MOSFET – N-Channel, **UniFET**[™]

200 V, 16 A, 125 m Ω

FDD18N20LZ

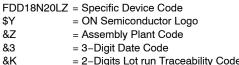
Description

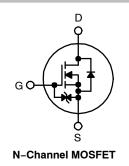
UniFET MOSFET is ON Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Features

- $R_{DS(on)} = 125 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 8 \text{ A}$
- Low Gate Charge (Typ. 30 nC)
- Low C_{RSS} (Typ. 25 pF)
- 100% Avalanche Tested
- Improved dv/dt Capability
- ESD Improved Capability
- These Device is Pb-Free and is RoHS Compliant
- Applications
- LED TV
- Consumer Appliances
- Uninterruptible Power Supply

ON Semiconductor®


www.onsemi.com


DPAK3 (TO-252 3 LD) CASE 369AS

= 2-Digits Lot run Traceability Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

MOSFET MAXIMUM RATINGS (T_C = 25° C unless otherwise noted)

Symbol	Parameter		FDD18N20LZ	Unit
V _{DSS}	Drain to Source Voltage		200	V
V _{GSS}	Gate to Source Voltage		±20	V
Ι _D	Drain Current	Continuous (T _C = 25°C)	16	А
		Continuous (T _C = 100°C)	9.6	1
I _{DM}	Drain Current (Note 1)	Pulsed	64	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		320	mJ
I _{AR}	Avalanche Current (Note 1)		16	Α
E _{AR}	Repetitive Avalanche Energy (Note 1)		8.9	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		10	V/ns
P _D	Power Dissipation	(T _C = 25°C)	89	W
		Derate above 25°C	0.7	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		–55 to +150	°C
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Repetitive rating: pulse-width limited by maximum junction temperature. 2. L = 2.5 mH, I_{AS} = 16 A, V_{DD} = 50 V, R_G = 25 Ω , starting T_J = 25°C. 3. $I_{SD} \le 16 \text{ A}$, di/dt $\le 200 \text{ A}/\mu$ s, $V_{DD} \le BV_{DSS}$, starting T_J = 25°C.

THERMAL CHARACTERISTICS

Symbol	Parameter	FDD18N20LZ	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	1.4	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	83	

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	I_D = 250 $\mu A,V_{GS}$ = 0 V, T_J = 25°C	200	-	-	V
$\Delta {\sf BV}_{\sf DSS}$ / Δ	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C	-	0.2	-	V/°C
T _J I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 200 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	-	-	1	μΑ
		$V_{DS} = 160 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$	-	-	10	
I _{GSS}	Gate to Body Leakage Current	V_{GS} = ±16 V, V_{DS} = 0 V	Ι	-	±10	μΑ
ON CHARAC	CTERISTICS					
V _{GS(th)}	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D = 250 μ A	1.0	-	2.5	V
R _{DS(on)}	Static Drain to Source On Resistance	V_{GS} = 10 V, I _D = 8 A	-	0.10	0.125	Ω
		$V_{GS} = 5 \text{ V}, \text{ I}_{D} = 8 \text{ A}$	-	0.11	0.13	
g fs	Forward Transconductance	V _{DS} = 20 V, I _D = 2 A	-	11	-	S
DYNAMIC C	HARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V f = 1 MHz	-	1185	1575	pF
C _{oss}	Output Capacitance	f = 1 MHz	-	190	255	pF
C _{rss}	Reverse Transfer Capacitance		-	25	40	pF
Q _{g(tot)}	Total Gate Charge at 10V	V_{DS} = 200 V, I _D = 16 A, V _{GS} = 10 V (Note 4)	-	30	40	nC
Q _{gs}	Gate to Source Gate Charge		-	3.5	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	8.5	-	nC
SWITCHING	CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 100 \text{ V}, \text{ I}_{D} = 16 \text{ A}, \text{ V}_{GS} = 10 \text{ V},$	-	15	40	ns
t _r	Turn–On Rise Time	$R_{G} = 25 \Omega$ (Note 4)	-	20	50	ns
t _{d(off)}	Turn-Off Delay Time		-	135	280	ns
t _f	Turn-Off Fall Time		-	50	110	ns
DAIN-SOUR	CE DIODE CHARACTERISTICS					
۱ _S	Maximum Continuous Drain to Source Diode Forward Current		-	-	16	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	64	Α
V _{SD}	Drain to Source Diode Forward Voltage	rd Voltage $V_{GS} = 0 V, I_{SD} = 4 A$		-	1.4	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V, I_{SD} = 4 A$	-	105	-	ns
Q _{rr}	Reverse Recovery Charge	dl _F /dt = 100 A/µs	-	0.4	_	μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

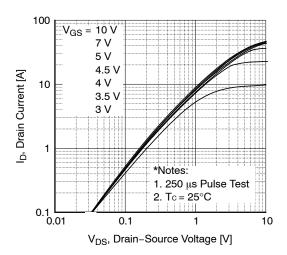
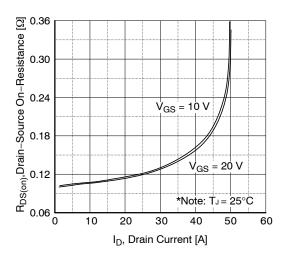
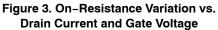




