# **MOSFET** - N-Channel, POWERTRENCH®

80 V, 100 A, 4.2 m $\Omega$ 

# FDD86367

#### **Features**

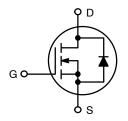
- Typical  $R_{DS(on)} = 3.3 \text{ m}\Omega$  at  $V_{GS} = 10 \text{ V}$ ,  $I_D = 80 \text{ A}$
- Typical  $Q_{g(tot)} = 68 \text{ nC}$  at  $V_{GS} = 10 \text{ V}$ ,  $I_D = 80 \text{ A}$
- UIS Capability
- This Device is Pb–Free, Halogen Free/BFR Free and is RoHS Compliant

# **Applications**

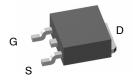
- PowerTrain Management
- Solenoid and Motor Drivers
- Integrated Starter/Alternator
- Primary Switch for 12 V Systems

# MOSFET MAXIMUM RATINGS (T<sub>J</sub> = 25°C unless otherwise noted)

| Symbol            | Parameter                                                            | Ratings      | Unit |  |
|-------------------|----------------------------------------------------------------------|--------------|------|--|
| VDSS              | Drain-to-Source Voltage                                              | 80           | ٧    |  |
| Vgs               | Gate-to-Source Voltage                                               | ±20          | V    |  |
| I <sub>D</sub>    | Drain Current – Continuous ( $V_{GS}$ = 10)<br>(Note 1) $T_C$ = 25°C | 100          | Α    |  |
|                   | Pulsed Drain Current $T_C = 25^{\circ}C$                             | See Figure 4 |      |  |
| EAS               | Single Pulse Avalanche Energy (Note 2)                               | 82           | mJ   |  |
| P <sub>D</sub>    | Power Dissipation                                                    | 227          | W    |  |
|                   | Derate Above 25°C                                                    | 1.52         | W/°C |  |
| $T_J$ , $T_{STG}$ | Operating and Storage Temperature                                    | -55 to + 175 | °C   |  |
| $R_{\theta JC}$   | Thermal Resistance, Junction to Case                                 | 0.66         | °C/W |  |
| $R_{	heta JA}$    | Maximum Thermal Resistance,<br>Junction to Ambient (Note 3)          | 52           | °C/W |  |


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Current is limited by bondwire configuration.
- Starting T<sub>J</sub> = 25°C, L = 40 μH, I<sub>AS</sub> = 64 A, V<sub>DD</sub> = 80 V during inductor charging and V<sub>DD</sub> = 0V during time in avalanche.
   R<sub>θJA</sub> is the sum of the junction-to-case and case-to-ambient thermal
- 3. R<sub>θJA</sub> is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. R<sub>qJC</sub> is guaranteed by design, while R<sub>θJA</sub> is determined by the board design. The maximum rating presented here is based on mounting on a 1 in<sup>2</sup> pad of 2oz copper.




# ON Semiconductor®

#### www.onsemi.com



N-Channel



DPAK3 (TO-252 3 LD) CASE 369AS

#### **MARKING DIAGRAM**

\$Y&Z&3&K FDD 86367

FDD86367 = Specific Device Code \$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = 3-Digit Date Code

&K = 2-Digits Lot Run Traceability Code

#### **ORDERING INFORMATION**

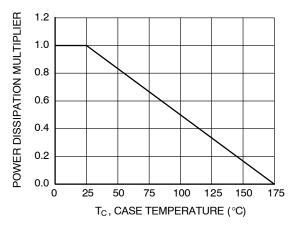
See detailed ordering and shipping information on page 2 of this data sheet.

#### FDD86367

#### PACKAGE MARKING AND ORDERING INFORMATION

| Device   | Device Marking | Package                          | Reel Size | Tape Width | Shipping <sup>†</sup> |
|----------|----------------|----------------------------------|-----------|------------|-----------------------|
| FDD86367 | FDD86367       | DPAK3 (TO-252 3 LD)<br>(Pb-Free) | 13"       | 16 mm      | 2500 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


#### **ELECTRICAL CHARACTERISTICS** (T<sub>1</sub> = 25°C unless otherwise noted)

| Symbol              | Parameter                         | Condition                                                                                      |                                                   | Min | Тур  | Max  | Unit |
|---------------------|-----------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------|-----|------|------|------|
| OFF CHA             | RACTERISTICS                      |                                                                                                |                                                   |     |      | •    |      |
| B <sub>VDSS</sub>   | Drain-to-Source Breakdown Voltage | $I_D = 250 \mu A, V_{GS} = 0 V$                                                                |                                                   | 80  | -    | -    | V    |
| I <sub>DSS</sub>    | Drain-to-Source Leakage Current   | V <sub>DS</sub> = 80 V,<br>V <sub>GS</sub> = 0 V                                               | T <sub>J</sub> = 25°C                             | -   | -    | 1    | mA   |
|                     |                                   |                                                                                                | T <sub>J</sub> = 175°C (Note 4)                   | -   | -    | 1    | mA   |
| I <sub>GSS</sub>    | Gate-to-Source Leakage Current    | V <sub>GS</sub> = ±20 V                                                                        |                                                   | -   | -    | ±100 | nA   |
| ON CHAR             | ACTERISTICS                       |                                                                                                |                                                   |     |      |      |      |
| V <sub>GS(th)</sub> | Gate to Source Threshold Voltage  | $V_{GS} = V_{DS}, I_D = 250 \mu A$                                                             |                                                   | 2   | 3    | 4    | V    |
| R <sub>DS(on)</sub> | Drain to Source On Resistance     | I <sub>D</sub> = 80 A,<br>V <sub>GS</sub> = 10 V                                               | T <sub>J</sub> = 25°C                             | -   | 3.3  | 4.2  | mΩ   |
|                     |                                   |                                                                                                | T <sub>J</sub> = 175°C (Note 4)                   | -   | 6.6  | 8.4  | mΩ   |
| DYNAMIC             | CHARACTERISTICS                   |                                                                                                |                                                   |     |      | •    |      |
| C <sub>iss</sub>    | Input Capacitance                 | V <sub>DS</sub> = 40 V, V <sub>GS</sub> = 0 V, f = 1 MHz                                       |                                                   | -   | 4840 | -    | pF   |
| C <sub>oss</sub>    | Output Capacitance                |                                                                                                |                                                   | -   | 814  | -    | pF   |
| C <sub>rss</sub>    | Reverse Transfer Capacitance      |                                                                                                |                                                   | -   | 31   | -    | pF   |
| R <sub>g</sub>      | Gate Resistance                   | V <sub>GS</sub> = 0.5 V, f = 1 MHz                                                             |                                                   | _   | 2.3  | -    | Ω    |
| Q <sub>g(ToT)</sub> | Total Gate Charge                 | V <sub>GS</sub> = 0 to 10 V                                                                    | <sub>SS</sub> = 0 to 10 V V <sub>DD</sub> = 40 V, |     | 68   | 88   | nC   |
| Q <sub>g(th)</sub>  | Threshold Gate Charge             | V <sub>GS</sub> = 0 to 2 V                                                                     | I <sub>D</sub> = 80 A                             | -   | 8.8  | -    | nC   |
| $Q_{gs}$            | Gate-to-Source Gate Charge        | V <sub>DD</sub> = 40 V, I <sub>D</sub> = 80 A                                                  |                                                   | -   | 22   | -    | nC   |
| Q <sub>gd</sub>     | Gate-to-Drain "Miller" Charge     |                                                                                                |                                                   | -   | 14   | -    | nC   |
| SWITCHIN            | NG CHARACTERISTICS                |                                                                                                |                                                   |     |      | •    |      |
| t <sub>on</sub>     | Turn-On Time                      | $V_{DD} = 40 \text{ V}, I_D = 80$                                                              | A, V <sub>GS</sub> = 10 V,                        | -   | -    | 104  | ns   |
| t <sub>d(on)</sub>  | Turn-On Delay                     | $R_{GEN}$ = 6 Ω                                                                                |                                                   | _   | 20   | -    | ns   |
| t <sub>r</sub>      | Rise Time                         |                                                                                                |                                                   | -   | 49   | -    | ns   |
| t <sub>d(off)</sub> | Turn-Off Delay                    |                                                                                                |                                                   | _   | 36   | -    | ns   |
| t <sub>f</sub>      | Fall Time                         |                                                                                                |                                                   | _   | 16   | -    | ns   |
| t <sub>off</sub>    | Turn-Off Time                     |                                                                                                |                                                   | _   | -    | 80   | ns   |
| DRAIN-S             | OURCE DIODE CHARACTERISTICS       |                                                                                                |                                                   |     |      |      |      |
| $V_{SD}$            | Source-to-Drain Diode Voltage     | I <sub>SD</sub> = 80 A, V <sub>GS</sub> = 0 V<br>I <sub>SD</sub> = 40 A, V <sub>GS</sub> = 0 V |                                                   | _   | _    | 1.3  | V    |
|                     |                                   |                                                                                                |                                                   | _   | -    | 1.2  | V    |
| t <sub>rr</sub>     | Reverse-Recovery Time             | $V_{DD} = 64 \text{ V}, I_F = 80 \text{ A}, dI_{SD}/dt = 100 \text{ A}/\mu\text{s}$            |                                                   | -   | 68   | 102  | ns   |
| Q <sub>rr</sub>     | Reverse-Recovery Charge           | 1                                                                                              |                                                   | _   | 66   | 106  | nC   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. The maximum value is specified by design at  $T_J = 175^{\circ}$ C. Product is not tested to this condition in production.

