RICOH ## R3118x Series ## Low Voltage Detector with Individual SENSE Pin and Delay Function No. EA-242-201202 ## **OUTLINE** The R3118x is a voltage detector IC with individual sense pin, high detector threshold accuracy and delay time, and ultra-low supply current, which can be operated at an extremely low voltage and is used for system reset as an example. Each of the IC consists of a voltage reference unit, a hysteresis comparator, resistors net for detector threshold setting, an output driver transistor, and a delay circuit. V_{DD} supply pin for the IC and voltage supervisory sense pin are individual, therefore the output pin can keep "L" level even if the sense pin voltage is going down to 0 V, or there is no indefinite range for the sense pin. Since a delay circuit is built-in, by connecting an external capacitor, any output delay time can be set. In the R3118x, detector released delay time can be set, and detector delay time is not influenced by the external capacitor for the delay time. The detector threshold is fixed with high accuracy internally and does not require any adjustment. The tolerance of the detector threshold is ± 22.5 mV ($-V_{DET_S} < 1.6$ V) or $\pm 1.5\%$ ($-V_{DET_S} \ge 1.6$ V). Minimum detector threshold voltage is 0.6 V, ultra-low voltage detector threshold can be set. Output delay time for the detector release can be set with high accuracy. The tolerance of the IC side is ±30%. Two output types, Nch. open drain type and CMOS type are available. If the sense pin voltage becomes to equal or lower than the detector threshold voltage, the output voltage becomes "L", and if the sense pin voltage becomes to released voltage, the output voltage becomes "H" after the set delay time. Three types of packages, SOT-23-5, SC-88A, and DFN(PLP)1212-6 are available. #### FEATURES (1) | Operating Voltage Range (Maximum Rating) | 1.0 V to 6.0 V (7.0 V) | |---|---| | Supply Current ⁽²⁾ | Typ. 0.4 μ A (V _{SENSE} ≥ +V _{DET} , V _{DD} = 6 V) | | Operating Temperature Range | −40°C to 85°C | | Detector Threshold Range | 0.6 V to 5.0 V (0.1 V step) | | Accuracy Detector Threshold | $ \pm 1.5\%$ (-V _{DET_S} ≥ 1.6 V), ± 22.5 mV (-V _{DET_S} < 1.6 V) | | Temperature-Drift Coefficient of Detector Threshold | ·· Typ. ±30 ppm/°C | | Accuracy Detector Released | ±30% | | Temperature-Drift Coefficient of Detector Released | ·· Typ. ±0.16 ppm/°C | | Output Types | Nch Open Drain and CMOS | | Packages | DFN(PLP)1212-6, SC-88A , SOT-23-5 | ### **APPLICATIONS** - · CPU and Logic Circuit Reset - · Battery Checker - Window Comparator/Level Discrimination - Battery Back-up Circuit - Power Failure Detector ⁽¹⁾ Ta = 25°C, unless otherwise specified. ⁽²⁾ Consumption current through SENSE pin is not included. ## R3118x No. EA-242-201202 ## **SELECTION GUIDE** The detector threshold, the output type and the package type for the IC can be selected at the users' request. #### **Selection Guide** | Product Name | Package | Quantity per Reel | Pb Free | Halogen Free | |---------------------|----------------|-------------------|---------|--------------| | R3118Kxx1*-TR | DFN(PLP)1212-6 | 5,000 pcs | Yes | Yes | | R3118Qxx2*-TR-FE | SC-88A | 3,000 pcs | Yes | Yes | | R3118Nxx1*-TR-FE | SOT-23-5 | 3,000 pcs | Yes | Yes | xx: The detector threshold can be designated in the range from 0.6 V (06) to 5.0 V (50) in 0.1 V step. - * : Designation of Output Type - (A) Nch Open Drain - (C) CMOS ## **BLOCK DIAGRAMS** R3118xxxxA (Nch. Open Drain Output) Block Diagram R3118xxxxC (CMOS Output) Block Diagram ## **PIN DESCRIPTIONS** DFN(PLP)1212-6 Pin Configuration SC-88A Pin Configuration SOT-23-5 Pin