# MOSFET – Power, N-Channel, SUPERFET<sup>®</sup> III 800 V, 360 m $\Omega$ , 13 A

# NTD360N80S3Z

### **Description**

800 V SUPERFET III MOSFET is ON Semiconductor's high performance MOSFET family offering 800 V breakdown voltage.

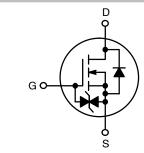
New 800 V SUPERFET III MOSFET which is optimized for primary switch of flyback converter, enables lower switching losses and case temperature without sacrificing EMI performance thanks to its optimized design. In addition, internal Zener Diode significantly improves ESD capability.

This new family of 800 V SUPERFET III MOSFET enables to make more efficient, compact, cooler and more robust applications because of its remarkable performance in switching power applications such as Laptop adapter, Audio, Lighting, ATX power and industrial power supplies.

### **Features**

- Typ.  $R_{DS(on)} = 300 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q<sub>g</sub> = 25.3 nC)
- Low Stored Energy in Output Capacitance (Eoss = 2.72 μJ @ 400 V)
- 100% Avalanche Tested
- ESD Improved Capability with Zener Diode
- RoHS Compliant

### **Applications**


- Adapters / Chargers
- LED Lighting
- AUX Power
- Audio
- Industrial Power



### ON Semiconductor®

### www.onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(ON)</sub> MAX | I <sub>D</sub> MAX |
|----------------------|-------------------------|--------------------|
| 800 V                | 360 m $Ω$               | 13 A               |



**POWER MOSFET** 



### **MARKING DIAGRAM**



&Z = Assembly Plant Code &3 = Data Code (Year & Week)

&K = Lo

NTD360N80S3Z = Specific Device Code

# **ORDERING INFORMATION**

See detailed ordering and shipping information on page 2 of this data sheet.

# ABSOLUTE MAXIMUM RATINGS ( $T_J = 25^{\circ}C$ , unless otherwise noted)

| Symbol                            | Param                                                                                    | Value                               | Unit        |      |
|-----------------------------------|------------------------------------------------------------------------------------------|-------------------------------------|-------------|------|
| $V_{DSS}$                         | Drain-to-Source Voltage                                                                  | rain-to-Source Voltage              |             |      |
| $V_{GS}$                          | Gate-to-Source Voltage                                                                   | DC                                  | ±20         | V    |
|                                   |                                                                                          | AC (f > 1 Hz)                       | ±30         | 1    |
| I <sub>D</sub>                    | Drain Current                                                                            | Continuous (T <sub>C</sub> = 25°C)  | 13          | Α    |
|                                   |                                                                                          | Continuous (T <sub>C</sub> = 100°C) | 8.2         | 1    |
| I <sub>DM</sub>                   | Drain Current                                                                            | Pulsed (Note 1)                     | 32.5        | Α    |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy (Note 2)                                                  |                                     | 40          | mJ   |
| I <sub>AS</sub>                   | Avalanche Current (Note 2)                                                               |                                     | 2.0         | А    |
| E <sub>AR</sub>                   | Repetitive Avalanche Energy (Note 1)                                                     |                                     | 0.96        | mJ   |
| dv/dt                             | MOSFET dv/dt Peak Diode Recovery dv/dt (Note 3)                                          |                                     | 100         | V/ns |
|                                   |                                                                                          |                                     | 10          | 1    |
| $P_{D}$                           | Power Dissipation                                                                        | (T <sub>C</sub> = 25°C)             | 96          | W    |
|                                   |                                                                                          | Derate Above 25°C                   | 0.768       | W/°C |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range                                                  |                                     | -55 to +150 | °C   |
| $T_L$                             | Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from Case for 10 seconds) |                                     | 260         | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 
1. Repetitive rating: pulse–width limited by maximum junction temperature. 
2.  $I_{AS} = 2.0 \text{ A}$ ,  $R_{G} = 25 \Omega$ , starting  $T_{J} = 25^{\circ}\text{C}$ . 
3.  $I_{SD} \leq 3.25 \text{ A}$ ,  $di/dt \leq 200 \text{ A}/\mu\text{s}$ ,  $V_{DD} \leq 400 \text{ V}$ , starting  $T_{J} = 25^{\circ}\text{C}$ .

# THERMAL RESISTANCE RATINGS

| Symbol          | Parameter                          | Value | Unit |
|-----------------|------------------------------------|-------|------|
| $R_{	heta JC}$  | Junction-to-Case - Steady State    | 1.3   | °C/W |
| $R_{\theta JA}$ | Junction-to-Ambient - Steady State | 62.5  |      |

# PACKAGE MARKING AND ORDERING INFORMATION

| Part Number  | Top Marking  | Package | Reel Size | Tape Width | Quantity   |
|--------------|--------------|---------|-----------|------------|------------|
| NTD360N80S3Z | NTD360N80S3Z | TO-252  | 330 mm    | 16 mm      | 2500 Units |

# **ELECTRICAL CHARACTERISTICS** ( $T_J = 25^{\circ}C$ unless otherwise noted)

| Symbol                                      | Parameter                                                | Test Conditions                                                        | Min | Тур   | Max  | Unit |
|---------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|-----|-------|------|------|
| OFF CHARACT                                 | ERISTICS                                                 |                                                                        |     | •     | •    |      |
| BV <sub>DSS</sub> Drain-to-Source Breakdown | Drain-to-Source Breakdown Voltage                        | $V_{GS} = 0 \text{ V, } I_D = 1 \text{ mA, } T_J = 25^{\circ}\text{C}$ | 800 |       |      | V    |
|                                             |                                                          | V <sub>GS</sub> = 0 V, I <sub>D</sub> = 1 mA, T <sub>J</sub> = 150°C   | 900 |       |      | V    |
| $\Delta BV_{DSS} / \Delta T_{J}$            | Breakdown Voltage Temperature<br>Coefficient             | I <sub>D</sub> = 1 mA, Referenced to 25°C                              |     | 1.1   |      | V/°C |
| I <sub>DSS</sub>                            | Zero Gate Voltage Drain Current                          | V <sub>DS</sub> = 800 V, V <sub>GS</sub> = 0 V                         |     |       | 1    | μΑ   |
|                                             |                                                          | V <sub>DS</sub> = 640 V, T <sub>C</sub> = 125°C                        |     | 0.8   |      |      |
| I <sub>GSS</sub>                            | Gate-to-Body Leakage Current                             | V <sub>GS</sub> = ±20 V, V <sub>DS</sub> = 0 V                         |     |       | 1    | μΑ   |
| ON CHARACTE                                 | ERISTICS                                                 |                                                                        |     |       |      |      |
| V <sub>GS(th)</sub>                         | Gate Threshold Voltage                                   | $V_{GS} = V_{DS}, I_{D} = 0.3 \text{ mA}$                              | 2.2 |       | 3.8  | V    |
| R <sub>DS(on)</sub>                         | Static Drain-to-Source On Resistance                     | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 6.5 A                         |     | 300   | 360  | mΩ   |
| 9FS                                         | Forward Transconductance                                 | V <sub>DS</sub> = 20 V, I <sub>D</sub> = 6.5 A                         |     | 13.8  |      | S    |
| DYNAMIC CHA                                 | RACTERISTICS                                             |                                                                        |     | •     |      |      |
| C <sub>iss</sub>                            | Input Capacitance                                        | V <sub>DS</sub> = 400 V, V <sub>GS</sub> = 0 V, f = 250 kHz            |     | 1143  |      | pF   |
| C <sub>oss</sub>                            | Output Capacitance                                       | 1 -                                                                    |     | 18.1  |      | pF   |
| C <sub>oss(eff.)</sub>                      | Effective Output Capacitance                             | V <sub>DS</sub> = 0 V to 400 V, V <sub>GS</sub> = 0 V                  |     | 236.4 |      | pF   |
| C <sub>oss(er.)</sub>                       | Energy Related Output Capacitance                        | V <sub>DS</sub> = 0 V to 400 V, V <sub>GS</sub> = 0 V                  |     | 34    |      | pF   |
| Q <sub>g(tot)</sub>                         | Total Gate Charge at 10 V                                | $V_{DS} = 400 \text{ V}, I_D = 6.5 \text{ A}, V_{GS} = 10 \text{ V}$   |     | 25.3  |      | nC   |
| Q <sub>gs</sub>                             | Gate-to-Source Gate Charge                               | (Note 4)                                                               |     | 5.3   |      | nC   |
| $Q_{gd}$                                    | Gate-to-Drain "Miller" Charge                            |                                                                        |     | 8.3   |      | nC   |
| ESR                                         | Equivalent Series Resistance                             | f = 1 MHz                                                              |     | 4     |      | Ω    |
| SWITCHING CH                                | HARACTERISTICS                                           |                                                                        |     |       |      |      |
| t <sub>d(on)</sub>                          | Turn-On Delay Time                                       | $V_{DD} = 400 \text{ V}, I_D = 6.5 \text{ A}, V_{GS} = 10 \text{ V},$  |     | 21.2  |      | ns   |
| t <sub>r</sub>                              | Turn-On Rise Time                                        | $R_g = 25 \Omega$ (Note 4)                                             |     | 18.5  |      | ns   |
| t <sub>d(off)</sub>                         | Turn-Off Delay Time                                      |                                                                        |     | 110   |      | ns   |
| t <sub>f</sub>                              | Turn-Off Fall Time                                       |                                                                        |     | 17.7  |      | ns   |
| SOURCE-DRAI                                 | N DIODE CHARACTERISTICS                                  |                                                                        |     | •     |      |      |
| I <sub>S</sub>                              | Maximum Continuous Source-to-Drain Diode Forward Current |                                                                        |     |       | 13   | Α    |
| I <sub>SM</sub>                             | Maximum Pulsed Source-to-Drain Diode Forward Current     |                                                                        |     |       | 32.5 | Α    |
| V <sub>SD</sub>                             | Source-to-Drain Diode Forward Voltage                    | V <sub>GS</sub> = 0 V, I <sub>SD</sub> = 6.5 A                         |     |       | 1.2  | V    |
| t <sub>rr</sub>                             | Reverse Recovery Time                                    | V <sub>GS</sub> = 0 V, I <sub>SD</sub> = 3.25 A,                       |     | 370   |      | ns   |
| Q <sub>rr</sub>                             | Reverse Recovery Charge                                  | dI <sub>F</sub> /dt = 100 A/μs                                         |     | 3.2   |      | μC   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

<sup>4.</sup> Essentially independent of operating temperature typical characteristics.

### **TYPICAL CHARACTERISTICS**

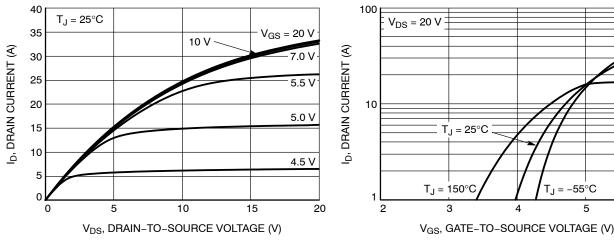



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

6

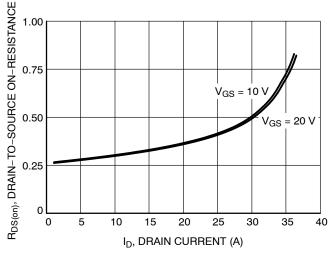



Figure 3. On Resistance vs. Drain Current

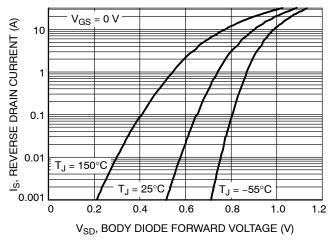



Figure 4. Diode Forward Voltage vs. Current

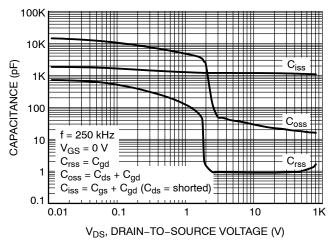



Figure 5. Capacitance Characteristics

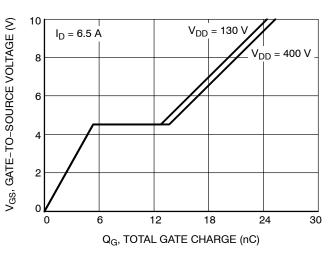



Figure 6. Gate Charge Characteristics

### **TYPICAL CHARACTERISTICS**

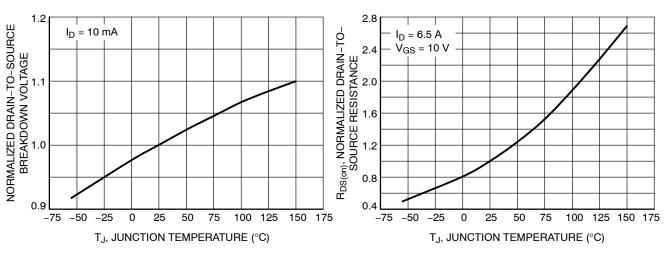
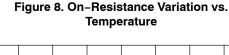




Figure 7. Normalized BV<sub>DSS</sub> vs. Temperature



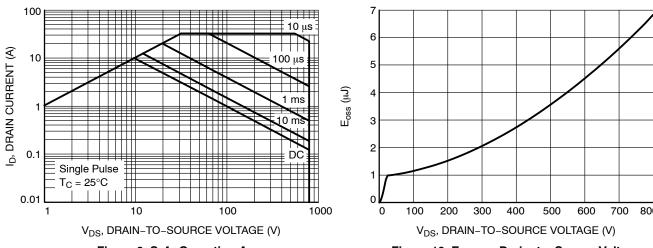



Figure 9. Safe Operating Area

Figure 10. E<sub>oss</sub> vs. Drain-to-Source Voltage

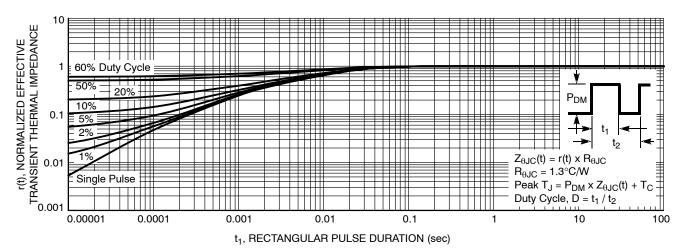



Figure 11. Transient Thermal Impedance

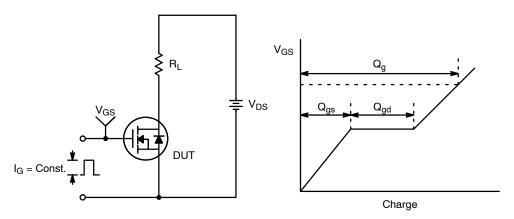



Figure 12. Gate Charge Test Circuit & Waveform

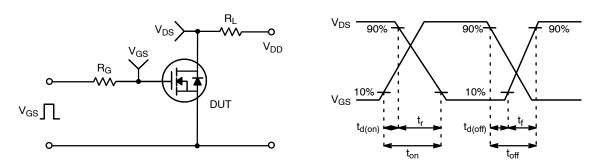



Figure 13. Resistive Switching Test Circuit & Waveforms

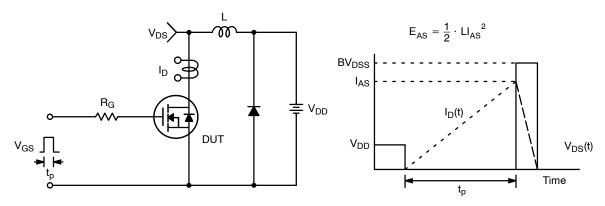



Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

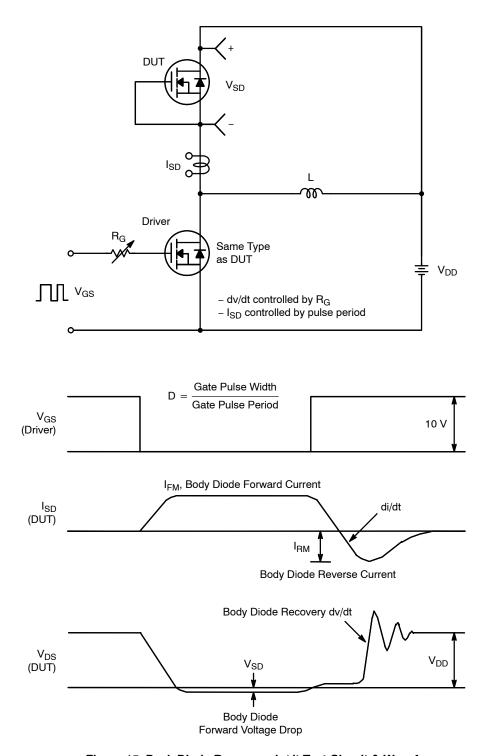
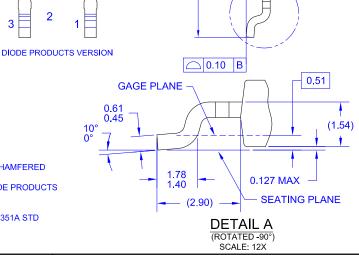



Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

### CASE 369AS **ISSUE O DATE 30 SEP 2016** 6.73 6.35 5,46 5.55 MIN-6.50 MIN 6.40 0.25 MAX Ċ PLASTIC BODY STUB MIN DIODE PRODUCTS VERSION (0.59)-1.25 MIN 0.89 ⊕ 0.25 M AM C 2.29 2.28 4.56 4.57 LAND PATTERN RECOMMENDATION NON-DIODE PRODUCTS VERSION В 2.39 SEE 2.18 4.32 MIN NOTE D 0.58 0.45 5.21 MIN 10.41 9.40 SEE DETAIL A

DPAK3 (TO-252 3 LD)

NOTES: UNLESS OTHERWISE SPECIFIED


2

A) THIS PACKAGE CONFORMS TO JEDEC, TO-252,

NON-DIODE PRODUCTS VERSION

3

- ISSUE C, VARIATION AA.
  B) ALL DIMENSIONS ARE IN MILLIMETERS.
  C) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009.
- D) SUPPLIER DEPENDENT MOLD LOCKING HOLES OR CHAMFERED CORNERS OR EDGE PROTRUSION.
- E TRIMMED CENTER LEAD IS PRESENT ONLY FOR DIODE PRODUCTS
- F) DIMENSIONS ARE EXCLUSSIVE OF BURSS, MOLD FLASH AND TIE BAR EXTRUSIONS.
- G) LAND PATTERN RECOMENDATION IS BASED ON IPC7351A STD TO228P991X239-3N.



| DOCUMENT NUMBER: | 98AON13810G         | Electronic versions are uncontrolled except when accessed directly from the Document Repositor<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | DPAK3 (TO-252 3 LD) |                                                                                                                                                                                   | PAGE 1 OF 1 |  |

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: a Phone: 00421 33 790 2910

Phone: 011 421 33 790 2910 For additional information, please contact your local Sales Representative