#### FDD86367

# **TYPICAL CHARACTERISTICS**



200 CURRENT LIMITED VGS = 10 V BY SILICON ID, DRAIN CURRENT (A) 160 CURRENT LIMITED BY PACKAGE 120 80 40 50 75 100 125 150 175 200 25 T<sub>C</sub>, CASE TEMPERATURE (°C)

Figure 1. Normalized Power Dissipation vs. Case Temperature

Figure 2. Maximum Continuous Drain Current vs. Case Temperature

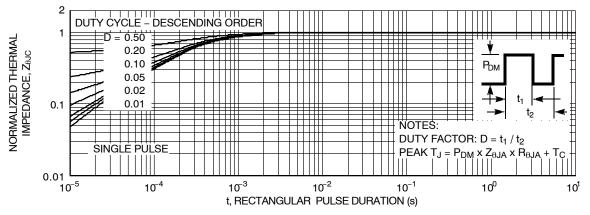



Figure 3. Normalized Maximum Transient Thermal Impedance

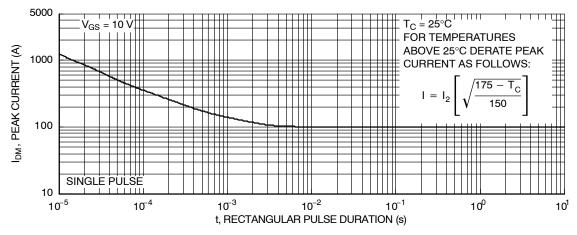



Figure 4. Peak Current Capability

# TYPICAL CHARACTERISTICS (continued)

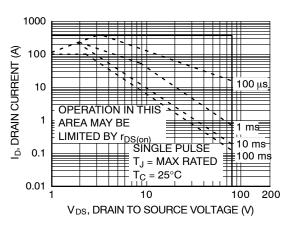
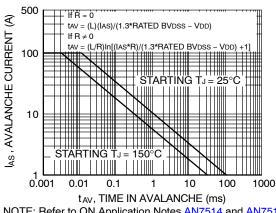




