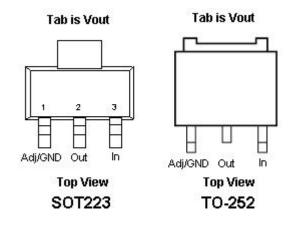


1A Positive Voltage Regulators (Preliminary)

Description


The SE8117 series of high performance low dropout voltage regulators are designed for applications that require efficient conversion and fast transient response.

In addition, SE8117 is designed to be stable under conditions where Cin and Cout are not present. However, it is recommended to include Cin and Cout in the system design as this will speed up the transient response and increase the PSRR rating. SE8117 is characterized under Junction Temperature from -40°C to +125°C.

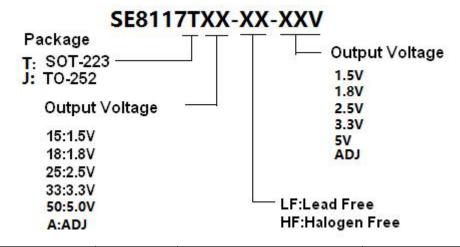
Features

- Low Dropout Performance.
- Low Quiescent Current: 2.7mA (Typ.)
- Guaranteed 1A Output Current.
- Wide Input Supply Voltage Range.
- > Stable operation without Cin and Cout.
- > Over-temperature and Over-current Protection.
- > Fixed or Adjustable Output Voltage.
- > Available in SOT-223 and TO252 Packages.
- RoHS Compliant

Pin Configuration

ApplicationActive SCSI Terminators.

- High Efficiency Linear Regulators.
- > 5V to 3.3V Linear Regulators
- > Motherboard Clock Supplies.


Pin Description

NO.	Pin Name	Pin Function Description			
1	ADJ/GND	A resistor divider from this pin to the VOUT pin and ground sets the			
		output voltage (Ground only for Fixed-Mode).			
2	OUT	The output of the regulator. A minimum of 4.7 μ F capacitor (0.15 Ω ≤			
		ESR $\leq 0.5\Omega$) must be connected from this pin to ground to insure			
		stability.			
3	3 IN The input pin of regulator. Typically a large storage capa				
		connected from this pin to ground to insure that the input voltage does			
		not sag below the minimum dropout voltage during the load transient			
		response. This pin must always be 1.3V higher than VOUT in order for			
		the device to regulate properly. A minimum of 4.7 μ F capacitor (0.15 Ω ≤			
		ESR $\leq 0.5\Omega$) must be connected from this pin to ground to insure			
		stability.			

Preliminary and all contents are subject to change without prior notice. © Seaward Electronics, Inc., 2006. • www.seawardinc.com.cn • Page 1

Ordering Information

Ordering No.	Package	Marking	Shipping
	SOT 222	SE8117T15	Tape and Reel
SE8117T15-HF-1.5V	SOT-223	YYWW-HF	1000/2500
SE8117T18-HF-1.8V	SOT 222	SE8117T18	Tape and Reel
SE011/110-HF-1.0V	SOT-223	YYWW-HF	1000/2500
SE8117T25-HF-2.5V	SOT-223	SE8117T25	Tape and Reel
SE0117123-HF-2.3V	501-223	YYWW-HF	1000/2500
	SOT-223	SE8117T33	Tape and Reel
SE8117T33-HF-3.3V		YYWW-HF	1000/2500
SE8117T50-HF-5.0V	SOT-223	SE8117T50	Tape and Reel
3E0117150-FF-5.0V		YYWW-HF	1000/2500
	SOT-223	SE8117TA	Tape and Reel
SE8117TA-HF-ADJ		YYWW-HF	1000/2500
SE8117J33-LF-3.3V	TO-252	SE8117J33	Tape and Reel
3E0117333-LF-3.3V		YYWW-HF	2500
SE8117JA-LF-ADJ	TO-252	SE8117JA	Tape and Reel
SEOTITJA-LF-ADJ	10-252	YYWW-HF	2500

Absolute Maximum Rating

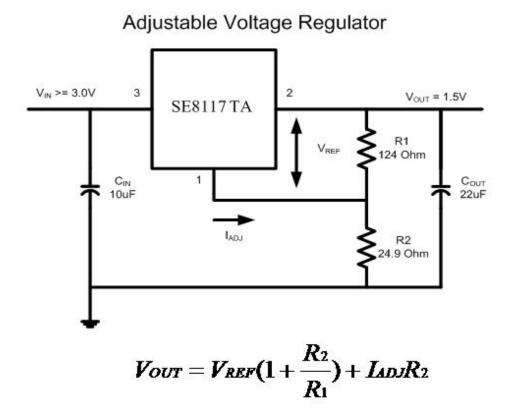
Symbol	Parameter	Maximum	Units
V _{IN}	Input Supply Voltage	15	V
θ _{JA}	Thermal Resistance Junction to Ambient (SOT-223)	120	°C/W
TJ	Operating Junction Temperature Range	-40 to 125	°C
T _{STG}	Storage Temperature Range	-40 to 150	°C
T _{LEAD}	Lead Temperature (Soldering 10 Sec)	260	°C
Тмј	Maximum Junction Temperature	150	°C

Revision 10/16/2017

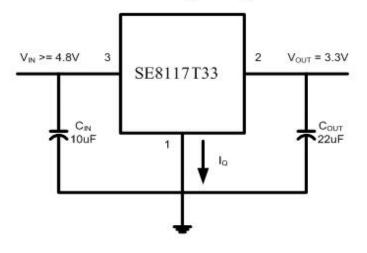
Preliminary and all contents are subject to change without prior notice. © Seaward Electronics, Inc., 2006. • www.seawardinc.com.cn • Page 2

Electrical Characteristic

 $V_{IN,MAX} \le 9V$, $V_{IN,MIN} - V_{OUT} = 2V$, $I_{OUT} = 10$ mA, $C_{IN} = 10\mu$ F, $C_{OUT} = 22\mu$ F, $T_A = 25^{\circ}$ C, unless otherwise specified.


Symbol	Parameter	Test Condition	Min	Тур	Max	Units
		SE8117T-15	1.470	1.5	1.530	
		SE8117T-18	1.764	1.8	1.836	
Vo	Output Voltage	SE8117T-25	2.450	2.5	2.550	V
		SE8117T-33	3.234	3.3	3.366	
		SE8117T-50	4.900	5.0	5.100	
V_{REF}	Reference Voltage (Adj. Voltage Version)	(V _{IN} - V _{OUT}) = 1.5V I _{OUT} = 10mA	(-2%)	1.250	(+2%)	V
V_{SR}	Line Regulation	V _{OUT} + 1.5V < V _{IN} < 9V I _{OUT} = 10mA		0.3		%/V
V_{LR}	Load Regulation ⁽¹⁾	(V _{IN} - V _{OUT}) = 2.0V 10mA ≤ I _{OUT} ≤ 1A		0.0001		%/mA
lq	Quiescent Current	Fixed Output Version		2.7	5	mA
I _{ADJ} (I _{GND})	Adjust Pin Current (GND Current)			50	120	μA
ΔI_{ADJ}	Adjust Pin Current Change	V _{OUT} + 1.5V < V _{IN} < 9V		0.2	5	μA
VD	Dropout Voltage (1) (2)	I _{OUT} = 0.5A		1.2	1.25	V
lo	Minimum Load Current			0.4	5	mA
I _{CL}	Current Limit (1)		1	1.35		А
Tc	Temperature Coefficient			30		ppm/℃ /V
OTP	Thermal Protection	V _{IN} =9V, I _{OUT} =10mA		175		°C
V _N	RMS Output Noise	T _A = 25°C, 10Hz ≤ f ≤ 10kHz		0.003		%Vo
R _A	Ripple Rejection Ratio	f = 120Hz, C _{OUT} = 22µF (Tantalum), (V _{IN} - V _{OUT}) = 3V, I _{OUT} = 10mA		60		dB

Notes:


- 1. Low duty cycle pulse testing with which T_J remains unchanged.
- 2. The dropout voltage is the input/output differential at which the circuit ceases to regulate against further reduction in input voltage. It is measured when the output voltage has dropped 98% from the nominal value obtained at $V_{IN} = V_{OUT} + 2V$.

