2ch DC/DC for CCD \& OLED

NO.EA-157-160224

OUTLINE

The R1283x 2ch DC/DC converter is designed for CCD \& OLED Display power source. It contains a step up DC/DC converter and an inverting DC/DC converter to generate two required voltages by CCD \& OLED Display. Step up DC/DC converter generates boosted output voltage up to 20V. Inverting DC/DC converter generates negative voltage up to Vin voltage minus 20 V independently. Start up sequence is internally made. Each of the R1283x series consists of an oscillator, a PWM control circuit, a voltage reference, error amplifiers, over current protection circuits, short protection circuits, an under voltage lockout circuit (UVLO), an Nch driver for boost operation, a Pch driver for inverting. A high efficiency boost and inverting DC/DC converter can be composed with external inductors, diodes, capacitors, and resistors.

FEATURES

- Operating Voltage
2.5 V to 5.5 V
- Step Up DC/DC (CH1)

Internal Nch MOSFET Driver (Ron=400m Ω Typ.)
Adjustable Vout Up to 20 V with external resistor
Internal Soft start function (Typ. 4.5ms)
Over Current Protection
Maximum Duty Cycle: 91\%(Typ.)

- Inverting DC/DC (CH2)

Internal Pch MOSFET Driver (Ron=400m Ω Typ.)
Adjustable Vout Up to Vdd-20V with external resistor
Auto Discharge function for negative output
Internal Soft start function (Typ. 4.5ms)
Over Current Protection
Maximum Duty Cycle: 91\%(Typ.)

- Short Protection with timer latch function (Typ. 50ms); Short condition for either or both two outputs makes all output drivers off and latches./ If the maximum duty cycle continues for a certain time, these output drivers will be turned off.

CE with start up sequence function
$\mathrm{CH} 1 \rightarrow \mathrm{CH} 2$ (R1283K001x) / CH2 $\rightarrow \mathrm{CH} 1(\mathrm{R} 1283 \mathrm{~K} 002 \mathrm{x}$) Selectable
UVLO function
Operating Frequency Selection \qquad

- Packages \qquad DFN(PLP)2730-12, WLCSP-11-P2

APPLICATION

- Fixed voltage power supply for portable equipment
- Fixed voltage power supply for CCD, OLED, LCD

BLOCK DIAGRAM

SELECTION GUIDE

The start-up sequence, oscillator frequency, and the package for the ICs can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1283Z00x*-E2-F	WLCSP-11-P2	4,000 pcs	Yes	Yes
R1283K00x*-TR	DFN(PLP)2730-12	$5,000 \mathrm{pcs}$	Yes	Yes

x : The start-up sequence can be designated.
(1) Step-up \rightarrow Inverting
(2) Inverting \rightarrow Step-up

* : The oscillator frequency is the option as follows.
(A) 300 kHz (A Version for $1283 Z$ packaged in WLCSP-11-P2 is not available)
(B) 700 kHz
(C) 1400 kHz

PIN CONFIGURATIONS

- WLCSP-11-P2

Top View

Bottom View

- DFN(PLP)2730-12

Top View

12	11	10	9	8	7
1	2	3	4	5	6

Bottom View

PIN DESCRIPTIONS

- WLCSP-11-P2

Pin No	Symbol	Pin Description
A1	PGND	Power GND pin
A2	V $_{\text {FB1 }}$	Feedback pin for Step up DC/DC
A3	Lx1	Switching pin for Step up DC/DC
B1	PVcc	Power Input pin
B2	CE	Chip Enable pin for the R1283
B3	L×2	Switching pin for Inverting DC/DC
C1	GND	Analog GND pin
C3	VoutN	Discharge pin for Negative output
D1	Vcc	Analog power source Input pin
D2	V REF	Reference Voltage Output pin
D3	VFB2	Feedback pin for Inverting DC/DC

- DFN(PLP)2730-12

Pin No	Symbol	Pin Description
1	NC	No Connect
2	$L_{x 1}$	Switching pin for Step up DC/DC
3	$L_{x 2}$	Switching pin for Inverting DC/DC
4	Voutn	Discharge pin for Negative Output
5	VF $_{\text {FB2 }}$	Chip Enable pin for the R1283
6	V REF	Feedback pin for Inverting DC/DC
7	V $_{\text {cc }}$	Reference Voltage Output pin
8	VFB1	Analog power source Input pin
9	GND	Feedback pin for Step up DC/DC
10	PVcc	Analog GND pin
11	PGND	Power Input pin
12		

*) Tab is GND level. (They are connected to the reverse side of this IC.)
The tab is better to be connected to the GND, but leaving it open is also acceptable.

ABSOLUTE MAXIMUM RATINGS

(GND/PGND=0V)

Symbol	Item	Rating	Unit
Vcc	Vcc / PVcc pin Voltage	6.5	V
Vdtc	$V_{\text {FB1 }}$ pin Voltage	-0.3 to Vcc+0.3	V
$\mathrm{V}_{\text {fb }}$	$V_{\text {FB2 }}$ pin Voltage	-0.7(*1) to Vcc+0.3	V
Vce	CE pin Voltage	-0.3 to Vcc+0.3	V
Vref	Vref pin Voltage	-0.7(*1) to Vcc+0.3	V
VLx ${ }_{1}$	Lxı pin Voltage	-0.3 to 24	V
ILx1	Lx1 pin Current	Internally Limited	A
VLX2	Lx2 pin Voltage	Vcc-24 to Vcc+0.3	V
ILx2	Lx2 pin Current	Internally Limited	A
$V_{\text {NFB }}$	Voutn pin Voltage	Vcc-24 to Vcc+0.3	V
PD	Power Dissipation (WLCSP-11-P2) (*2)	1000	mW
	Power Dissipation (DFN(PLP)2730-12) (*2)	1000	
Topt	Operating Temperature Range	-40 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage Temperature Range	-55 to 125	${ }^{\circ} \mathrm{C}$

*1) In case the voltage range is from -0.7 V to -0.3 V , permissible current is 10 mA or less.
*2) For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.
The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

- R1283x		Topt= $25^{\circ} \mathrm{C}$				
Symbol	Item	Conditions	Min.	Typ.	Max.	Unit.
Vcc	Operating Input Voltage		2.5		5.5	V
Iccı	Vcc Consumption Current (Switching)	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~F}_{\text {REQ }}=300 \mathrm{kHz}$		2.0		mA
		$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~F}_{\text {REQ }}=700 \mathrm{kHz}$		4.0		mA
		$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~F}_{\text {REQ }}=1400 \mathrm{kHz}$		8.0		mA
Icc2	Vcc Consumption Current (At no switching)	Vcc $=5.5 \mathrm{~V}$, F $\mathrm{F}_{\text {REQ }}=300 \mathrm{kHz}$		250		$\mu \mathrm{A}$
		Vcc $=5.5 \mathrm{~V}, \mathrm{~F}_{\text {REQ }}=700 \mathrm{kHz}$		300		$\mu \mathrm{A}$
		Vcc=5.5V, Freq $=1400 \mathrm{kHz}$		350		$\mu \mathrm{A}$
Istandby	Standby Current	$\mathrm{Vcc}=5.5 \mathrm{~V}$		0.1	3	$\mu \mathrm{A}$
Vuvloi	UVLO Detect Voltage	Falling	2.05	2.15	2.25	V
Vuvloz	UVLO Released Voltage	Rising		$\begin{aligned} & \hline \text { VUVLO1 } \\ & +0.16 \end{aligned}$	2.48	V
Vref	Vref Voltage Tolerance	$\mathrm{Vcc}=3.3 \mathrm{~V}$	$\begin{aligned} & 1.172 \\ & +V_{\text {FB2 }} \end{aligned}$	$\begin{gathered} 1.2 \\ +V_{\text {FB2 }} \end{gathered}$	$\begin{aligned} & 1.228 \\ & +V_{\text {FB2 }} \end{aligned}$	V
$\Delta \mathrm{V}_{\text {ref }} / \Delta$ Topt	V ref Voltage Temperature Coefficient	$\mathrm{Vcc}=3.3 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{Topts} 585^{\circ} \mathrm{C}$		± 150		ppm $/{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {Ref }} / \Delta \mathrm{V}_{\text {cc }}$	Vref Line Regulation	$2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$		5		mV
$\Delta \mathrm{V}_{\text {ReF }} / \Delta \mathrm{lout}$	$V_{\text {Ref }}$ Load Regulation	$\mathrm{Vcc}=3.3 \mathrm{~V}, 0.1 \mathrm{~mA} \leq$ lout $\leq 2 \mathrm{~mA}$		5		mV
Ilimref	V ${ }_{\text {Ref }}$ Short Current Limit	$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {Ref }}=0 \mathrm{~V}$		15		mA
$\mathrm{V}_{\text {FB1 }}$	$\mathrm{V}_{\text {FB1 }}$ Voltage Tolerance	$\mathrm{Vcc}=3.3 \mathrm{~V}$	0.985	1.0	1.015	V
$\Delta \mathrm{V}_{\text {FBi }} / \Delta$ Topt	$V_{\text {FB1 }}$ Voltage Temperature Coefficient	$\mathrm{Vcc}=3.3 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{Topts}^{5} 85^{\circ} \mathrm{C}$		± 150		ppm $/{ }^{\circ} \mathrm{C}$
IfB1	$V_{\text {FB1 }}$ Input Current	$\mathrm{V}_{\text {cc }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {fB } 1}=0 \mathrm{~V}$ or 5.5 V	-0.1		0.1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {fb2 }}$	$\mathrm{V}_{\text {Fb2 } 2}$ Voltage Tolerance	$\mathrm{Vcc}=3.3 \mathrm{~V}$	-25	0	25	mV
IfB2	$\mathrm{V}_{\text {FB2 } 2}$ Input Current	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {fB } 2}=0 \mathrm{~V}$ or 5.5 V	-0.1		0.1	$\mu \mathrm{A}$
fosc	Oscillator Frequency	$\mathrm{Vcc}=3.3 \mathrm{~V}$	240	300	360	kHz
		$\mathrm{Vcc}=3.3 \mathrm{~V}$	600	700	800	kHz
		$\mathrm{Vcc}=3.3 \mathrm{~V}$	1200	1400	1600	kHz
Maxduty1	CH1 Max. Duty Cycle	$\mathrm{Vcc}=3.3 \mathrm{~V}$	86	91		\%
Maxduty2	CH2 Max. Duty Cycle	$\mathrm{Vcc}=3.3 \mathrm{~V}$	86	91		\%
tss1	CH1 Soft-start Time	$\mathrm{V}_{\text {cc }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {Fb1 }}=0.9 \mathrm{~V}$		4.5		ms
tss2	CH2 Soft-start Time	$\mathrm{V}_{\text {cc }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {FB2 }}=0.12 \mathrm{~V}$		4.5		ms
toly	Delay Time for Protection	$\mathrm{Vcc}=3.3 \mathrm{~V}$	20	50		ms
Rıx1	Lx1 ON Resistance	$\mathrm{Vcc}=3.3 \mathrm{~V}$		400		$\mathrm{m} \Omega$
lofflx1	Lx1 Leakage Current	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Lx} \chi_{1}=20 \mathrm{~V}}$			5	$\mu \mathrm{A}$
lıimLx1	Lx1 Current limit	$\mathrm{Vcc}=3.3 \mathrm{~V}$	1.0	1.5		A
RLX2	Lx2 ON Resistance	$\mathrm{Vcc}=3.3 \mathrm{~V}$		400		$\mathrm{m} \Omega$
lofflx2	Lx2 Leakage Current	$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~V}\llcorner\mathrm{x}=-14.5 \mathrm{~V}$			5	$\mu \mathrm{A}$
lıimlx2	Lx2 Current limit	$\mathrm{Vcc}=3.3 \mathrm{~V}$	1.0	1.5		A
Rvoutn	Voutn Discharge Resistance	$\mathrm{Vcc}=3.3 \mathrm{~V}$, Voutn $=-0.3 \mathrm{~V}$		10	25	Ω
Vcel	CE "L" Input Voltage	$\mathrm{Vcc}=2.5 \mathrm{~V}$			0.3	V
Vсен	CE "H" Input Voltage	$\mathrm{Vcc}=5.5 \mathrm{~V}$	1.5			V
Icel	CE "L" Input Current	$\mathrm{Vcc}=5.5 \mathrm{~V}$	-1.0		1.0	$\mu \mathrm{A}$
Icen	CE "H" Input Current	$\mathrm{Vcc}=5.5 \mathrm{~V}$	-1.0		1.0	$\mu \mathrm{A}$

TYPICAL APPLICATION

- Pin Connection

Externally short V_{cc} pin to PV cc pin. Externally short GND pin to PGND pin.

- Step-up DCIDC converter output voltage setting

The output voltage Vout1 of the step-up DC/DC converter is controlled with maintaining the $\mathrm{V}_{\text {FB1 }}$ as 1.0 V .
Vout1 can be set with adjusting the values of R1 and R2 as in the next formula. Vout1 can be set equal or less than 20V.
$\mathrm{V}_{\text {out } 1}=\mathrm{V}_{\mathrm{FB} 1} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 1$

- Inverting DC/DC converter output voltage setting

The output voltage Vout2 of the inverting DC/DC converter is controlled with maintaining the $\mathrm{V}_{\text {FB2 }}$ as 0 V .
Vout2 can be set with adjusting the values of R4 and R5 as in the next formula.
$V_{\text {out2 }}=V_{\text {FB2 }}-\left(V_{\text {REF }}-V_{\text {FB2 }}\right) \times R 5 / R 4$

- Auto Discharge Function

When CE level turns from "H" to "L" level, the R1283x goes into standby mode and switching of the outputs of $L_{x 1}$ and $L_{x 2}$ will stop. Then dischage Tr. between Vout2 and $V_{c c}$ turns on and discharges the negative output voltage. When the negative output voltage is discharged to 0 V , the Tr. turns off and the negative output will be Hi-Z.

When the Auto discharge function is unnecessary, Vouts connect to Vcc or make be Hi-Z.

R1283x

- Start up Sequence (R1283x001x)

When CE level turns from "L" to "H" level, the softstart of CH1 starts the operation. After detecting output voltage of CH 1 (Vout1) as the nominal level, the soft start of CH 2 starts the operation.

CE

- Start up Sequence (R1283x002x)

When CE level turns from "L" to "H" level, the softstart of CH 2 starts the operation. After detecting output voltage of $\mathrm{CH} 2($ Vout2 $)$ as the nominal level, the soft start of CH 1 starts the operation.

- Short protection circuit timer

In case that the voltage of $\mathrm{V}_{\mathrm{FB} 1}$ drops, the error amplifier of CH 1 outputs " H ". In case that the voltage of $\mathrm{V}_{\text {FB2 }}$ rises, the error amplifier of CH 2 outputs " L ". The built-in short protection circuit makes the ineternal timer operate with detecting the output of the error amplifier of CH 1 as " H ", or the output of the error amplifier of CH 2 as "L". After the setting time will pass, the switching of LX1 and LX2 will stop.

To release the latch operatoion, make the Vcc set equal or less than UVLO level and restart or set the CE pin as "L" and make it " H " again.

During the softstart operation of CH 1 and CH 2 , the timer operates independently from the outputs of the error amplifiers. Therefore, even if the softstart cannot finish correctly because of the short circuit, the protection timer function will be able to work correctly.

- Phase Compensation

DC/DC converter's phase may lose 180 degree by external components of L and C and load current. Because of this, the phase margin of the system will be less and the stability will be worse. Therefore, the phase must be gained.

A pole will be formed by external components, L and C.
Fpole $\sim 1 /\{2 \times \pi \times \sqrt{(\mathrm{L} 1 \times \mathrm{C} 2)}$) (CH1)
Fpole $\sim 1 /\{2 \times \pi \times \sqrt{ }(\mathrm{L} 2 \times \mathrm{C} 3)\} \quad(\mathrm{CH} 2)$

Zero will be formed with R2, C5, R5, and C6.

```
Fzero ~ 1/(2\times\pi\timesR2\timesC5) (CH1)
Fzero ~ 1/(2\times\pi\timesR5\timesC6) (CH2)
```

Set the cut-off frequency of the Zero close to the cut off frequency of the pole by L and C.

- To reduce the noise of Feedback voltage

If the noise of the system is large, the output noise affects the feedback and the operation may be unstable. In that case, resistor values, R1, R2, R4, and R5 should be set lower and make the noise into the feedback pin reduce. Another method is set $R 3$ and $R 6$. The appropriate value range is from $1 k \Omega$ to $5 k \Omega$.

- Set a ceramic $1 \mu \mathrm{~F}$ or more capacitor as C1B between Vcc pin and GND. Set another $4.7 \mu \mathrm{~F}$ or more capacitor between PVcc and GND as C1.
- Set a ceramic $1 \mu \mathrm{~F}$ or more capacitor between Vout1 and GND, and between Vout2 and GND for each as C2 and C 3 . Recommendation value range is from $4.7 \mu \mathrm{~F}$ to $22 \mu \mathrm{~F}$.
- Set a ceramic capacitor between VREF and GND as C4. Recommendation value range is from $0.1 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}$.

Operation of Step-up DCIDC Converter and Output Current

<Current through L>

Discontinuous Mode

IL

Continuous Mode

R1283x

There are two operation modes for the PWM control step-up switching regulator, that is the continuous mode and the discontinuous mode.

When the $L x$ Tr. is on, the voltage for the inductor L will be Vin. The inductor current (IL1) will be;

$$
\text { IL1 = VIN } \times \text { ton / L ...Formula1 }
$$

When the Lx transistor turns off, power will supply continuously. The inductor current at off (IL2) will be;
IL2 = (Vout - Vin) x tf / L ...Formula2

In terms of the PWM control, when the tf=toff, the inductor current will be continuous, the operation of the switching regulator will be continuous mode.

In the continuous mode, the current variation of IL1 and IL2 are same, therefore

$$
\text { VIN } \times \text { ton / L = (Vout }- \text { Vin }) \times \text { toff / L ..Formula3 }
$$

In the continuous mode, the duty cycle will be
DUTY = ton / (ton + toff) = (Vout - Vin) / Vout ...Formula4

If the input power equals to output power,

$$
\begin{aligned}
& \text { lout }=\mathrm{Vin}^{2} \times \text { ton } /(2 \times \mathrm{L} \times \text { Vout }) \\
& \text { Formula5 }
\end{aligned}
$$

When lout becomes more then Formula5, it will be continuous mode.

In this moment, the peak current, ILxmax flowing through the inductor is described as follows:

$$
\begin{aligned}
& \text { ILxmax }=\text { lout } \times \text { Vout } / \mathrm{V} \text { IN }+\mathrm{VIN} \times \text { ton } /(2 \times \mathrm{L}) \ldots . F o r m u l a 6 ~
\end{aligned}
$$

Therefore, peak current is more than lout. Considering the value of ILxmax, the condition of input and output, and external components should be selected.

The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external components is not included.

The actual maximum output current is between 50% and 80% of the calculation.
Especially, when the IL is large, or $\mathrm{V}_{\text {IN }}$ is low, the loss of $\mathrm{V}_{\text {IN }}$ is generated with on resistance of the switch. As for $\mathrm{V}_{\text {out, }} \mathrm{V}_{\mathrm{F}}$ (as much as 0.3 V) of the diode should be considered.

Operation of Inverting DC/DC Converter and Output Current

<Basic Circuit>

<Current through L>

There are also two operation modes for the PWM control inverting switching regulator, that is the continuous mode and the discontinuous mode.

When the $L \times T r$. is on, the voltage for the inductor L will be Vin. The inductor current (IL1) will be;

$$
\mathrm{IL} 1=\mathrm{V} \operatorname{IN} \times \text { ton } / \mathrm{L}
$$

Formula8

Inverting circuit saves energy during on time of Lx Tr, and supplies the energy to output during off time, output voltage opposed to input voltage is obtained. The inductor current at off (IL2) will be;

$$
\mathrm{IL2}=|\mathrm{Vout}| \times \mathrm{tf} / \mathrm{L} .
$$

Formula9

In terms of the PWM control, when the tf=toff, the inductor current will be continuous, the operation of the switching regulator will be continuous mode.

In the continuous mode, the current variation of IL1 and IL2 are same, therefore

R1283x

$$
\text { Vin } \times \text { ton / L = |Vout| } \times \text { toff / L ..Formula10 }
$$

In the continuous mode, the duty cycle will be:
DUTY = ton / (ton + toff) = |Vout| / (|Vout| + Vin) ... Formula11

If the input power equals to output power,

$$
\begin{aligned}
& \text { lout }=\mathrm{Vin}^{2} \times \text { ton } /(2 \times \mathrm{L} \times|\mathrm{Vout}|) \\
& \text { Formula12 }
\end{aligned}
$$

When lout becomes more then Formula12, it will be continuous mode.

In this moment, the peak current, ILxmax flowing through the inductor is described as follows:

```
ILxmax = lout }\times|\mathrm{ Vout | / Vin + Vin }\times\mathrm{ ton / ( }2\times\textrm{L}
```

\qquad

``` Formula13
```



``` Formula14
```

Therefore, peak current is more than lout. Considering the value of ILxmax, the condition of input and output, and external components should be selected.

The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external components is not included.

The actual maximum output current is between 50% and 80% of the calculation.
Especially, when the IL is large, or $\mathrm{V}_{\text {IN }}$ is low, the loss of $\mathrm{V}_{\text {IN }}$ is generated with on resistance of the switch. As for $V_{\text {out, }} \mathrm{V}_{\mathrm{F}}$ (as much as 0.3 V) of the diode should be considered.

TYPICAL CHARACTERISTICS

1) Output Voltage VS. Output Current

R1283x001A

R1283x001A

R1283x001B

R1283x001A

R1283x001A

R1283x001B

* $1283 Z$ (WLCSP-11-P2) is the discontinued product as of June, 2016.

R1283x

R1283x001B

R1283x001C

R1283x001C

R1283x001B

R1283x001C

R1283×001C

2) Efficiency vs. Output Current

R1283x001A

R1283x001A

R1283x001B

Topt $=25^{\circ} \mathrm{C}$, Vout $1=4.6 \mathrm{~V}$
V оut2=-5.4V , lout2=0mA

R1283×001A

R1283x001A

R1283x001B

R1283x

R1283x001C

R1283x001C

R1283x001B

R1283x001C

Topt $=25^{\circ} \mathrm{C}$, Vout2=-4.4V
Vout1 $=4.6 \mathrm{~V}$, lout $1=0 \mathrm{~mA}$

R1283×001C

3) CE "L" Input Voltage vs. Temperature R1283x00xx

5) VFB1 Voltage vs. Temperature

R1283x00xx

7) VREF Voltage vs. Temperature

R1283x00xx

4) CE "H" Input Voltage vs. Temperature

R1283x00xx

6) VFB2 Voltage vs. Temperature R1283x00xx

8) UVLO Voltage vs. Temperature R1283x00xx

R1283x

11) LX1 Limit Current vs. Temperature R1283x00xx

13) Osillator Frequency vs. Temperature R1283x00xA

10) LX2 ON Resistance vs. Temperature R1283x00xx

12) LX2 Limit Current vs. Temperature R1283x00xx

R1283x00xB

R1283x00xC

14) Maxduty1 vs. Temperature

R1283x00xA

R1283x00xC

R1283x00xB

15) Maxduty 2 vs. Temperature R1283x00xA

R1283x

R1283x00xB

16) CH1 Soft-start Time vs. Temperature R1283x00xx

18) Timer Latch Delay Time vs. Temperature R1283x00xx

R1283x00xC

17) CH2 Soft-start Time vs. Temperature R1283x00xx

19) VOUTN Discharge Current vs. Temperature R1283x00xx

20) Startup Response

R1283x001x

21)Shut down Response R1283x001x

R1283x002x
Topt $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$
$\mathrm{V}_{\text {out }} 1=12 \mathrm{~V}, \mathrm{~V}_{\text {out } 2} 2=-7.5 \mathrm{~V}$
lout $1=10 \mathrm{~mA}$

R1283x002x
Topt $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{in}}=3.6 \mathrm{~V}$
Vout1=12V , Vout2=-7.5V

R1283x001x (VOUTN=Open)
Topt $=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$
$\mathrm{V}_{\text {out }} 1=12 \mathrm{~V}, \mathrm{~V}_{\text {out }} 2=-7.5 \mathrm{~V}$
lout $1=10 \mathrm{~mA}$

R1283x002x (Voutn=Open)
Topt $=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$
$\mathrm{V}_{\text {OUT }} 1=12 \mathrm{~V}, \mathrm{~V}_{\text {out }} 2=-7.5 \mathrm{~V}$
lout $1=10 \mathrm{~mA}$

R1283x

22) Load Transient Response

R1283x00xA

R1283x00xB

R1283x00xC

R1283x00xA

R1283x00xB

R1283x00xC

APPLIED CIRCUIT

1) Application with outputting power supply (+12VI-7.5V) for CCD from Li battery

	L1	L2	C5	C6
R1283×00×A	$15 \mu \mathrm{H}$	$10 \mu \mathrm{H}$	220 pF	220 pF
R1283x00xB	$6.8 \mu \mathrm{H}$	$6.8 \mu \mathrm{H}$	150 pF	150 pF
R1283x00xC	$4.7 \mu \mathrm{H}$	$4.7 \mu \mathrm{H}$	120 pF	120 pF

Inductor	VLF3010 (TDK)
SBD	CRS10I30A (TOSHIBA)

2) Application with outputting power supply (+4.6VI-4.4V) for AMOLED from Li battery

3) Application with output disconnect and discharge.

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales \& Support Offices

Ricoh Electronic Devices Co., Ltd.
Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan Phone: +81-50-3814-7687 Fax: +81-45-474-0074
Ricoh Americas Holdings, Inc.
675 Campbell Technology Parkway, Suite 200 Campbell, CA 95008, U.S.A.
Phone: $+1-408-610-3105$
Ricoh Europe (Netherlands) B.V.
Semiconductor Support Centre
Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-5474-309
Ricoh International B.V. - German Branch
Semiconductor Sales and Support Centre
Oberrather Strasse 6, 40472 Düsseldorf, Germany
Phone: +49-211-6546-0
Ricoh Electronic Devices Korea Co., Ltd. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713
Ricoh Electronic Devices Shanghai Co., Ltd. Room 403, No. 2 Building, No. 690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299
Ricoh Electronic Devices Shanghai Co., Ltd.
Shenzhen Branch
1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District,
Shenzhen, China
Ricoh Electronic Devices Co., Ltd.
Taipei office
Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: $+886-2-2313-1623$