Figure 5. Forward Bias Safe Operating Area



NOTE: Refer to ON Application Notes AN7514 and AN7515

Figure 6. Unclamped Inductive Switching Capability

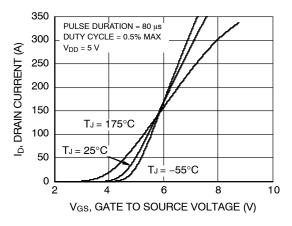



Figure 7. Transfer Characteristics

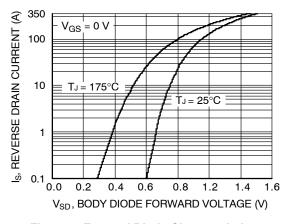



Figure 8. Forward Diode Characteristics

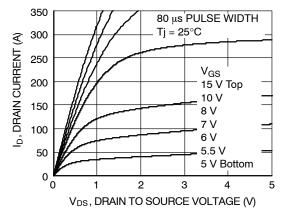



Figure 9. Saturation Characteristics

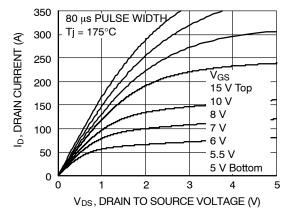



Figure 10. Saturation Characteristics

#### FDD86367

# TYPICAL CHARACTERISTICS (continued)

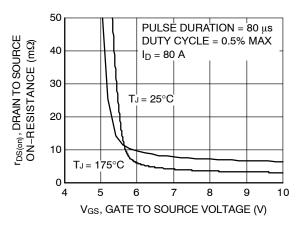



Figure 11. R<sub>DSON</sub> vs. Gate Voltage

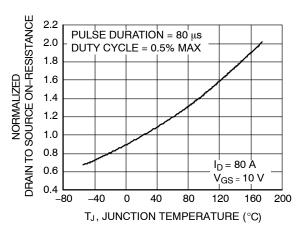



Figure 12. Normalized RDSON vs. Junction Temperature

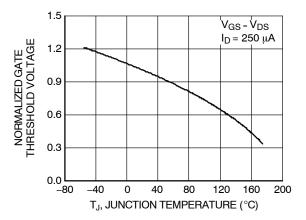



Figure 13. Normalized Gate Threshold Voltage vs. Temperature

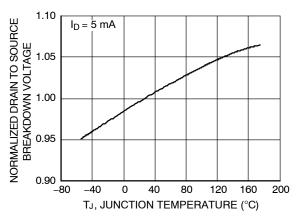



Figure 14. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

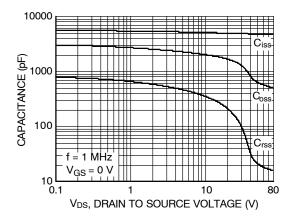



Figure 15. Capacitance vs. Drain to Source Voltage

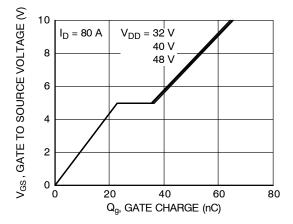
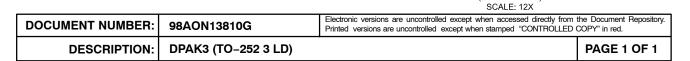




Figure 16. Gate Charge vs. Gate to Source Voltage

POWERTRENCH is registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

#### DPAK3 (TO-252 3 LD) CASE 369AS **ISSUE O DATE 30 SEP 2016** 6.73 6.35 5,46 5.55 MIN-6.50 MIN 6.40 Ċ 0.25 MAX PLASTIC BODY STUB MIN DIODE PRODUCTS VERSION (0.59)-1.25 MIN 0.89 ⊕ 0.25 M AM C 2.29 2.28 4.56 4.57 LAND PATTERN RECOMMENDATION NON-DIODE PRODUCTS VERSION В 2.39 SEE 2.18 4.32 MIN **NOTE D** 0.58 0.45 5.21 MIN 10.41 9.40 SEE DETAIL A 2 3 NON-DIODE PRODUCTS VERSION DIODE PRODUCTS VERSION ○ 0.10 B 0,51 **GAGE PLANE** NOTES: UNLESS OTHERWISE SPECIFIED 0.61 0.45 A) THIS PACKAGE CONFORMS TO JEDEC, TO-252, (1.54)ISSUE C, VARIATION AA. B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONING AND TOLERANCING PER 10° ASME Y14.5M-2009. D) SUPPLIER DEPENDENT MOLD LOCKING HOLES OR CHAMFERED 1 78 CORNERS OR EDGE PROTRUSION.



ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

E TRIMMED CENTER LEAD IS PRESENT ONLY FOR DIODE PRODUCTS

G) LAND PATTERN RECOMENDATION IS BASED ON IPC7351A STD TO228P991X239-3N.

F) DIMENSIONS ARE EXCLUSSIVE OF BURSS,

MOLD FLASH AND TIE BAR EXTRUSIONS.

0.127 MAX

**DETAIL A** (ROTATED -90°)

**SEATING PLANE** 

1,40

(2.90)

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative