

X-CON BRAND

CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS

PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶):

DATE: (日期): 2015-10-22

CATEGORY (品名)	:	CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS
DESCRIPTION (型号)	:	ULR 16V100 μ F (φ6.3x7)
VERSION (版本)	:	01
Customer P/N	:	/
SUPPLIER	:	/

SUPPL	IER	CUST	OMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
郭梦玉	王国华		

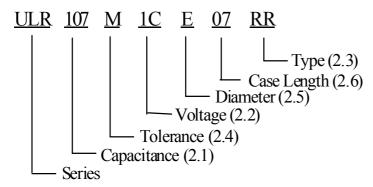
SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

	SPECIFICATION ULR SERIES					ALTERNATION HISTORY RECORDS		
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approve	
	2		1 480	Contents	1 01 000		1 ippi 0 + 0	

Issued-date: 2015-10-22	Name	Specification Sheet – ULR		
Version	01		Page	1
STANDARD MANUAL				

 Application Part Number System Construction Characteristics Rated voltage & Surge voltage Capacitance (Tolerance) Leakage current 	Sheet 3 3 4
 Construction Characteristics Rated voltage & Surge voltage Capacitance (Tolerance) 	
 Characteristics .1 Rated voltage & Surge voltage .2 Capacitance (Tolerance) 	4
 Rated voltage & Surge voltage Capacitance (Tolerance) 	
2 Capacitance (Tolerance)	5~11
• • •	
6	
4 Tangent of loss angle5 ESR	
6 Temperature characteristic	
7 Load life test	
8 Surge test	
.9 Damp heat test	
.10 Maximum permissible ripple current	
11 Rapid change of temperature	
12 Lead strength 13 Resistance to vibration	
14 Solderability	
15 Resistance to soldering heat	
Product Marking	12
Product Dimensions, Impedance & Maximum Permissible Ripple	Current 13
Application Guideline	14~15
1 Circuit design	
2 Voltage	
3 Sudden charge and discharge restricted	
4 Ripple current	
5 Leakage current	
6 Failure rate 7 Capacitor insulation	
8 Precautions for using capacitors	
Mounting Precautions	15
Long Term Storage	15
). List of "Environment-related Substances to be Controlled ('Controlled Subst	
	,

Issued-date: 2015-10-22	Name	Specification Sheet – ULR			
Version	01		Page	2	
STANDARD MANUAL					


SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

X-CON

1. Application

This specification applies to conductive polymer aluminum solid capacitors used in electronic equipment.

2. Part Number System

2.1 Capacitance code

Code	107
Capacitance (µF)	100

2.2 <u>Rated voltage code</u>

Code	1C
Voltage (W.V.)	16

2.3 <u>Type</u>

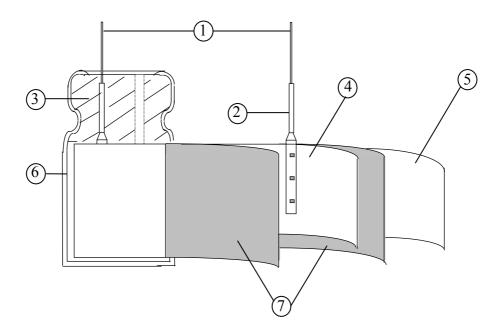
Code	RR	
Туре	Bulk	

2.4 <u>Capacitance tolerance</u> "M" stands for $-20\% \sim +20\%$

2.5 <u>Diameter</u>

Code	Е
Diameter	6.3

2.6 <u>Case leng</u> 07=7mm


ſ	Issued-date: 2015-10-22	Name	Specification Sheet – ULR			
	Version	01		Page	3	
	STANDARD MANUAL					

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

X-CON

3.Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be formed and carbonized, impregnated with polymer and polymerized, then will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber.

No	Component	Material
1	Lead Line	Tinned Copper Line or CP Line(Pb Free)
2	Terminal	Aluminum
3	Sealing Material	Rubber
4	Al-Foil (+)	Aluminum
5	Al-Foil (-)	Aluminum
6	Case	Aluminum
7	Electrolyte paper	Manila Hemp

Issued-date: 2015-10-22	Name	Specification Sheet – ULR		
Version	01		Page	4
	ST	ANDARD MANUAL		

X-CON

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature:15°C to 35°CRelative humidity:45% to75%Air Pressure:86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions: Ambient temperature: $20^{\circ}C \pm 2^{\circ}C$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -55°C to 105°C.

Issued-date: 2015-10-22	Name	Specification Sheet – ULR		
Version	01		Page	5
	ST	ANDARD MANUAL		

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

	ITEM				PERFO	RMANCE		
4.1	Rated voltage (WV) Surge voltage (SV)		WV (V.DC) SV (V.DC)	16 18.4				
4.2	Nominal capacitance (Tolerance)	Measu Measu <crite< b=""></crite<>	ring Freque tring Voltage tring Tempe teria>	e : erature : 2	120 Hz ± 12 F Not more th $20\pm2^{\circ}$ C d capacitance	an 0.5Vrms		
4.3	Leakage current	$\Omega \pm 10$ when r In case	DC Voltage 0Ω) so that measured affi e leakage cu e treatment t eria>	terminal ter 2 minu urrent val	voltage may utes shall not ue exceed th	ors through the se reach the rated vo exceed the values e value shown in oltage shown in 4	oltage . The leak s of the followir Table 3, rem	tage current ng equation. easure after
4.4	tan δ	<crite Wor</crite 	2, for measu		uency, voltag 16 0.10	ge and temperature	e.	
4.5	ESR	Measu Measu <crite< b=""></crite<>	ring frequen ring tempera ring point e ria >	ature:20±2 : 1m		the surface of a sea	aling resin on th	e lead wire.
Issue	ed-date: 2015-1	0-22	Name	Specifi	cation Shee	et – ULR		
	Version		01	1			Page	6
			STA	ANDAR	D MANUA	L	i	

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

		STEP	Temperature(°C)	Item	Characteristics				
		1	20±2	Measure: Capacitance, tanδ, Impedance					
		2	-55+3	Z-55°C / 20°C	≤1.25				
	Temperature	3	Keep at 15 to 35°C for 15 minutes or more	r					
1.6	characteristic	4	105 ± 2	Z105°C / 20°C	≤1.25				
				Δ C/C 20°C	Within \pm 5% of step1				
		5	20 ± 2	tanδ	Less than or equal to the value of item 4.4				
		The C	e for 2000 +48/0 hours	mperature of 105 \pm 2 °C. The result should meet.					
		Item	Pe	Performance					
		Capa	citance Change W	Within $\pm 20\%$ of initial capacitance					
		tan δ	ite	Less than or equal to 1.5 times of the value of item 4.4					
Load	Load	ESR	ite	Less than or equal to 1.5 times of the value of item 4.5					
		Leak	-	ss than or equal to the v					
.7		A	earance No	table changes shall not	be found.				
ŀ.7	test		earance No	table changes shall not	be found.				

Issued-date: 2015-10-22	Name	Specification Sheet – ULR		
Version	01		Page	7
	ST	ANDARD MANUAL		

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

4.8	Surge test	seconds in every5 minutes Then the capacitors shall be <criteria></criteria> Item Capacitance Change tan δ ESR Leakage current	d the surge voltage through $1k\Omega$ resistor in series for 30 ± 5 s 30 S at $15\sim 35^{\circ}$ C. Procedure shall be repeated 1000 times. e left under normal humidity for 1-2hours before measurement. Performance Within $\pm 20\%$ of initial capacitance Less than or equal to 1.5 times of the value of item 4.4 Less than or equal to 1.5 times of the value of item 4.5 Less than or equal to the value of item 4.3 mulates over voltage at abnormal situation, and not be oltage is always applied.
4.9	Damp heat test	60 ± 2 °C, the character Criteria> Item Capacitance Change tan δ ESR Leakage current	exposed for 1000 ± 48 hours in an atmosphere of $90 \sim 95\%$ RH at istic change shall meet the following requirement. Performance Within $\pm 20\%$ of initial capacitance Less than or equal to 1.5 times of the value of item 4.4 Less than or equal to 1.5 times of the value of item 4.5 Less than or equal to the value of item 4.3 Notable changes shall not be found
		Appearance	Notable changes shall not be found.

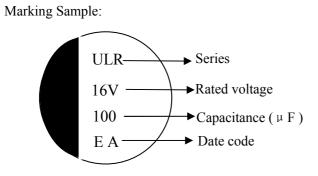
Issued-date: 2015-10-22	Name	Specification Sheet – ULR		
Version	01		Page	8
	STA	ANDARD MANUAL		

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

4.10	Maximum permissible (ripple current)	The n At 10 Table The c rated Frequ	0kHz and o 3 combined v	can b alue c d sha	e applied at 1 of D.C voltag ll not reverse	current is the n naximum oper e and the peak voltage. 1kHz f<10kHz 0.30	ating temperat	ture see shall not	exceed the 0kHz≤ 500kHz 1.00
4.11	11 Rapid change	Cycle Test di	d voltage: v number: 5 d agram: Fig mance: The Item	cycles 5.1	s icitors shall i Performan	neet the follow	R	105±2℃ oom temp 55±3℃ ion after	erature
4.11	of temperature	Capa	citance cha	ange		0% of initial	-		
		Lea	tan δ akage curre	ent	Less than c	or equal to value or equal to the		4.3 (after	-
					voltage tre	atment)			
Issu	ed-date: 2015-10	0-22	Name	Spe	cification S	Sheet – ULR			
	Version		01					Page	9
			STA	AND	ARD MAN	IUAL			

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

		· ·	ull strength						
				-	-	terminal in the axial	direction a	and acting	
		in a	direction av	way from the	body for 10	± 1 s.			
			Lead w	vire diameter	. (mm)	Load force	e (N)		
			0.5 <	< d ≤0.8		10			
		b) Lead b	ending						
		When the capacitor is placed in a vertical position and the weight specified in the table above is applied to one lead and then the capacitor is slowly rotated 90^0 to a							
4.12	Lead strength		~3seconds.	on and then r	eturned to a	vertical position the	is completi	ng bends	
				ends are mad	le in the onn	osite direction			
				re diameter (1		Load force (N)		
			$\frac{1}{0.5 < d \le 0.8}$				(1)		
		Dorfo			tio shall maa	5 t the following valu	a offer a) a	r b) tost	
		Item		e characteris	Performan		le allel a) o	n b) test.	
			kage curren	t		or equal to the value	e of item4 3	3	
			Desire and go current Desire and of equal to and value of the value o					<u>, </u>	
					0				
		Direction	:X, Y, Z						
4.13	Resistance to vibration	Direction Duration:	:X Y Z 2hours/ axi		ours)	Fig2 ↓ ≤0.3mm			
4.13		Direction Duration:	:X Y Z 2hours/ axi	Z (3 axes) al (Total 6 he pported as th	ours)				
4.13		Direction Duration: The capacity Performancapacitan	:X, Y, Z 2hours/ axi citors are su	Z (3 axes) al (Total 6 he pported as th	ours) he following I Fig2 hall not show		to the comp	oletion of	
4.13		Direction Duration: The capacitan Performaticapacitan exam, Caj	:X, Y, Z 2hours/ axi citors are su	Z (3 axes) al (Total 6 he pported as th	ours) he following I Fig2 hall not show	v drastic change co 30 minutes. Prior	to the comp	oletion of	
		Direction Duration: The capacitant Performan capacitant exam, Caj exam.	:X, Y, Z 2hours/ axi citors are su	Z (3 axes) al (Total 6 he pported as th	ours) he following I Fig2 hall not show	\downarrow $\leq 0.3 \text{mm}$ \downarrow \downarrow $\leq 0.3 \text{mm}$ \downarrow \downarrow 100m $100 \text$	to the comp	oletion of	
	vibration	Direction Duration: The capacitant Performan capacitant exam, Caj exam.	:X, Y, Z 2hours/ axi citors are su	Z (3 axes) al (Total 6 he pported as th	ours) le following I Fig2 hall not show asured within Il be within	\downarrow $\leq 0.3 \text{mm}$ \downarrow \downarrow $\leq 0.3 \text{mm}$ \downarrow \downarrow 100m $100 \text$	to the comp	oletion of	


SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

4.14	Solderability	Solder: Sn-Soldering temperature:245Immersing time: 3±0Immersing depth: 1.5Flux: Age).5s
	Resistance	 1.6±0.5mm. It will dip into th Then it will be immersed at the s Solder : Sn Soldering temperature : 26 Immersing time : 10 Heat protector: t=1.6mm glass B) Soldering iron method Bit temperature : 400 Application time : 3+ Heat protector: t=1.6mm For both methods, after the capa measured: 	0 ±10°C 1/-0 s a glass –epoxy board actor at thermal stability, the following items shall be
4.15	to soldering heat	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	PerformanceWithin $\pm 5\%$ of initial capacitanceLess than or equal to the value of item 4.4Less than or equal to the value of item 4.5Less than or equal to the value of item 4.3 (after voltage treatment)Notable changes shall not be found.

Issued-date: 2015-10-22	Name	Specification Sheet – ULR		
Version	01		Page	11
	ST	ANDARD MANUAL		

X-CON

5. Product Marking

Code Year	B 2012	C 2013	D 2014	E 2015	-	I M	onufaat	urad w	ak: saa	Table	า
	2012	2015	2014	2013				d year:			2
Table 2			1	1				-			
Week	1	2	3	4	5	6	7	8	9	10	11
Code	A	В	С	D	Е	F	G	Н	Ι	J	K
Week	12	13	14	15	16	17	18	19	20	21	22
Code	L	М	N	0	Р	Q	R	S	Т	U	V
Week	23	24	25	26	27	28	29	30	31	32	33
Code	W	Х	Y	Ζ	A	B	<u>C</u>	D	E	F	G
Week	34	35	36	37	38	39	40	41	42	43	44
Code	H	I	J	K	L	M	N	<u>0</u>	<u>P</u>	Q	R
Week	45	46	47	48	49	50	51	52			
Code	<u>S</u>	<u>T</u>	<u>U</u>	V	W	<u>X</u>	<u>Y</u>	<u>Z</u>			

Issued-date: 2015-10-22	Name	Specification Sheet – ULR			
Version	01		Page	12	
STANDARD MANUAL					

Table 3

Working Voltage (V)	Capacitance (µF)	Dimension (D×L, mm)	Maximum permissible ripple current at 105°C 100kHz (mA rms)	ESR at 20°C100kHz to300kHz (mΩ)	Leakage current (µA) 2min
16	100	6.3X7	2820	24	320

0.6

φd

Issued-date: 2015-10-22	Name	Specification Sheet – ULR			
Version	01		Page	13	
STANDARD MANUAL					

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

X-CON

7. Application Guideline:

X-CON Solid Aluminum Electrolytic Capacitor should be used compliance with the following guidelines

- 7-1Circuit design
 - Prohibited Circuits for use

Do not use the capacitors with the following circuits.

- 1) Time constant circuits
- 2) Coupling circuits
- 3) Circuits which are greatly affected by leakage current
- 4) High impedance voltage retention circuits.
- 7-2. Voltage
 - 1) Over voltage

The application of over-voltage and reverse voltage below can cause increases in leakage current and short circuits. Applied voltage, refers to the voltage value including the peak value of the transitional instantaneous voltage and the peak Value of ripple voltage, not just steady line voltage. Design your circuit so that the peak voltage does not exceed the stipulated voltage.

Over voltage exceeding the rated voltage may not be applied even for an instant as it may cause a short circuit.

2) Applied voltage

① Sum of the DC voltage value and the ripple voltage peak values must not exceed the rated voltage.

(2) When DC voltage is low, negative ripple voltage peak value must not become a reverse voltage that exceeds 10% of The rated voltage.

③ Use the X-CON within 20% of the rated voltage for applications which may cause the reverse voltage during the Transient phenomena when the power is tumid off or the source is switched.

7-3 Sudden charge and discharge restricted

Sudden charge and discharge may result in short circuit's large leakage current. Therefore, a protection circuits are recommended to design in when on of the following condition is expected.

1) The rush current exceeds 10A

2) The rush current exceeds 10 times of allowable ripple current of X-CON.

A protection resistor (1K Ω) must be inserted to the circuit during the charge and discharge when measuring the leakage Current.

7-4 Ripple current

Use the capacitors within the stipulated permitted ripple current. When excessive ripple current is applied to the capacitor, It causes increases in leakage current and short circuits due to self- heating. Even when using the capacitor under the Permissible ripple current, reverse voltage may occur if the DC bias voltage is low.

7-5 Leakage current

There is a risk of leakage current characteristics increasing even if the following use environments are within the stipulated range However, even if leakage current increases once, it has the characteristic that leakage current becomes small in most cases after voltage is applied due to its self-correction mechanism.

7-6 Failure rate

The main failure mode of X-CON is open mode primarily caused by electrostatic capacity drop at high temperature (i.e.wear out failure), besides random short circuit mode failures primarily caused by over voltage occurs as minor one. The time it takes to reach the failures mode can be extended by using the X-CON with reduced ambient temperature, ripple current and applied voltage.

7-7 Capacitor insulation

1) Insulation in the marking sleeve is not guaranteed. Be aware that the space between the case and the negative electrode Terminal is not insulated and has some resistance.

2) Be sure to completely separate the case, negative lead terminal, and positive lead terminal and PCB patterns with each other.

Issued-date: 2015-10-22	Name	Specification Sheet – ULR			
Version	01		Page	14	
STANDARD MANUAL					

7-8 Precautions for using capacitors

X-CON capacitors should not be used in the following environments.

1) Environments where the capacitor is subject to direct contact with salt water or oil can directly fall on it.

2) Environments where capacitors are exposed to direct sunlight.

3) High temperature (Avoid locating heat generating components around the X-CON and on the underside of the

PCB), or humid environments where condensation can form on the surface of the capacitor.

4) Environments where the capacitor is in contact with chemically active gases.

5) Acid or alkaline environments.

6) Environment subject to high-frequency induction.

7) Environment subject to excessive vibration and shock.

8.Long Term Storage

Store the X-CONs in sealed package bags after delivery per the table below;

X-CON Type	Before unsealing		
Radial lead type packed in bags	Must be used within 24~36 months after		
Radiai lead type packed in bags	delivery(unsealed status)		
Dediel lead trme neeled in tening method	Must be used within 24~36 months after		
Radial lead type packed in taping method	delivery(unsealed status)		

9. Mounting Precautions							
Mounting phase	Things to not	e before mo	unting	Disposal			
	1) Used X-C			Not reused			
		2) LC-increased X-CON capacitors		Apply them with rated voltage in series with 1K Ω			
	after long sto	storage		resistance for 1 hour at the range between 60 and 70° C			
	3) X-CON capacitors dropped to the floor			Not reused			
Before mounting	4) Precautions on polar, capacitance and rated voltage			Products without remarkable polar, capacitance and rated voltage shouldn't be available			
	5) Precaution lead terminal		tch between	The products can be used only when said pitch is matched			
	6) Precautions on the stress that lead terminal and body of X-CON capacitors enduring in mounting			The products can be used for production only when lead terminal and body are not subject stress.			
	1) Soldering with a soldering iron			Both temperature and duration in mounting should meet the requirements of out-going SPEC; no stress should be allowed to occur in mounting; Don't let the tip of the soldering iron touch the X-CON itself.			
Mounting	2) Flow soldering			X-CON capacitor body should be prohibited to submerge in melted solder; both temperature and duration in mounting should meet the requirements of out-going SPEC; The rosin is not allowed to adhere to any where other than lead terminal.			
1) Precautions on mounting status		ing status	Do not tilt, bend twists X-CON; Do not allow other matter touch X-CON.				
2) Washing the PCB (availab cleaning agent 1)high quality alcohol-based cleaning fluid su st-100s、750L,750M;2) Deter including substitute freon such AK-225AES and IPA)		ality luid such as Detergents	Used immersion or ultrasonic waves to clean for a total of less than 5 minutes and the temperature be less than 60 °C; The conductivity, PH, specific gravity and water cleaning, X-CON products should be dried with hot air (less than the maximum operating temperature).				
Issued-date: 2015	5-10-22	Name	ation Sheet – ULR				
Version		01		Page	15		
STANDARD MANUAL							

10. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances				
	Cadmium and cadmium compounds				
Heavy metals	Lead and lead compounds				
Ticavy metals	Mercury and mercury compounds				
	Hexavalent chromium compounds				
	Polychlorinated biphenyls (PCB)				
Chloinated	Polychlorinated naphthalenes (PCN)				
organic	Polychlorinated terphenyls (PCT)				
compounds	Short-chain chlorinated paraffins(SCCP)				
	Other chlorinated organic compounds				
Brominated	Polybrominated biphenyls (PBB)				
	Polybrominated diphenylethers(PBDE) (including				
organic	decabromodiphenyl ether[DecaBDE])				
compounds	Other brominated organic compounds				
Tributyltin comp	ounds(TBT)				
Triphenyltin con	pounds(TPT)				
Asbestos					
Specific azo con	ipounds				
Formaldehyde					
Polyvinyl chlorid	de (PVC) and PVC blevds				
Beryllium oxide					
Beryllium copp	er				
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)				
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)				
Perfluorooctane	sulfonates (PFOS)				
Specific Benzotr	iazole				

Issued-date: 2015-10-22	Name	Specification Sheet – ULR			
Version	01		Page	16	
STANDARD MANUAL					