Configuration DFN(PLP)1212-6 Pin Description | Pin No. | Symbol | Description | | | | |---------|--------|---|--|--|--| | 1 | SENSE | Voltage Detector Voltage Sense Pin | | | | | 2 | GND | Ground Pin | | | | | 3 | CD | Pin for External Capacitor (for setting output delay) | | | | | 4 | VDD | Input Pin | | | | | 5 | NC | No Connection | | | | | 6 | DOUT | Output Pin ("L" at detection) | | | | **SC-88A Pin Description** | Pin No. | Symbol | Description | |---------|--------|---| | 1 | DOUT | Output Pin ("L" at detection) | | 2 | GND | Ground Pin | | 3 | VDD | Input Pin | | 4 | CD | Pin for External Capacitor (for setting output delay) | | 5 | SENSE | Voltage Detector Voltage Sense Pin | **SOT-23-5 Pin Description** | Pin No. | Symbol | Description | | | |---------|--------|---|--|--| | 1 | DOUT | Output Pin ("L" at detection) | | | | 2 | VDD | Input Pin | | | | 3 | GND | Ground Pin | | | | 4 | CD | Pin for External Capacitor (for setting output delay) | | | | 5 | SENSE | Voltage Detector Voltage Sense Pin | | | ## R3118x No. EA-242-201202 ## **ABSOLUTE MAXIMUM RATINGS** **Absolute Maximum Ratings** | Symbol | | Item | Rating | Unit | | |-----------------|----------------------------------|--|-------------------------------------|--------------------------|-----| | V _{DD} | Supply Voltage | | | -0.3 to 7.0 | V | | Vsense | SENSE Pin Vol | tage | | -0.3 to 7.0 | V | | | Output Voltage | (R3118xxxxA) | | -0.3 to 7.0 | .,, | | V_{DOUT} | Output Voltage | (R3118xxxxC) | | -0.3 to $V_{DD} + 0.3$ | V | | | Output Current | Nch Driver (Sink Cur | 20 | т Л | | | Іроит | Output Current | Pch Driver (Source C | -5 | mA | | | | _ | DFN(PLP)1212-6 | JEDEC STD.51-7
Test Land Pattern | 450 | | | P_D | Power Dissipation ⁽¹⁾ | SC-88A | Standard Test Land Pattern | 380 | mW | | | Biodipation | SOT-23-5 JEDEC STD.51-7
Test Land Pattern | | 660 | | | Tj | Junction Temperature Range | | | -40 to 125 | °C | | Tstg | Storage Tempe | rature Range | | −55 to 125 | °C | #### **ABSOLUTE MAXIMUM RATINGS** Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured. ## RECOMMENDED OPERATING CONDITIONS **Recommended Operating Conditions** | Symbol | Item | Rating | Unit | |----------|-----------------------------|------------|------| | V_{DD} | Supply Voltage | 1.0 to 6.0 | V | | Та | Operating Temperature Range | -40 to 85 | °C | #### RECOMMENDED OPERATING CONDITIONS All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions. ⁽¹⁾ Refer to POWER DISSIPATION for detailed information. ## **ELECTRICAL CHARACTERISTICS** V_{DD} = 1 V to 6 V, unless otherwise specified. The specifications surrounded by are guaranteed by design engineering at -40°C \leq Ta \leq 85°C. #### R3118xxxxA/C Electrical Characteristics $(Ta = 25^{\circ}C)$ Symbol Item **Conditions** Min. Max. Unit Тур. -V_{DET} s -V_{DET} s Ta = 25°C -V_{DET_S} -0.0225+0.0225 $-V_{DET_S}^{(1)} < 1.6 \text{ V}$ -VDET S -V_{DET} s -40°C ≤ Ta ≤ 85°C -VDET S -0.0375 +0.0375 Detector -V_{DET} Threshold $-V_{\mathsf{DET_S}}$ -V_{DET} s Ta = 25°C -V_{DET_S} $\times 0.985$ $\times 1.015$ -V_{DET} s ≥ 1.6 V -V_{DET_S} -V_{DET_S} -40°C ≤ Ta ≤ 85°C -V_{DET_S} $\times 0.975$ × 1.025 -V_{DET_}s -V_{DET_S} $-V_{\mathsf{DET_S}}$ Ta = 25°C Detector $\times 0.040$ $\times 0.070$ 0.055 threshold V_{HYS} ٧ -V_{DET_S} -V_{DET_S} Hysteresis -V_{DET} s -40°C ≤ Ta ≤ 85°C \times 0.035 \times 0.075 0.055 V_{SENSE} = 0 V, V_{DD} = 6 V 0.480 1.450 Supply μΑ I_{SS} Current(2) V_{SENSE} = 6 V, V_{DD} = 6 V 0.400 1.200 V_{SENSE} = 6 V, V_{DD} = 6 V RSENSE Sense Resistor 9 34 58 $M\Omega$ V_{DD} = 1 V, V_{DOUT} = 0.1 V 0.150 $V_{DD} = 3 \text{ V}, V_{DOUT} = 0.1 \text{ V}$ 0.550 $V_{DD} = 5 V$, $V_{DOUT} = 0.1 V$ Nch. 0.850 mA V_{SENSE} = 0 V $V_{DD} = 1 V$, $V_{DOUT} = 0.4 V$ 0.400 **Output Current** (Driver Output $V_{DD} = 3 V$, $V_{DOUT} = 0.4 V$ 2.100 **I**DOUT Pin) $V_{DD} = 5 \text{ V}, V_{DOUT} = 0.4 \text{ V}$ 3.300 $V_{DD} = 1 \text{ V}, V_{DOUT} = 0.9 \text{ V}$ 6 Pch V_{SENSE} = 6 V $V_{DD} = 3 \text{ V}, V_{DOUT} = 2.9 \text{ V}$ 30 μΑ (R3118xxxxC) $V_{DD} = 5 \text{ V}, V_{DOUT} = 4.9 \text{ V}$ 45 Nch Driver 80 **I**LEAK Leakage Current $V_{SENSE} = 6 \text{ V}, V_{DD} = 6 \text{ V}, V_{DOUT} = 6 \text{ V}$ nΑ (R3118xxxxA) $V_{SENSE} = 6 \text{ V}, V_{DD} = 1 \text{ V}, V_{CD} = 0.4 \text{ V}$ 2.200 6.200 CD pin $V_{SENSE} = 6 V$, $V_{DD} = 3 V$, $V_{CD} = 0.4 V$ 1.250 Discharge Tr. 0.400 $k\Omega$ **R**DIS On Resistance $V_{SENSE} = 6 \text{ V}, V_{DD} = 5 \text{ V}, V_{CD} = 0.4 \text{ V}$ 0.250 0.800 ^{(1) -}V_{DET} s: Set Detector Threshold ⁽²⁾ Consumption current through SENSE pin is not included. | D | 2 | 1 | 1 | Ω | v | |---|---|---|---|---|---| ## **ELECTRICAL CHARACTERISTICS (continued)** V_{DD} = 1 V to 6 V, unless otherwise specified. The specifications surrounded by are guaranteed by design engineering at -40°C \leq Ta \leq 85°C. #### R3118xxxxA/C Electrical Characteristics $(Ta = 25^{\circ}C)$ | Symbol | Item | Conditions | Min. | Тур. | Max. | Unit | |----------------|--|-------------------|------|------|------|------| | treset | Detect Output
Delay Time ⁽¹⁾ | Ta = 25°C | | 80 | | μS | | t | Release Output | Ta = 25°C | 70 | 100 | 130 | mo | | T DELAY | Delay Time ⁽²⁾ | -40°C ≤ Ta ≤ 85°C | 65 | 100 | 145 | ms | All of unit are tested and specified under load conditions such that $Tj \approx Ta = 25^{\circ}C$ except for Detector Output Delay Time and Release Output Delay Time. ⁽¹⁾ **R3118xxxxC:** In the case that a 0.022 μF capacitor is connected to the CD pin, the time interval from forcing pulsive voltage between $-V_{DET_S} \times 1.155$ V and $-V_{DET_S} \times 0.9$ V to SENSE pin, to when the output voltage of the DOUT pin will reach from "H" to $V_{DD}/2$. **R3118xxxxA:** In the case that a 0.022 μF capacitor is connected to the CD pin and the DOUT pin is pulled up to 5 V with 470 kΩ, the time interval from forcing pulsive voltage between $-V_{DET_S} \times 1.155$ V and $-V_{DET_S} \times 0.9$ V to SENSE pin, to when the output voltage reaches from "H" to 2.5V. ⁽²⁾ **R3118xxxxC:** In the case that a 0.022 μF capacitor is connected to the CD pin, the time interval from forcing pulsive voltage between -V_{DET_S}×0.9 V and -V_{DET_S}×1.155 V to SENSE pin, to when the output voltage of the DOUT pin will reach from "L" to $V_{DD}/2$. **R3118xxxxA:** In the case that a 0.022 μF capacitor is connected to the CD pin and the DOUT pin is pulled up to 5 V with 470 kΩ, the time interval from forcing pulsive voltage between -V_{DET_S} ×0.9 V and -V_{DET_S} x1.155 V to SENSE pin, to when the output voltage reaches from "L" to 2.5 V. ## **ELECTRICAL CHARACTERISTICS (continued)** The specifications surrounded by \square are guaranteed by design engineering at -40° C \leq Ta \leq 85 $^{\circ}$ C. #### R3118xxxxA/C | Dundant | V _{DET} [V] | | | | -V _{HYS} [V] | | | | | | | | |------------|----------------------|-----------|--------|--------|-----------------------|--------|-----------------------------|--------|--------|--------|--------|--------| | Product | | Ta = 25°0 | | | C ≤ Ta ≤ | 85°C | Ta = 25°C -40°C ≤ Ta ≤ 85°C | | | | | | | Name | Min. | Тур. | Max. | | R3118x06xx | 0.5775 | 0.6000 | 0.6225 | 0.5625 | 0.6000 | 0.6375 | 0.0240 | 0.0330 | 0.0420 | 0.0210 | 0.0330 | 0.0450 | | R3118x07xx | 0.6775 | 0.7000 | 0.7225 | 0.6625 | 0.7000 | 0.7375 | 0.0280 | 0.0385 | 0.0490 | 0.0245 | 0.0385 | 0.0525 | | R3118x08xx | 0.7775 | 0.8000 | 0.8225 | 0.7625 | 0.8000 | 0.8375 | 0.0320 | 0.0440 | 0.0560 | 0.0280 | 0.0440 | 0.0600 | | R3118x09xx | 0.8775 | 0.9000 | 0.9225 | 0.8625 | 0.9000 | 0.9375 | 0.0360 | 0.0495 | 0.0630 | 0.0315 | 0.0495 | 0.0675 | | R3118x10xx | 0.9775 | 1.0000 | 1.0225 | 0.9625 | 1.0000 | 1.0375 | 0.0400 | 0.0550 | 0.0700 | 0.0350 | 0.0550 | 0.0750 | | R3118x11xx | 1.0775 | 1.1000 | 1.1225 | 1.0625 | 1.1000 | 1.1375 | 0.0440 | 0.0605 | 0.0770 | 0.0385 | 0.0605 | 0.0825 | | R3118x12xx | 1.1775 | 1.2000 | 1.2225 | 1.1625 | 1.2000 | 1.2375 | 0.0480 | 0.0660 | 0.0840 | 0.0420 | 0.0660 | 0.0900 | | R3118x13xx | 1.2775 | 1.3000 | 1.3225 | 1.2625 | 1.3000 | 1.3375 | 0.0520 | 0.0715 | 0.0910 | 0.0455 | 0.0715 | 0.0975 | | R3118x14xx | 1.3775 | 1.4000 | 1.4225 | 1.3625 | 1.4000 | 1.4375 | 0.0560 | 0.0770 | 0.0980 | 0.0490 | 0.0770 | 0.1050 | | R3118x15xx | 1.4775 | 1.5000 | 1.5225 | 1.4625 | 1.5000 | 1.5375 | 0.0600 | 0.0825 | 0.1050 | 0.0525 | 0.0825 | 0.1125 | | R3118x16xx | 1.5760 | 1.6000 | 1.6240 | 1.5600 | 1.6000 | 1.6400 | 0.0640 | 0.0880 | 0.1120 | 0.0560 | 0.0880 | 0.1200 | | R3118x17xx | 1.6745 | 1.7000 | 1.7255 | 1.6575 | 1.7000 | 1.7425 | 0.0680 | 0.0935 | 0.1190 | 0.0595 | 0.0935 | 0.1275 | | R3118x18xx | 1.7730 | 1.8000 | 1.8270 | 1.7550 | 1.8000 | 1.8450 | 0.0720 | 0.0990 | 0.1260 | 0.0630 | 0.0990 | 0.1350 | | R3118x19xx | 1.8715 | 1.9000 | 1.9285 | 1.8525 | 1.9000 | 1.9475 | 0.0760 | 0.1045 | 0.1330 | 0.0665 | 0.1045 | 0.1425 | | R3118x20xx | 1.9700 | 2.0000 | 2.0300 | 1.9500 | 2.0000 | 2.0500 | 0.0800 | 0.1100 | 0.1400 | 0.0700 | 0.1100 | 0.1500 | | R3118x21xx | 2.0685 | 2.1000 | 2.1315 | 2.0475 | 2.1000 | 2.1525 | 0.0840 | 0.1155 | 0.1470 | 0.0735 | 0.1155 | 0.1575 | | R3118x22xx | 2.1670 | 2.2000 | 2.2330 | 2.1450 | 2.2000 | 2.2550 | 0.0880 | 0.1210 | 0.1540 | 0.0770 | 0.1210 | 0.1650 | | R3118x23xx | 2.2655 | 2.3000 | 2.3345 | 2.2425 | 2.3000 | 2.3575 | 0.0920 | 0.1265 | 0.1610 | 0.0805 | 0.1265 | 0.1725 | | R3118x24xx | 2.3640 | 2.4000 | 2.4360 | 2.3400 | 2.4000 | 2.4600 | 0.0960 | 0.1320 | 0.1680 | 0.0840 | 0.1320 | 0.1800 | | R3118x25xx | 2.4625 | 2.5000 | 2.5375 | 2.4375 | 2.5000 | 2.5625 | 0.1000 | 0.1375 | 0.1750 | 0.0875 | 0.1375 | 0.1875 | | R3118x26xx | 2.5610 | 2.6000 | 2.6390 | 2.5350 | 2.6000 | 2.6650 | 0.1040 | 0.1430 | 0.1820 | 0.0910 | 0.1430 | 0.1950 | | R3118x271x | 2.6595 | 2.7000 | 2.7405 | 2.6325 | 2.7000 | 2.7675 | 0.1080 | 0.1485 | 0.1890 | 0.0945 | 0.1485 | 0.2025 | | R3118x28xx | 2.7580 | 2.8000 | 2.8420 | 2.7300 | 2.8000 | 2.8700 | 0.1120 | 0.1540 | 0.1960 | 0.0980 | 0.1540 | 0.2100 | | R3118x29xx | 2.8565 | 2.9000 | 2.9435 | 2.8275 | 2.9000 | 2.9725 | 0.1160 | 0.1595 | 0.2030 | 0.1015 | 0.1595 | 0.2175 | | R3118x30xx | 2.9550 | 3.0000 | 3.0450 | 2.9250 | 3.0000 | 3.0750 | 0.1200 | 0.1650 | 0.2100 | 0.1050 | 0.1650 | 0.2250 | | R3118x31xx | 3.0535 | 3.1000 | 3.1465 | 3.0225 | 3.1000 | 3.1775 | 0.1240 | 0.1705 | 0.2170 | 0.1085 | 0.1705 | 0.2325 | | R3118x32xx | 3.1520 | 3.2000 | 3.2480 | 3.1200 | 3.2000 | 3.2800 | 0.1280 | 0.1760 | 0.2240 | 0.1120 | 0.1760 | 0.2400 | | R3118x33xx | 3.2505 | 3.3000 | 3.3495 | 3.2175 | 3.3000 | 3.3825 | 0.1320 | 0.1815 | 0.2310 | 0.1155 | 0.1815 | 0.2475 | | R3118x34xx | 3.3490 | 3.4000 | 3.4510 | 3.3150 | 3.4000 | 3.4850 | 0.1360 | 0.1870 | 0.2380 | 0.1190 | 0.1870 | 0.2550 | | R3118x35xx | 3.4475 | 3.5000 | 3.5525 | 3.4125 | 3.5000 | 3.5875 | 0.1400 | 0.1925 | 0.2450 | 0.1225 | 0.1925 | 0.2625 | | R3118x36xx | 3.5460 | 3.6000 | 3.6540 | 3.5100 | 3.6000 | 3.6900 | 0.1440 | 0.1980 | 0.2520 | 0.1260 | 0.1980 | 0.2700 | | R3118x37xx | 3.6445 | 3.7000 | 3.7555 | 3.6075 | 3.7000 | 3.7925 | 0.1480 | 0.2035 | 0.2590 | 0.1295 | 0.2035 | 0.2775 | | R3118x38xx | 3.7430 | 3.8000 | 3.8570 | 3.7050 | 3.8000 | 3.8950 | 0.1520 | 0.2090 | 0.2660 | 0.1330 | 0.2090 | 0.2850 | | R3118x39xx | 3.8415 | 3.9000 | 3.9585 | 3.8025 | 3.9000 | 3.9975 | 0.1560 | 0.2145 | 0.2730 | 0.1365 | 0.2145 | 0.2925 | | R3118x40xx | 3.9400 | 4.0000 | 4.0600 | 3.9000 | 4.0000 | 4.1000 | 0.1600 | 0.2200 | 0.2800 | 0.1400 | 0.2200 | 0.3000 | | R3118x41xx | 4.0385 | 4.1000 | 4.1615 | 3.9975 | 4.1000 | 4.2025 | 0.1640 | 0.2255 | 0.2870 | 0.1435 | 0.2255 | 0.3075 | | R3118x42xx | 4.1370 | 4.2000 | 4.2630 | 4.0950 | 4.2000 | 4.3050 | 0.1680 | 0.2310 | 0.2940 | 0.1470 | 0.2310 | 0.3150 | | R3118x43xx | 4.2355 | 4.3000 | 4.3645 | 4.1925 | 4.3000 | 4.4075 | 0.1720 | 0.2365 | 0.3010 | 0.1505 | 0.2365 | 0.3225 | | R3118x44xx | 4.3340 | 4.4000 | 4.4660 | 4.2900 | 4.4000 | 4.5100 | 0.1760 | 0.2420 | 0.3080 | 0.1540 | 0.2420 | 0.3300 | | R3118x45xx | 4.4325 | 4.5000 | 4.5675 | 4.3875 | 4.5000 | 4.6125 | 0.1800 | 0.2475 | 0.3150 | 0.1575 | 0.2475 | 0.3375 | | R3118x46xx | 4.5310 | 4.6000 | 4.6690 | 4.4850 | 4.6000 | 4.7150 | 0.1840 | 0.2530 | 0.3220 | 0.1610 | 0.2530 | 0.3450 | | R3118x47xx | 4.6295 | 4.7000 | 4.7705 | 4.5825 | 4.7000 | 4.8175 | 0.1880 | 0.2585 | 0.3290 | 0.1645 | 0.2585 | 0.3525 | | R3118x48xx | 4.7280 | 4.8000 | 4.8720 | 4.6800 | 4.8000 | 4.9200 | 0.1920 | 0.2640 | 0.3360 | 0.1680 | 0.2640 | 0.3600 | | R3118x49xx | 4.8265 | 4.9000 | 4.9735 | 4.7775 | 4.9000 | 5.0225 | 0.1960 | 0.2695 | 0.3430 | 0.1715 | 0.2695 | 0.3675 | | R3118x50xx | 4.9250 | 5.0000 | 5.0750 | 4.8750 | 5.0000 | 5.1250 | 0.2000 | 0.2750 | 0.3500 | 0.1750 | 0.2750 | 0.3750 | #### THEORY OF OPERATION #### R3118xxxxA (Nch. OPEN-DRAIN OUTPUT) #### R3118xxxxA Block Diagram with External Capacitor Step 1. The output voltage is equal to the pull-up voltage. - Step 2. At Point "A", V_{REF} ≤ V_{SENSE} x (Rb+Rc)/(Ra+Rb+Rc) is true, as a result, the output of comparator is reversed from "L" to "H", therefore the output voltage becomes the GND level. The voltage level of Point A means a detector threshold voltage (-V_{DET}). (When the supply voltage is lower than the minimum operating voltage, the operation of the output transistor becomes indefinite. The output voltage is equal to the GND level.) - Step 3. At Point "B", V_{REF} ≤ V_{SENSE} x Rb/(Ra+Rb) is true, as a result, the output of comparator is reversed from "H" to "L", then the output voltage is equal to the pull-up voltage. The voltage level of Point B means a released voltage (+V_{DET}). ⁽¹⁾ The difference between a released voltage and a detector threshold voltage is a detector threshold hysteresis. #### R3118xxxxC (CMOS OUTPUT) #### R3118xxxC Block Diagram with External Capacitor | Step |) | 1 | 2 | 3 | |-------------------------|--------|-----|-----|-----| | Comparat
Pin Input V | Ι | П | _ | | | Comparator | Output | L | Н | L | | Tr.1 | | OFF | ON | OFF | | Pch | | ON | OFF | ON | | Output Tr. | Nch | OFF | ON | OFF | I $$\frac{Rb+Rc}{Ra+Rb+Rc} \times V_{SENSE}$$ II $\frac{Rb}{Ra+Rb} \times V_{SENSE}$ #### **Operation Diagram** - Step 1. The output voltage is equal to the supply voltage (V_{DD}) . - Step 2. At Point "A", V_{REF} ≥ V_{SENSE} × (Rb+Rc)/(Ra+Rb+Rc) is true, as a result, the output of comparator is reversed from "L" to "H", therefore the output voltage becomes the GND level. The voltage level of Point A means a detector threshold voltage (-V_{DET}). (When the supply voltage is lower than the minimum operating voltage, the operation of the output transistor becomes indefinite. The output voltage is equal to the GND level.) - Step 3. At Point "B", $V_{REF} \le V_{SENSE} \times Rb/(Ra+Rb)$ is true, as a result, the output of comparator is reversed from "H" to "L", then the output voltage is equal to the supply voltage (V_{DD}). The voltage level of Point B means a released voltage ($+V_{DET}$). ⁽¹⁾ The difference between a released voltage and a detector threshold voltage is a detector threshold hysteresis. #### WHEN POWER TO SENSE PIN TURNING-ON AFTER VDD PIN'S POWER-ON If a voltage is applied to SENSE pin after a power (in the range from 1 V to 6 V) is applied to VDD pin, DOUT pin becomes "L" when the SENSE pin voltage is less than released voltage $\pm V_{DET}$, and DOUT pin becomes "H" when the SENSE pin voltage is equal or more than the released voltage $\pm V_{DET}$. #### WHEN POWER TO VDD PIN TURNING-ON AFTER SENSE PIN'S POWER-ON In the case of the SENSE pin voltage is less than released voltage +V_DET, when the V_DD pin voltage becomes to 1 V or more, "L" output of D_OUT is determined. In case of the SENSE pin voltage is equal or more than the released voltage +V_DET, when the V_DD pin voltage becomes to 1 V or more, "H" output of D_OUT is determined. If the turn on speed of the supply voltage of the VDD pin up to 1 V is slower than the 1 V/s, connect 0.001 μ F or more capacitor to CD pin, otherwise, powering-up of the VDD pin with the SENSE pin output voltage of -V_DET < V_SENSE < +V_DET may result in an unstable DOUT pin output, "H" or "L", at the point where the VDD pin voltage exceeds 1 V. #### **TIMING CHART** #### **OUTPUT DELAY OPERATION** **Output Delay Operation Diagram** A higher voltage than the released voltage is forced to the SENSE pin, charge to the capacitor connected to CD pin is started, then the CD pin voltage increases. Until CD pin voltage reaches to CD pin threshold voltage, the output of DOUT pin voltage keeps "L", then when CD pin voltage is higher than CD pin threshold voltage, the DOUT pin voltage changes from "L" to "H". The released output delay time means the time interval from when the released voltage threshold or more voltage level is forced to SENSE pin to when DOUT voltage changes from "L" to "H". When the voltage of DOUT pin reverses from "L" to "H", the discharge of the external capacitor connected to CD pin starts. Therefore, the time interval from when the voltage lower than the detector threshold is forced to SENSE pin, to when the output voltage reverses from "H" to "L", or detector output delay time is constant and independent from the external capacitance value. However, after the DOUT pin voltage reverses from "L" to "H", if a voltage lower than the detector threshold is forced to SENSE pin before the capacitor connected to CD pin is discharged, delay time will increase. The time interval (t_{DIS}) from when the capacitor connected to CD pin is discharged completely to when the capacitor is charged to a certain CD pin voltage (described as V_{CD} herein) can be calculated by power supply voltage (V_{DD}), external capacitance (C_D), on resistance of the CD pin discharge transistor (R_{DIS}) as in the next formula: $$t_{DIS} = -R_{DIS} \times C_D \times In(V_{CD} / (V_{DD} \times 0.45))$$ #### **RELEASED OUTPUT DELAY TIME** The release output delay time (t_{DELAY}) can be calculated as in the next formula with an external capacitance value (C_D): $$t_{\text{DELAY}}(s) = 4.545 \times 106 \times C_{\text{D}}(\text{F})$$ During the released delay operation, only a small current will charge the external capacitor connected to CD pin. If the leakage current between CD pin and GND is large, the released delay time may increase or the detector may not be released. And, if the VDD pin voltage varies, the released output delay time will be also shift. ## **APPLICATION INFORMATION** #### TYPICAL APPLICATION R3118xxxxA (Nch. Open-drain Output) CPU Reset Circuit When using a shared input voltage between R3118x and CPU When using different input voltages between R3118x and CPU #### R3118xxxxC (CMOS Output) CPU Reset Circuit ## TYPICAL CHARACTERISTICS Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed. ## 1) Supply Current vs. Supply Voltage R3118xxxxA/C (V_{SENSE} = 0 V) #### R3118xxxxA/C ($V_{SENSE} = 6 V$) #### 2) Detector Threshold vs. Temperature Temperature Topt (°C) ## R3118x50xA/C ($V_{DD} = 5.3 \text{ V}$) #### $R3118x27xA/C (V_{DD} = 5.3 V)$ Temperature Topt (°C) ## 3) Detector Threshold vs. Supply Voltage Supply Voltage V_{DD} (V) Supply Voltage $V_{DD}(V)$ ## 4) Hysteresis vs. Temperature #### $R3118x27xA/C (V_{DD} = 5.3 V)$ Temperature Topt (°C) #### 5) Hysteresis vs. Supply Voltage Supply Voltage V_{DD} (V) R3118x27xA/C Supply Voltage V_{DD} (V) #### 6) Output Voltage vs. SENSE Voltage (DOUT pin is pulled up to VDD pin via 470 k Ω) R3118x50xA/C 7) Nch. Driver Output Current vs. Supply Voltage 8) Nch. Driver Output Current vs. Output Voltage ## 9) Pch. Driver Output Current vs. Supply Voltage ## R3118xxxxA/C ($V_{DOUT} = V_{DD} - 0.1 V$) #### 10) Pch Driver Output current vs. Output voltage Output Voltage $V_{DOUT}(V)$ ## 11) CD pin Discharge Tr. On Resistance vs. Supply Voltage #### 12) CD pin Discharge Transistor On Resistance vs. CD pin Voltage #### R3118xxxxA/C CD Pin Voltage V_{CD} (V) ## 13) Release Output Delay Time vs. Temperature 14) Release Output Delay Time vs. Supply Voltage R3118xxxxA/C ($C_D = 0.022 \mu F$) Supply Voltage V_{DD} (V) #### Temperature Topt (°C) 15) Detect Output Delay Time/Release Output Delay Time vs. CD pin External Capacitance ## R3118xxxxA/C ($V_{DD} = 4 V$) External Capacitance C_D (μF) ## 16) Detect Output Delay time vs. Over-drive Voltage Note: The pulse shorter than the detect output delay time cannot be detected, and "L" does not output from DOUT pin. 1000 ## 17) Release Output Delay time vs. Over-drive Voltage #### Notes: • If the pulse is shorter than the output release delay time, the R3118x cannot be released and "H" does not output from DOUT pin. Time t • If the attachment capacitor for CD pin for setting a delay time is too small and the difference between the released voltage threshold and the actual released voltage is too small or the slope for rising voltage of the SENSE pin is too slow, the output delay time tolerance will be worse. Ex. Attachment capacitor = $0.0001~\mu F$, Released voltage threshold = 4.725~V, Actual released voltage = 4.75~V. In this case, the calculated delay time = 0.4545~ms, however, over-drive voltage is only 25~mV. Therefore, the actual delay time will be approximately 2.4545~ms. If the attachment capacitor = $0.001~\mu F$ and other conditions are same as above, the calculated delay time = 4.545~ms, and the actual delay time will be approximately 6.545~ms. If the attachment capacitor = $0.01~\mu F$ and other conditions are same as above, the calculated delay time = 45.45~ms, and the actual delay time will be approximately 47.45~ms. Ver. A The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7. #### **Measurement Conditions** | Item | Measurement Conditions | |------------------|--| | Environment | Mounting on Board (Wind Velocity = 0 m/s) | | Board Material | Glass Cloth Epoxy Plastic (Four-Layer Board) | | Board Dimensions | 76.2 mm × 114.3 mm × 0.8 mm | | Copper Ratio | Outer Layer (First Layer): Less than 95% of 50 mm Square
Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square
Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square | | Through-holes | φ 0.2 mm × 14 pcs | #### **Measurement Result** $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$ | Item Measurement Result | | |--|---------------| | Power Dissipation | 450 mW | | Thermal Resistance (θja) | θja = 218°C/W | | Thermal Characterization Parameter (ψjt) | ψjt = 105°C/W | θ ja: Junction-to-Ambient Thermal Resistance ψjt: Junction-to-Top Thermal Characterization Parameter Power Dissipation vs. Ambient Temperature **Measurement Board Pattern** Ver. B UNIT: mm **DFN(PLP)1212-6 Package Dimensions** Ver P The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement. #### **Measurement Conditions** | Item | Standard Test Land Pattern | | | |------------------|--|--|--| | Environment | Mounting on Board (Wind Velocity = 0 m/s) | | | | Board Material | Glass Cloth Epoxy Plastic (Double-Sided Board) | | | | Board Dimensions | 40 mm × 40 mm × 1.6 mm | | | | Copper Ratio | Top Side: Approx. 50% | | | | Copper Italio | Bottom Side: Approx. 50% | | | | Through-holes | φ 0.5 mm × 44 pcs | | | #### **Measurement Result** $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$ | Item | Standard Test Land Pattern | |--|----------------------------| | Power Dissipation | 380 mW | | Thermal Resistance (θja) | θja = 263°C/W | | Thermal Characterization Parameter (ψjt) | ψjt = 75°C/W | θ ja: Junction-to-Ambient Thermal Resistance ψjt: Junction-to-Top Thermal Characterization Parameter Power Dissipation vs. Ambient Temperature **Measurement Board Pattern** i Ver. A UNIT: mm **SC-88A Package Dimensions** Ver A The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7. #### **Measurement Conditions** | Item | Measurement Conditions | | | |------------------|--|--|--| | Environment | Mounting on Board (Wind Velocity = 0 m/s) | | | | Board Material | Glass Cloth Epoxy Plastic (Four-Layer Board) | | | | Board Dimensions | 76.2 mm × 114.3 mm × 0.8 mm | | | | Copper Ratio | Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square | | | | Through-holes | φ 0.3 mm × 7 pcs | | | #### **Measurement Result** $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$ | Item | Measurement Result | |--|--------------------| | Power Dissipation | 660 mW | | Thermal Resistance (θja) | θja = 150°C/W | | Thermal Characterization Parameter (ψjt) | ψjt = 51°C/W | θ ja: Junction-to-Ambient Thermal Resistance ψjt: Junction-to-Top Thermal Characterization Parameter **Power Dissipation vs. Ambient Temperature** **Measurement Board Pattern** Ver. A **SOT-23-5 Package Dimensions** - 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon. - 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh. - 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein. - 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights. - 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us. - 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products. - 7. Anti-radiation design is not implemented in the products described in this document. - 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage. - 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage. - 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI. - 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information. Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Halogen Free Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012. ## RICOH RICOH ELECTRONIC DEVICES CO., LTD. Official website https://www.n-redc.co.jp/en/ **Contact us** https://www.n-redc.co.jp/en/buy/