Typical Application

Revision 10/16/2017

Application Hints

The typical Linear regulator would require external capacitors to ensure stability. However, SE8117 is designed in such a way that these external capacitor can be omitted if the PCB layout is tight and system noise is not very high. For better transient and PSRR performance, the Input and Output capacitors are still recommended.

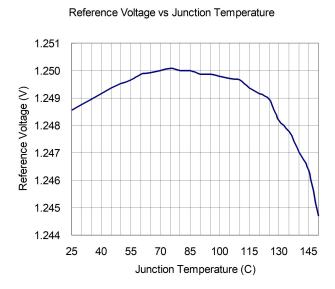
Input Capacitor

An input capacitor of 10µF is recommended. Ceramic or Tantalum can be used. The value can be increased without upper limit.

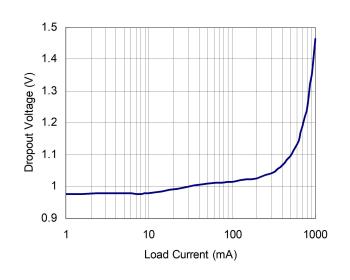
Output Capacitor

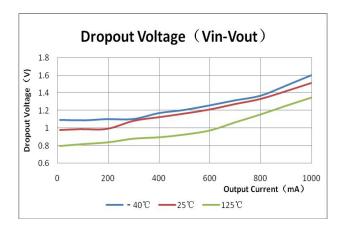
An output capacitor of 22 μ F is recommended for better transient and PSRR performance. It should be placed no more than 1 cm away from the V_{OUT} pin, and connected directly between V_{OUT} and GND pins. The value may be increased without upper limit.

Thermal Considerations

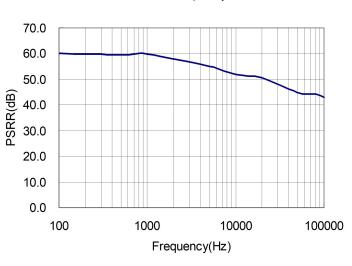

It is important that the thermal limit of the package is not exceeded. The SE8117 has built-in thermal protection. When the thermal limit is exceeded, the IC will enter protection, and V_{OUT} will be pulled to ground. The power dissipation for a given application can be calculated as following:

The power dissipation (P_D) is P_D = I_{OUT} * [V_{IN} - V_{OUT}]

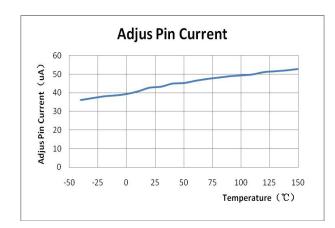

The thermal limit of the package is then limited to $P_{D(MAX)} = [T_J - T_A]/\Theta_{JA}$ where T_J is the junction temperature, TA is the ambient temperature, and Θ_{JA} is around 120°C/W for SE8117. SE8117 is designed to enter thermal protection at 125°C. For example, if T_A is 25°C then the maximum P_D is limited to about 0.83W. In other words, if $I_{OUT(MAX)} = 500$ mA, then $[V_{IN} - V_{OUT}]$ can not exceed 1.66V. (Ref. SOT223 without heat sink.)


