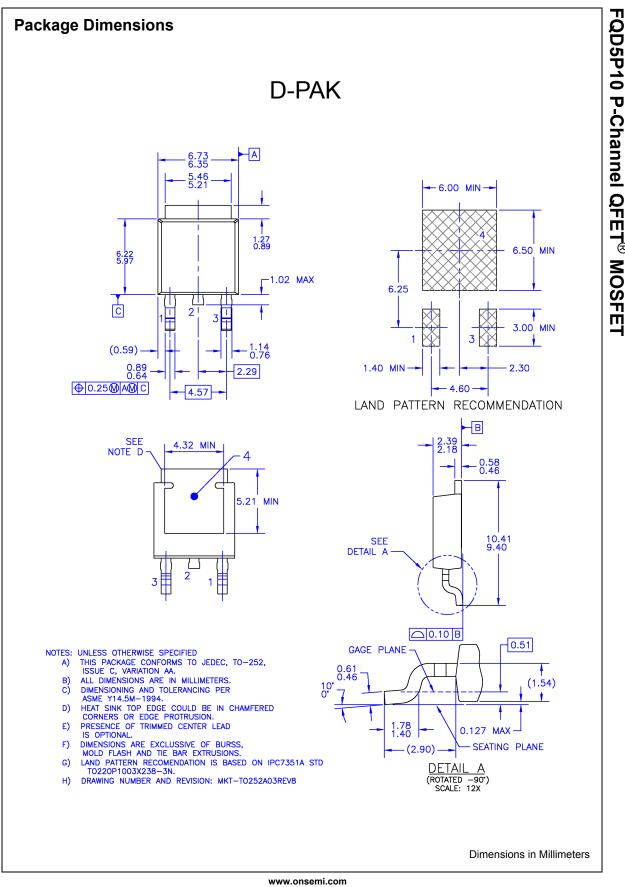

when mounted on the minimum pad size recommended (FCB mou

| Voltage<br>erature<br>current<br>nt, Forward                               | $V_{GS} = 0 V, I_D = -250 \mu A$<br>$I_D = -250 \mu A, Referenced$<br>$V_{DS} = -100 V, V_{GS} = 0 V$<br>$V_{DS} = -80 V, T_C = 125^{\circ}C$ | to 25°C                                                                                                                                                                                                                                                                                                                                | -100                                                                                                                                                                                                                                                                                                                                                            | <br>-0.1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br><br>-1                                             | V<br>V/°C<br>μA                                        |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| current<br>nt, Forward                                                     | $I_D = -250 \ \mu A$ , Referenced<br>$V_{DS} = -100 \ V$ , $V_{GS} = 0 \ V$<br>$V_{DS} = -80 \ V$ , $T_C = 125^{\circ}C$                      | to 25°C                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | V/°C                                                   |
| current<br>nt, Forward                                                     | $V_{DS} = -100 V, V_{GS} = 0 V$<br>$V_{DS} = -80 V, T_{C} = 125^{\circ}C$                                                                     | to 25°C                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 | -0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |
| nt, Forward                                                                | $V_{DS}$ = -80 V, $T_{C}$ = 125°C                                                                                                             |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1                                                     |                                                        |
| nt, Forward                                                                | 50 0                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | μι                                                     |
|                                                                            |                                                                                                                                               | V <sub>DS</sub> = -80 V, T <sub>C</sub> = 125°C                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -10                                                    | μΑ                                                     |
|                                                                            | $V_{GS}$ = -30 V, $V_{DS}$ = 0 V                                                                                                              |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 | -100                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nA                                                     |                                                        |
| nt, Reverse                                                                | $V_{GS}$ = 30 V, $V_{DS}$ = 0 V                                                                                                               |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                    | nA                                                     |
|                                                                            |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                        |
| acteristicsGate Threshold Voltage $V_{DS} = V_{GS}$ , $I_D = -250 \ \mu A$ |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                        | -2.0                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.0                                                   | V                                                      |
|                                                                            | V <sub>GS</sub> = -10 V, I <sub>D</sub> = -1.8 A                                                                                              |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.05                                                   | Ω                                                      |
| е                                                                          | V <sub>DS</sub> = -40 V, I <sub>D</sub> = -1.8 A                                                                                              |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | S                                                      |
| ance                                                                       | V <sub>DS</sub> = -25 V, V <sub>GS</sub> = 0 V,<br>f = 1.0 MHz                                                                                |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 | 190<br>70<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 250<br>90<br>25                                        | pF<br>pF<br>pF                                         |
|                                                                            |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                        |
|                                                                            | $V_{} = -50 V I_{} = -4.5 A$                                                                                                                  |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                                     | ns                                                     |
|                                                                            | 66 6                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 150                                                    | ns                                                     |
|                                                                            |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                     | ns                                                     |
|                                                                            |                                                                                                                                               | (Note 4)                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70                                                     | ns                                                     |
|                                                                            | V <sub>DS</sub> = -80 V, I <sub>D</sub> = -4.5 A,                                                                                             |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.2                                                    | nC                                                     |
|                                                                            | V <sub>GS</sub> = -10 V                                                                                                                       |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | nC                                                     |
|                                                                            |                                                                                                                                               | (Note 4)                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                 | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | nC                                                     |
|                                                                            | e                                                                                                                                             | $V_{GS} = -10 \text{ V}, \text{ I}_{D} = -1.8 \text{ A}$ e $V_{DS} = -40 \text{ V}, \text{ I}_{D} = -1.8 \text{ A}$ $V_{DS} = -25 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1.0 MHz ance $V_{DD} = -50 \text{ V}, \text{ I}_{D} = -4.5 \text{ A},$ R <sub>G</sub> = 25 Ω $V_{DS} = -80 \text{ V}, \text{ I}_{D} = -4.5 \text{ A},$ | $V_{GS} = -10 \text{ V}, \text{ I}_{D} = -1.8 \text{ A}$ $V_{DS} = -40 \text{ V}, \text{ I}_{D} = -1.8 \text{ A}$ $V_{DS} = -25 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1.0 MHz $V_{DD} = -50 \text{ V}, \text{ I}_{D} = -4.5 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4) $V_{DS} = -80 \text{ V}, \text{ I}_{D} = -4.5 \text{ A},$ $V_{GS} = -10 \text{ V}$ | $V_{GS} = -10 \text{ V}, \text{ I}_{D} = -1.8 \text{ A} \qquad$ $V_{DS} = -40 \text{ V}, \text{ I}_{D} = -1.8 \text{ A} \qquad$ $V_{DS} = -25 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \qquad$ $f = 1.0 \text{ MHz} \qquad$ $$ $$ $R_{G} = 25 \Omega \qquad$ $(\text{Note 4}) \qquad$ $V_{DS} = -80 \text{ V}, \text{ I}_{D} = -4.5 \text{ A}, \qquad$ $$ $(\text{Note 4}) \qquad$ $V_{DS} = -80 \text{ V}, \text{ I}_{D} = -4.5 \text{ A}, \qquad$ $$ $$ $$ $$ $$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |


L , L = 0-mm,  $\Lambda_S$  = 0.07,  $V_{DD}$  = 0.07,  $R_D$  = 24, other in  $T_J$  = 25°C 3.1<sub>SD</sub> = 4.5A, di/dt = 3.00A/us,  $V_{DD}$  = BV<sub>DSS</sub>, Starting  $T_J$  = 25°C 4. Essentially independent of operating temperature




FQD5P10 P-Channel QFET<sup>®</sup> MOSFET




www.onsemi.com





FQD5P10 P-Channel QFET® MOSFET



FQD5P10 P-Channel QFET® MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative