

### X-CON BRAND

### CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS

# PRODUCT SPECIFICATION 規格書

**CUSTOMER:** DATE:

(客戶): 志盛翔 (日期):2017-03-09

CATEGORY (品名) : CONDUCTIVE POLYMER ALUMINUM

**SOLID CAPACITORS** 

DESCRIPTION (型号) : ULR 10V470 μ F (φ6.3x11)

VERSION (版本) : 01

Customer P/N : /

SUPPLIER : /

| SUPPLIER         |                 |  |  |
|------------------|-----------------|--|--|
| PREPARED<br>(拟定) | CHECKED<br>(审核) |  |  |
| 李婷               | 王国华             |  |  |

| CUSTOMER         |                   |  |
|------------------|-------------------|--|
| APPROVAL<br>(批准) | SIGNATURE<br>(签名) |  |
|                  |                   |  |
|                  |                   |  |
|                  |                   |  |



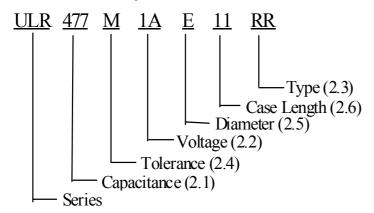
|      | SPECIFICATION |      |      |          |         | ATION HIS | ΓORY     |
|------|---------------|------|------|----------|---------|-----------|----------|
|      | ULR SERIES    |      |      |          |         | ECORDS    | . 0111   |
| Rev. | Date          | Mark | Page | Contents | Purpose | Drafter   | Approver |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |
|      |               |      |      |          |         |           |          |

| Issue Date : 2017-03-09 | Name | Specification Sheet – ULR |      |   |
|-------------------------|------|---------------------------|------|---|
| Version                 | 01   |                           | Page | 1 |
| STANDARD MANUAL         |      |                           |      |   |



### CONTENTS

| CONTENTS                                                                              |       |
|---------------------------------------------------------------------------------------|-------|
|                                                                                       | Sheet |
| 1. Application                                                                        | 3     |
| 2. Part Number System                                                                 | 3     |
| 3. Construction                                                                       | 4     |
| 4. Characteristics                                                                    | 5~11  |
| 4.1 Rated voltage & Surge voltage                                                     |       |
| 4.2 Capacitance (Tolerance)                                                           |       |
| 4.3 Leakage current                                                                   |       |
| 4.4 Tangent of loss angle                                                             |       |
| 4.5 ESR                                                                               |       |
| 4.6 Temperature characteristic                                                        |       |
| 4.7 Load life test                                                                    |       |
| 4.8 Surge test                                                                        |       |
| 4.9 Damp heat test                                                                    |       |
| 4.10 Maximum permissible ripple current                                               |       |
| 4.11 Rapid change of temperature 4.12 Lead strength                                   |       |
| 4.13 Resistance to vibration                                                          |       |
| 4.14 Solderability                                                                    |       |
| 4.15 Resistance to soldering heat                                                     |       |
| 5. Product Marking                                                                    | 12    |
| 6. Product Dimensions, Impedance & Maximum Permissible Ripple Curre                   |       |
| 7. Taping Specification                                                               | 14~15 |
| 8 Application Guideline                                                               | 16~17 |
| 8-1 Circuit design                                                                    | 10~17 |
| 8-2 Voltage                                                                           |       |
| 8-3 Sudden charge and discharge restricted                                            |       |
| 8-4 Ripple current                                                                    |       |
| 8-5 Leakage current                                                                   |       |
| 8-6 Failure rate                                                                      |       |
| 8-7 Capacitor insulation                                                              |       |
| 8-8 Precautions for using capacitors                                                  |       |
| 9. Mounting Precautions                                                               | 18    |
| 10. List of "Environment-related Substances to be Controlled ('Controlled Substances' | )" 19 |
|                                                                                       | ,     |


| Issue Date : 2017-03-09 | Name | Specification Sheet – ULR |      |   |
|-------------------------|------|---------------------------|------|---|
| Version                 | 01   |                           | Page | 2 |
| STANDARD MANUAL         |      |                           |      |   |



### 1. Application

This specification applies to conductive polymer aluminum solid capacitors used in electronic equipment.

### 2. Part Number System



2.1 <u>Capacitance code</u>

| Code               | 477 |
|--------------------|-----|
| Capacitance ( µ F) | 470 |

2.2 Rated voltage code

| Code           | 1A |
|----------------|----|
| Voltage (W.V.) | 10 |

2.3 <u>Type</u>

| Code | RR   |
|------|------|
| Type | Bulk |

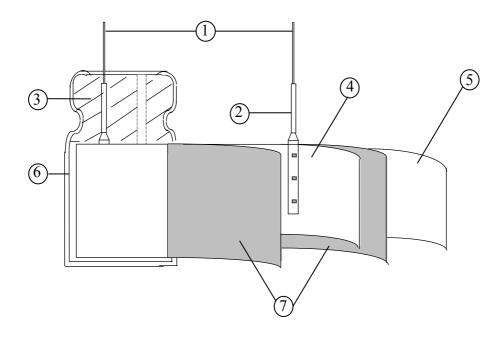
### 2.4 Capacitance tolerance

"M" stands for  $-20\% \sim +20\%$ 

2.5 Diameter

| Code     | E   |
|----------|-----|
| Diameter | 6.3 |

### 2.6 <u>Case length</u>


11=11mm

| Issue Date : 2017-03-09 | Name | Specification Sheet – ULR |      |   |
|-------------------------|------|---------------------------|------|---|
| Version                 | 01   |                           | Page | 3 |
| STANDARD MANUAL         |      |                           |      |   |



### 3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be formed and carbonized, impregnated with polymer and polymerized, then will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber.



| No | Component         | Material                               |
|----|-------------------|----------------------------------------|
| 1  | Lead Line         | Tinned Copper Line or CP Line(Pb Free) |
| 2  | Terminal          | Aluminum                               |
| 3  | Sealing Material  | Rubber                                 |
| 4  | Al-Foil (+)       | Aluminum                               |
| 5  | Al-Foil (-)       | Aluminum                               |
| 6  | Case              | Aluminum                               |
| 7  | Electrolyte paper | Manila Hemp                            |

| Issue Date : 2017-03-09 | Name | Specification Sheet – ULR |      |   |
|-------------------------|------|---------------------------|------|---|
| Version                 | 01   |                           | Page | 4 |
|                         | STA  | ANDARD MANUAL             |      |   |



### 4. Characteristics

### Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature: 15°C to 35°C Relative humidity : 45% to 75% Air Pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature:  $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

### Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -55°C to 105°C.

| Issue Date : 2017-03-09 | Name | Specification Sheet – ULR |      |   |
|-------------------------|------|---------------------------|------|---|
| Version                 | 01   |                           | Page | 5 |
|                         | STA  | ANDARD MANUAL             |      |   |



|     | ITEM                                           | PERFORMANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.1 | Rated voltage<br>(WV)<br>Surge voltage<br>(SV) | WV (V.DC) 10<br>SV (V.DC) 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.2 | Nominal capacitance (Tolerance)                | <b>Condition&gt;</b> Measuring Frequency : 120Hz±12Hz Measuring Voltage : Not more than 0.5Vrms Measuring Temperature : 20±2°C <b>Criteria&gt;</b> Shall be within the specified capacitance tolerance.                                                                                                                                                                                                                                                                                                  |
| 4.3 | Leakage<br>current                             | <b>Condition&gt;</b> After DC Voltage is applied to capacitors through the series protective resistor (1k $\Omega \pm 10\Omega$ ) so that terminal voltage may reach the rated voltage .The leakage current when measured after 2 minutes shall not exceed the values of the following equation. In case leakage current value exceed the value shown in Table 3, remeasure after voltage treatment that applies the rated voltage shown in 4.1 for 120minutes at 105 °C <b>Criteria&gt;</b> See Table 3 |
| 4.4 | tan δ                                          | <pre><condition> See 4.2, for measuring frequency, voltage and temperature. </condition></pre> <pre><criteria></criteria></pre> <pre>Working voltage (v)</pre>                                                                                                                                                                                                                                                                                                                                           |
| 4.5 | ESR                                            | <b>Condition&gt;</b> Measuring frequency : 100kHz to 300kHz; Measuring temperature:20±2℃ Measuring point : 1mm max from the surface of a sealing resin on the lead wire. <b>Criteria&gt;</b> (20°ℂ)Less than the initial limit(See Table 3).                                                                                                                                                                                                                                                             |

| Issue Date : 2017-03-09 | Name | Specification Sheet – ULR |      |   |
|-------------------------|------|---------------------------|------|---|
| Version                 | 01   |                           | Page | 6 |
|                         | STA  | ANDARD MANUAL             |      |   |



|     |                |                                                              | Temperature( $^{\circ}$ C)                |                                                           | Characteristics                             |  |  |
|-----|----------------|--------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|---------------------------------------------|--|--|
|     |                | 1                                                            | $20 \pm 2$                                | Measure: Capacitance, tanδ, Impedance                     |                                             |  |  |
|     |                | 2                                                            | -55+3                                     | Z-55°C / 20°C                                             | ≤1.25                                       |  |  |
|     | Temperature    | 3                                                            | Keep at 15 to 35°C for 15 minutes or more | or                                                        |                                             |  |  |
| 4.6 | characteristic | 4                                                            | $105 \pm 2$                               | Z105℃ / 20℃                                               | ≤1.25                                       |  |  |
|     |                |                                                              |                                           | ∆ C/C 20°C                                                | Within $\pm 5\%$ of step1                   |  |  |
|     |                | 5                                                            | $20 \pm 2$                                | tanδ                                                      | Less than or equal to the value of item 4.4 |  |  |
|     |                | The Ca                                                       | e for 2000 +48/0 hours                    | emperature of 105 $\pm 2^{\circ}$ . The result should mee |                                             |  |  |
|     |                | Item                                                         |                                           | erformance                                                |                                             |  |  |
|     |                |                                                              |                                           | Tithin $\pm 20\%$ of initial c                            | anacitance                                  |  |  |
|     |                | tan $\delta$ Less than or equal to 1.5 times of the item 4.4 | _                                         |                                                           |                                             |  |  |
|     | Load           | ESR                                                          | L                                         | Less than or equal to 1.5 times of the value of tem 4.5   |                                             |  |  |
| 4.7 | life           | Leak                                                         | age current Lo                            | Less than or equal to the value of item 4.3               |                                             |  |  |
|     | test           | Appe                                                         | earance N                                 | otable changes shall not                                  | be found.                                   |  |  |

| Issue Date : 2017-03-09 | Name | Specification Sheet – ULR |      |   |
|-------------------------|------|---------------------------|------|---|
| Version                 | 01   |                           | Page | 7 |
|                         | STA  | ANDARD MANUAL             |      |   |



|     |                      | seconds in every 5 minutes                                                                                           | d the surge voltage through $1k\Omega$ resistor in series for $30\pm 30$ at $15\sim 35^{\circ}C$ . Procedure shall be repeated 1000 times. Ther under normal humidity for 1-2hours before measurement. |
|-----|----------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                      | <criteria></criteria>                                                                                                |                                                                                                                                                                                                        |
|     |                      | Item                                                                                                                 | Performance                                                                                                                                                                                            |
| 4.8 | Surge                | Capacitance Change                                                                                                   | Within $\pm 20\%$ of initial capacitance                                                                                                                                                               |
|     | test                 | tan δ                                                                                                                | Less than or equal to 1.5 times of the value of item 4.4                                                                                                                                               |
|     |                      | ESR                                                                                                                  | Less than or equal to 1.5 times of the value of item 4.5                                                                                                                                               |
|     |                      | Leakage current                                                                                                      | Less than or equal to the value of item 4.3                                                                                                                                                            |
| 1   |                      |                                                                                                                      |                                                                                                                                                                                                        |
|     |                      | -                                                                                                                    | xposed for $1000 \pm 48$ hours in an atmosphere of $90 \sim 95\%$ RH a                                                                                                                                 |
|     |                      | Humidity Test: The capacitor shall be e 60 ± 2 °C, the character  < Criteria>                                        | istic change shall meet the following requirement.                                                                                                                                                     |
|     |                      | Humidity Test: The capacitor shall be e 60±2°C, the character <criteria> Item</criteria>                             | Performance                                                                                                                                                                                            |
|     |                      | Humidity Test: The capacitor shall be e 60±2°C, the character <criteria> Item Capacitance Change</criteria>          | istic change shall meet the following requirement.  Performance  Within $\pm 20\%$ of initial capacitance  Less than or equal to 1.5 times of the value of item                                        |
|     |                      | Humidity Test: The capacitor shall be e 60±2°C, the character <criteria> Item</criteria>                             | Performance Within ±20% of initial capacitance Less than or equal to 1.5 times of the value of item 4.4                                                                                                |
|     | Damp                 | Humidity Test: The capacitor shall be e 60±2°C, the character <criteria> Item Capacitance Change</criteria>          | istic change shall meet the following requirement.  Performance  Within $\pm 20\%$ of initial capacitance  Less than or equal to 1.5 times of the value of item                                        |
| 4.9 | Damp<br>heat<br>test | Humidity Test: The capacitor shall be e 60±2°C, the character <criteria>  Item  Capacitance Change  tan δ</criteria> | Performance  Within ±20% of initial capacitance  Less than or equal to 1.5 times of the value of item  4.4  Less than or equal to 1.5 times of the value of item                                       |

| Issue Date : 2017-03-09 | Name | Specification Sheet – ULR |      |   |
|-------------------------|------|---------------------------|------|---|
| Version                 | 01   |                           | Page | 8 |
|                         | STA  | ANDARD MANUAL             |      |   |



| 4.10 | Maximum permissible (ripple current) | Condition> The maximum per At 100kHz and ca Table 3 The combined valurated voltage and services frequency Multiple Frequency Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n be applied at<br>ue of D.C volta<br>shall not revers | maximum oper ge and the peak                                     | rating temperatur                    | re see                                                                                  |
|------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------|
|      |                                      | Applied voltage: wi<br>Cycle number: 5 cy<br>Test diagram: Fig.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | 30±3 min 3 min 1 cyc                                             | Root<br>-55<br>30±3 min<br>n or less | $5\pm2^{\circ}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
| 4.11 | Rapid change of temperature          | Performance: The content of the second seco | Performange Within ± Less than                         | nce<br>10% of initial or<br>or equal to value<br>or equal to the | capacitance                          |                                                                                         |

| Issue Date : 2017-03-09 | Name | Specification Sheet – ULR |      |   |
|-------------------------|------|---------------------------|------|---|
| Version                 | 01   |                           | Page | 9 |
|                         | STA  | ANDARD MANUAL             |      |   |



|      |                         | a) Lead pull strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                         | A static load force shall be applied to the terminal in the axial direction and acting                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                         | in a direction away from the body for $10\pm1$ s.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      |                         | Lead wire diameter (mm)  Load force (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                         | $0.5 < d \le 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                         | b) Lead bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                         | When the capacitor is placed in a vertical position and the weight specified in the                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                         | table above is applied to one lead and then the capacitor is slowly rotated 90° to a                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.12 | Lead strength           | horizontal position and then returned to a vertical position thus completing bends                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                         | for 2~3 seconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                         | The additional bends are made in the opposite direction                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                         | Lead wire diameter (mm)  Load force (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                         | $0.5 < d \le 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      |                         | Performance: The characteristic shall meet the following value after a) or b) test.                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                         | Item   Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                         | Leakage current Less than or equal to the value of item4.3                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |                         | Outward Appearance No cutting and slack of lead terminals                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.13 | Resistance to vibration | Frequency: 10 to 55 Hz (1minute interval / 10 → 55 → 10Hz Amplitude: 0.75mm(Total excursion 1.5mm) Direction: X, Y, Z (3 axes) Duration: 2hours/ axial (Total 6 hours) The capacitors are supported as the following Fig2  Fig2  Performance: Capacitance value shall not show drastic change compared to the initial capacitance when the value is measured within 30 minutes. Prior to the completion of exam, Capacitance difference shall be within ±5% compared to the initial value the exam. |

| Issue Date : 2017-03-09 | Name | Specification Sheet – ULR |      |    |
|-------------------------|------|---------------------------|------|----|
| Version                 | 01   |                           | Page | 10 |
|                         | STA  | ANDARD MANUAL             |      |    |



| 4.14 | Solderability                | The capacitor shall be tested under the following conditions:  Solder : Sn-3Ag-0.5Cu  Soldering temperature: 245±3°C  Immersing time : 3±0.5s  Immersing depth : 1.5~ 2.0mm from the root.  Flux : Approx .25% rosin  Performance: At least 95% of the dipped portion of the terminal shall be covered with new solder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.15 | Resistance to soldering heat | A) Solder bath method Lead terminals of a capacitor are placed on the heat isolation board with thickness of 1.6±0.5mm. It will dip into the flux of isopropylaehol solution of colophony.  Then it will be immersed at the surface of the solder with the following condition:  Solder : Sn-3Ag-0.5Cu  Soldering temperature : 260 ±5°C  Immersing time : 10±1s  Heat protector: t=1.6mm glass -epoxy board  B) Soldering iron method  Bit temperature : 400±10°C  Application time : 3+1/-0 s  Heat protector: t=1.6mm glass -epoxy board  For both methods, after the capacitor at thermal stability, the following items shall be measured:  Item Performance  Capacitance Change Within ±5% of initial capacitance  tan δ Less than or equal to the value of item 4.4  ESR Less than or equal to the value of item 4.5  Leakage current Less than or equal to the value of item 4.3 (after voltage treatment)  Appearance Notable changes shall not be found. |

| Issue Date : 2017-03-09 | Name            | Specification Sheet – ULR |      |    |  |  |
|-------------------------|-----------------|---------------------------|------|----|--|--|
| Version                 | 01              |                           | Page | 11 |  |  |
|                         | STANDARD MANUAL |                           |      |    |  |  |



### 5. Product Marking

Marking Sample:

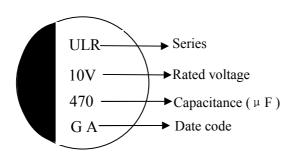



 Table 1

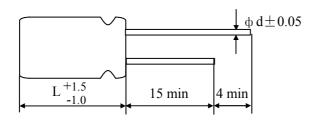
 Code
 C
 D
 E
 G

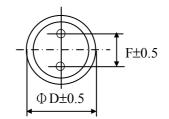
 Year
 2013
 2014
 2015
 2017

— Manufactured week: see Table 2

– Manufactured year: see Table 1

| lal | ole | 2 |
|-----|-----|---|
|-----|-----|---|


| 1        | 2                          | 3                                                                                                               | 4                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|----------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A        | В                          | C                                                                                                               | D                                                                                                                                                                                                                                                  | Е                                                                                                                                                                                                                                                                                                                                                     | F                                                                                                                                                                                                                                                                                                                                                                                                                                         | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12       | 13                         | 14                                                                                                              | 15                                                                                                                                                                                                                                                 | 16                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L        | M                          | N                                                                                                               | О                                                                                                                                                                                                                                                  | P                                                                                                                                                                                                                                                                                                                                                     | Q                                                                                                                                                                                                                                                                                                                                                                                                                                         | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                            |                                                                                                                 |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 23       | 24                         | 25                                                                                                              | 26                                                                                                                                                                                                                                                 | 27                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| W        | X                          | Y                                                                                                               | Z                                                                                                                                                                                                                                                  | <u>A</u>                                                                                                                                                                                                                                                                                                                                              | <u>B</u>                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>C</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>D</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>E</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>F</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>G</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                            |                                                                                                                 |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 34       | 35                         | 36                                                                                                              | 37                                                                                                                                                                                                                                                 | 38                                                                                                                                                                                                                                                                                                                                                    | 39                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>H</u> | Ī                          | <u>J</u>                                                                                                        | <u>K</u>                                                                                                                                                                                                                                           | L                                                                                                                                                                                                                                                                                                                                                     | <u>M</u>                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>N</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>O</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>P</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>R</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | 1                          | 1                                                                                                               |                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 45       | 46                         | 47                                                                                                              | 48                                                                                                                                                                                                                                                 | 49                                                                                                                                                                                                                                                                                                                                                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u>S</u> | <u>T</u>                   | <u>U</u>                                                                                                        | <u>V</u>                                                                                                                                                                                                                                           | W                                                                                                                                                                                                                                                                                                                                                     | <u>X</u>                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>Y</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>Z</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | A 12 L 23 W 34 <u>H</u> 45 | A     B       12     13       L     M       23     24       W     X       34     35 <u>H</u> <u>I</u> 45     46 | A         B         C           12         13         14           L         M         N           23         24         25           W         X         Y           34         35         36 <u>H</u> <u>I</u> <u>J</u> 45         46         47 | A         B         C         D           12         13         14         15           L         M         N         O           23         24         25         26           W         X         Y         Z           34         35         36         37           H         I         J         K           45         46         47         48 | A         B         C         D         E           12         13         14         15         16           L         M         N         O         P           23         24         25         26         27           W         X         Y         Z         A           34         35         36         37         38           H         I         J         K         L           45         46         47         48         49 | A         B         C         D         E         F           12         13         14         15         16         17           L         M         N         O         P         Q           23         24         25         26         27         28           W         X         Y         Z         A         B           34         35         36         37         38         39           H         I         I         I         K         L         M           45         46         47         48         49         50 | A         B         C         D         E         F         G           12         13         14         15         16         17         18           L         M         N         O         P         Q         R           23         24         25         26         27         28         29           W         X         Y         Z         A         B         C           34         35         36         37         38         39         40           H         I         I         I         K         L         M         N           45         46         47         48         49         50         51 | A         B         C         D         E         F         G         H           12         13         14         15         16         17         18         19           L         M         N         O         P         Q         R         S           23         24         25         26         27         28         29         30           W         X         Y         Z         A         B         C         D           34         35         36         37         38         39         40         41           H         I         I         I         K         L         M         N         O           45         46         47         48         49         50         51         52 | A         B         C         D         E         F         G         H         I           12         13         14         15         16         17         18         19         20           L         M         N         O         P         Q         R         S         T           23         24         25         26         27         28         29         30         31           W         X         Y         Z         A         B         C         D         E           34         35         36         37         38         39         40         41         42           H         I         I         I         K         L         M         N         O         P           45         46         47         48         49         50         51         52 | A         B         C         D         E         F         G         H         I         J           12         13         14         15         16         17         18         19         20         21           L         M         N         O         P         Q         R         S         T         U           23         24         25         26         27         28         29         30         31         32           W         X         Y         Z         A         B         C         D         E         F           34         35         36         37         38         39         40         41         42         43           H         I         I         I         K         L         M         N         O         P         Q           45         46         47         48         49         50         51         52 |


G A

| Issue Date : 2017-03-09 | Name | Specification Sheet – ULR |      |    |
|-------------------------|------|---------------------------|------|----|
| Version                 | 01   |                           | Page | 12 |
| STANDARD MANUAL         |      |                           |      |    |



### 6. Product Dimensions, Impedance & Maximum Permissible Ripple Current Unit: mm





| фD | 6.3 |
|----|-----|
| L  | 11  |
| F  | 2.5 |
| Фd | 0.6 |

Table 3

| Working<br>Voltage<br>(V) | Capacitance<br>(µF) | Dimension<br>(D×L,<br>mm) | Maximum permissible ripple current at 105 °C 100kHz (mA rms) | ESR<br>at≥ 20°C<br>100kHz<br>(mΩ) | Leakage<br>current<br>( µ A)<br>2min |
|---------------------------|---------------------|---------------------------|--------------------------------------------------------------|-----------------------------------|--------------------------------------|
| 10                        | 470                 | 6.3x11                    | 5100                                                         | 11                                | 940                                  |

| Issue Date : 2017-03-09 | Name | Specification Sheet – ULR |      |    |
|-------------------------|------|---------------------------|------|----|
| Version                 | 01   |                           | Page | 13 |
| STANDARD MANUAL         |      |                           |      |    |



#### 7. Application Guideline:

X-CON Solid Aluminum Electrolytic Capacitor should be used compliance with the following guidelines

#### 7-1Circuit design

Prohibited Circuits for use

Do not use the capacitors with the following circuits.

- 1) Time constant circuits
- 2) Coupling circuits
- 3) Circuits which are greatly affected by leakage current
- 4) High impedance voltage retention circuits.

#### 7-2. Voltage

#### 1) Over voltage

The application of over-voltage and reverse voltage below can cause increases in leakage current and short circuits. Applied voltage, refers to the voltage value including the peak value of the transitional instantaneous voltage and the peak Value of ripple voltage, not just steady line voltage. Design your circuit so that the peak voltage does not exceed the stipulated voltage.

Over voltage exceeding the rated voltage may not be applied even for an instant as it may cause a short circuit.

- 2) Applied voltage
- ① Sum of the DC voltage value and the ripple voltage peak values must not exceed the rated voltage.
- ② When DC voltage is low, negative ripple voltage peak value must not become a reverse voltage that exceeds 10% of The rated voltage.
- ③ Use the X-CON within 20% of the rated voltage for applications which may cause the reverse voltage during the Transient phenomena when the power is tumid off or the source is switched.

#### 7-3 Sudden charge and discharge restricted

Sudden charge and discharge may result in short circuit's large leakage current. Therefore, a protection circuits are recommended to design in when on of the following condition is expected.

- 1) The rush current exceeds 10A
- 2) The rush current exceeds 10 times of allowable ripple current of X-CON.

A protection resistor (1K  $\Omega$ ) must be inserted to the circuit during the charge and discharge when measuring the leakage Current.

### 7-4 Ripple current

Use the capacitors within the stipulated permitted ripple current. When excessive ripple current is applied to the capacitor, It causes increases in leakage current and short circuits due to self- heating. Even when using the capacitor under the Permissible ripple current, reverse voltage may occur if the DC bias voltage is low.

#### 7-5 Leakage current

There is a risk of leakage current characteristics increasing even if the following use environments are within the stipulated range However, even if leakage current increases once, it has the characteristic that leakage current becomes small in most cases after voltage is applied due to its self-correction mechanism.

#### 7-6 Failure rate

The main failure mode of X-CON is open mode primarily caused by electrostatic capacity drop at high temperature (i.e.wear out failure), besides random short circuit mode failures primarily caused by over voltage occurs as minor one. The time it takes to reach the failures mode can be extended by using the X-CON with reduced ambient temperature, ripple current and applied voltage.

#### 7-7 Capacitor insulation

- 1) Insulation in the marking sleeve is not guaranteed. Be aware that the space between the case and the negative electrode Terminal is not insulated and has some resistance.
- 2) Be sure to completely separate the case, negative lead terminal, and positive lead terminal and PCB patterns with each other.

| Issue Date : 2017-03-09 | Name            | Specification Sheet – ULR |      |    |  |  |
|-------------------------|-----------------|---------------------------|------|----|--|--|
| Version                 | 01              |                           | Page | 14 |  |  |
|                         | STANDARD MANUAL |                           |      |    |  |  |



#### 7-8 Precautions for using capacitors

- X-CON capacitors should not be used in the following environments.
- 1) Environments where the capacitor is subject to direct contact with salt water or oil can directly fall on it.
- 2) Environments where capacitors are exposed to direct sunlight.
- 3) High temperature (Avoid locating heat generating components around the X-CON and on the underside of the PCB), or humid environments where condensation can form on the surface of the capacitor.
  - 4) Environments where the capacitor is in contact with chemically active gases.
  - 5) Acid or alkaline environments.
  - 6) Environment subject to high-frequency induction.
  - 7) Environment subject to excessive vibration and shock.

### **8.Long Term Storage**

Store the X-CONs in sealed package bags after delivery per the table below;

| 1 & &                                    | J 1                                                              |
|------------------------------------------|------------------------------------------------------------------|
| X-CON Type                               | Before unsealing                                                 |
| Radial lead type packed in bags          | Must be used within 24~36 months after delivery(unsealed status) |
| Radial lead type packed in taping method | Must be used within 24~36 months after delivery(unsealed status) |

9. Mounting Precautions

| Mounting phase  | Things to note before mounting         | Disposal                                                                                                       |  |  |
|-----------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
|                 | 1) Used X-CON capacitors               | Not reused                                                                                                     |  |  |
|                 | 2) LC-increased X-CON capacitors       | Apply them with rated voltage in series with 1K $\Omega$                                                       |  |  |
|                 | after long storage                     | resistance for 1 hour at the range between 60 and 70°C                                                         |  |  |
|                 | 3) X-CON capacitors dropped to the     | Not reused                                                                                                     |  |  |
|                 | floor                                  |                                                                                                                |  |  |
| Before mounting | 4) Precautions on polar, capacitance   | Products without remarkable polar, capacitance and rated                                                       |  |  |
| Defore mounting | and rated voltage                      | voltage shouldn't be available                                                                                 |  |  |
|                 | 5) Precautions on the pitch between    | The products can be used only when said pitch is matched                                                       |  |  |
|                 | lead terminal and PCB                  |                                                                                                                |  |  |
|                 | 6) Precautions on the stress that lead | The products can be used for production only when lead                                                         |  |  |
|                 | terminal and body of X-CON             | terminal and body are not subject stress.                                                                      |  |  |
|                 | capacitors enduring in mounting        |                                                                                                                |  |  |
|                 | 1) Soldering with a soldering iron     | Both temperature and duration in mounting should meet                                                          |  |  |
|                 |                                        | the requirements of out-going SPEC; no stress should be allowed to occur in mounting; Don't let the tip of the |  |  |
|                 |                                        | soldering iron touch the X-CON itself.                                                                         |  |  |
| Mounting        | 2) Flow soldering                      | X-CON capacitor body should be prohibited to submerge                                                          |  |  |
| - Triounting    | 27 How soldering                       | in melted solder; both temperature and duration in                                                             |  |  |
|                 |                                        | mounting should meet the requirements of out-going                                                             |  |  |
|                 |                                        | SPEC; The rosin is not allowed to adhere to any where                                                          |  |  |
|                 |                                        | other than lead terminal.                                                                                      |  |  |
|                 | 1) Precautions on mounting status      | Do not tilt, bend twists X-CON; Do not allow other matter                                                      |  |  |
|                 |                                        | touch X-CON.                                                                                                   |  |  |
|                 | 2) Washing the PCB (available          | Used immersion or ultrasonic waves to clean for a total of                                                     |  |  |
|                 | cleaning agent 1)high quality          | less than 5 minutes and the temperature be less than 60°C;                                                     |  |  |
| After mounting  | alcohol-based cleaning fluid such as   | The conductivity, PH, specific gravity and water cleaning,                                                     |  |  |
|                 | st-100s  750L,750M;2) Detergents       | X-CON products should be dried with hot air (less than                                                         |  |  |
|                 | including substitute freon such as     | the maximum operating temperature).                                                                            |  |  |
|                 | AK-225AES and IPA)                     |                                                                                                                |  |  |

| Issue Date : 2017-03-09 | Name | Specification Sheet – ULR |      |    |  |
|-------------------------|------|---------------------------|------|----|--|
| Version                 | 01   |                           | Page | 15 |  |
| STANDARD MANUAL         |      |                           |      |    |  |



10. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

|                              | Substances                                     |  |  |
|------------------------------|------------------------------------------------|--|--|
|                              | Cadmium and cadmium compounds                  |  |  |
| Heavy metals                 | Lead and lead compounds                        |  |  |
|                              | Mercury and mercury compounds                  |  |  |
|                              | Hexavalent chromium compounds                  |  |  |
|                              | Polychlorinated biphenyls (PCB)                |  |  |
| Chloinated                   | Polychlorinated naphthalenes (PCN)             |  |  |
| organic                      | Polychlorinated terphenyls (PCT)               |  |  |
| compounds                    | Short-chain chlorinated paraffins(SCCP)        |  |  |
|                              | Other chlorinated organic compounds            |  |  |
| Brominated organic compounds | Polybrominated biphenyls (PBB)                 |  |  |
|                              | Polybrominated diphenylethers(PBDE) (including |  |  |
|                              | decabromodiphenyl ether[DecaBDE])              |  |  |
|                              | Other brominated organic compounds             |  |  |
| Tributyltin compo            | ounds(TBT)                                     |  |  |
| Triphenyltin com             | pounds(TPT)                                    |  |  |
| Asbestos                     |                                                |  |  |
| Specific azo comp            | pounds                                         |  |  |
| Formaldehyde                 |                                                |  |  |
| Polyvinyl chlorid            | e (PVC) and PVC blevds                         |  |  |
| Beryllium oxide              |                                                |  |  |
| Beryllium coppe              | er                                             |  |  |
| Specific phthalate           | es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)          |  |  |
| Hydrofluorocarbo             | on (HFC), Perfluorocarbon (PFC)                |  |  |
| Perfluorooctane s            | ulfonates (PFOS)                               |  |  |
| Specific Benzotri            | azole                                          |  |  |

| Issue Date : 2017-03-09 | Name | Specification Sheet – ULR |      |    |  |  |
|-------------------------|------|---------------------------|------|----|--|--|
| Version                 | 01   |                           | Page | 16 |  |  |
| STANDARD MANUAL         |      |                           |      |    |  |  |