Typical Performance Characteristics

Dropout Voltage vs Load Current



Dropout Volatge VS Oueput Current



Revision 10/16/2017

Output Voltage vs Load Current

Adjus Pin Current VS Temperature

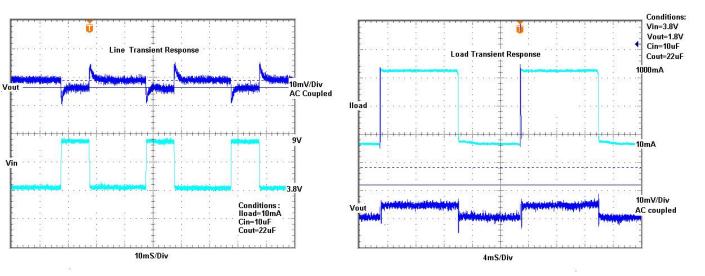
Preliminary and all contents are subject to change without prior notice. © Seaward Electronics, Inc., 2006. • www.seawardinc.com.cn • Page 6

PSRR vs Frequency

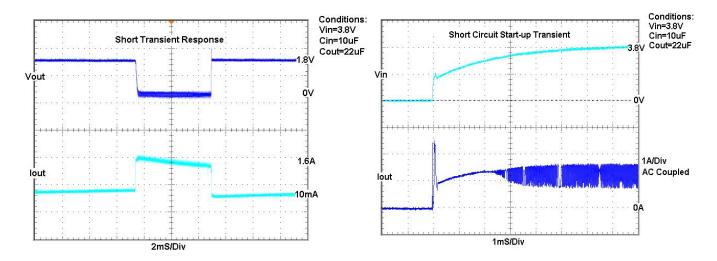
Load Current (mA)

100

1000

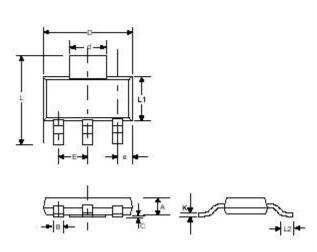

10

1

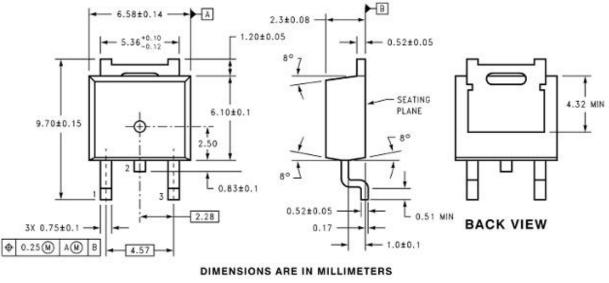

Typical Performance Characteristics

Line Transient Response

Short Transient Response


Short Circuit Start-up Transient

Load Transient Response



Outline Drawing for SOT-223

	DII	MENSIC	NS		
DIM ^N	INCHES		MM		
DIIVI	MIN	MAX	MIN	MAX	
Α	3 0	0.071		1.80	
В	0.025	0.033	0.640	0.840	
С	0.012		0.31	_	
D	0.248	0.264	6.30	6.71	
d	0.115	0.124	2.95	3.15	
E	3 0	0.090	<u></u>	2.29	
е	0.033	0.041	0.840	1.04	
L	0.264	0.287	6.71	7.29	
L1	0.130	0.148	3.30	3.71	
L2	0.012	—	0.310	_	
K	0.010	0.014	0.250	0.360	

Outline Drawing for TO252

3-Lead TO-252 Package

Customer Support

Seaward Electronics Incorporated - China

Section B, 2nd Floor, ShangDi Scientific Office Complex, #22 XinXi Road

Haidian District, Beijing 100085, China

Tel: 86-10-8289-5700/01/05

Fax: 86-10-8289-5706

Seaward Electronics Corporation - Taiwan

2F, #181, Sec. 3, Minquan East Rd,

Taipei, Taiwan R.O.C

Tel: 886-2-2712-0307

Fax: 886-2-2712-0191

Seaward Electronics Incorporated – North America

1512 Centre Pointe Dr.

Milpitas, CA95035, USA

Tel: 1-408-821-6600

Last Updated - 10/16/2017

Revision 10/16/2017