Figure 1. On–Region Characteristics

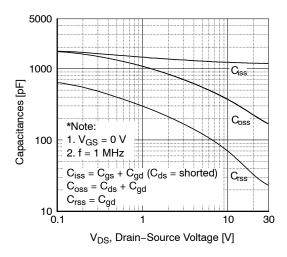
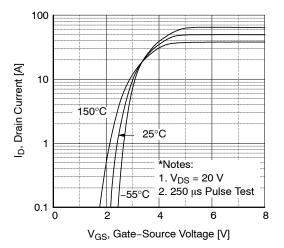



Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

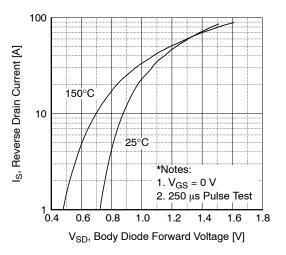


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

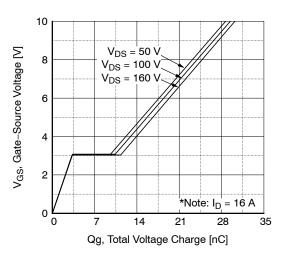
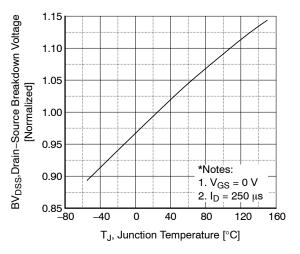
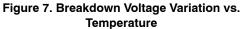




Figure 6. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

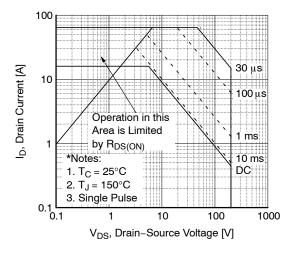


Figure 9. Maximum Safe Operating Area

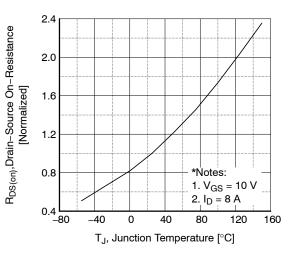


Figure 8. On–Resistance Variation vs. Temperature

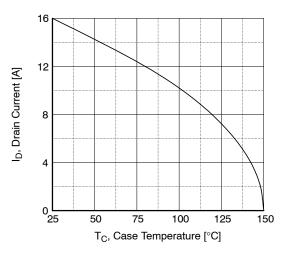


Figure 10. Maximum Drain Current vs. Case Temperature

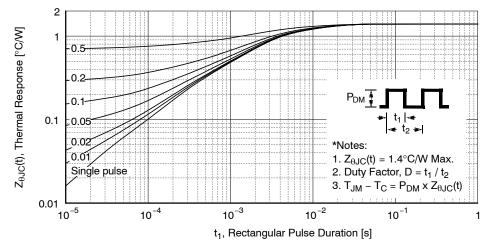
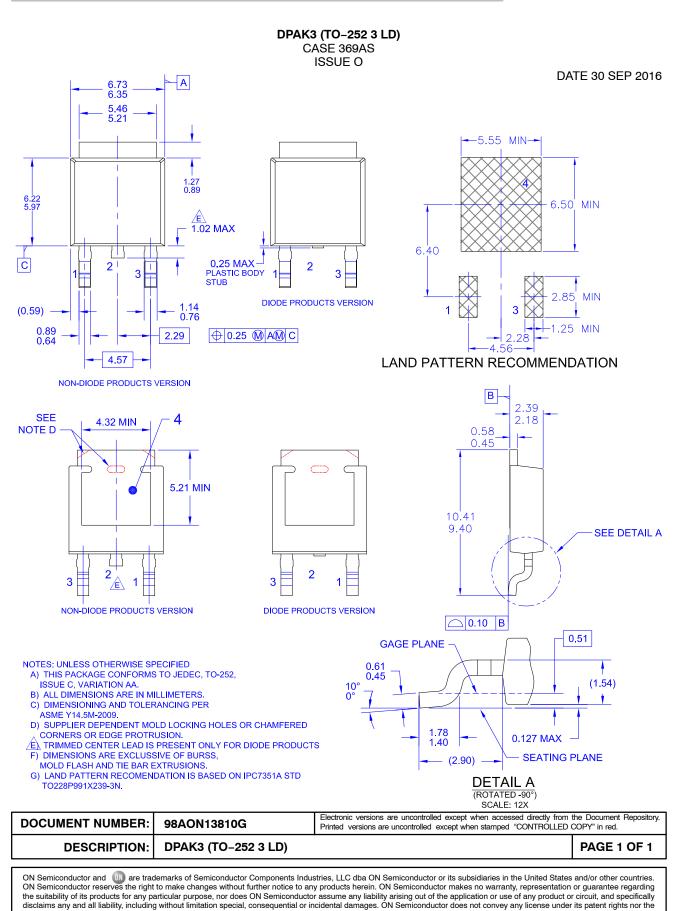


Figure 11. Transient Thermal Response Curve


PACKAGE MARKING ANDORDERING INFORMATION

Part Number	Top Mark	Package	Reel Size	Tape Width	Shipping [†]
FDD18N20LZ	FDD18N20LZ	DPAK3 (TO–252 3 LD) (Pb–Free)	330 mm	16 mm	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

UniFET is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

© Semiconductor Components Industries, LLC, 2019

rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative