24AA02/24LC02B/24FC02

$2 \mathrm{~K} \mathrm{I}^{2} \mathrm{C}$ Serial EEPROM

Device Selection Table

Part Number	Vcc Range	Max. Clock Frequency	Temp. Ranges	Available Packages
24 AA 02	$1.7 \mathrm{~V}-5.5 \mathrm{~V}$	$400 \mathrm{kHz}{ }^{(1)}$	I	P, SN, MS, ST, MC, LT, MNY, OT
24 LC 02 B	$2.5 \mathrm{~V}-5.5 \mathrm{~V}$	400 kHz	I, E	P, SN, MS, ST, MC, LT, MNY, OT
24 FC 02	$1.7 \mathrm{~V}-5.5 \mathrm{~V}$	1 MHz	I, E	P, SN, MS, ST, Q4B, OT

Note 1: 100 kHz for $\mathrm{Vcc}<2.5 \mathrm{~V}$

Features

- Single Supply with Operation down to 1.7 V for 24AA02 and 24FC02 Devices, 2.5V for 24LC02B Devices
- Low-Power CMOS Technology:
- Read current 1 mA , maximum
- Standby current $1 \mu \mathrm{~A}$, maximum (I-temp.)
- 2-Wire Serial Interface, $I^{2} \mathrm{C}$ Compatible
- Schmitt Trigger Inputs for Noise Suppression
- Output Slope Control to Eliminate Ground Bounce
- $100 \mathrm{kHz}, 400 \mathrm{kHz}$ and 1 MHz Compatibility
- Page Write Time: 5 ms , Maximum
- Self-Timed Erase/Write Cycle
- 8-Byte Page Write Buffer
- Hardware Write-Protect
- ESD Protection $>4,000 \mathrm{~V}$
- More than 1 Million Erase/Write Cycles
- Data Retention >200 Years
- Factory Programming Available
- RoHS Compliant
- Temperature Ranges:
- Industrial (I): $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Extended (E): $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Automotive AEC-Q100 Qualified

Packages

- 8-Lead DFN, 8-Lead MSOP, 8-Lead PDIP, 8-Lead SOIC, 8-Lead TDFN, 8-Lead TSSOP, 8-Lead UDFN, 5-Lead SOT-23 and 5-Lead SC-70

Description

The Microchip Technology Inc. $24 \mathrm{XX02}{ }^{(1)}$ is a 2 -Kbit Electrically Erasable PROM (EEPROM). The device is organized as one block of 256×8-bit memory with a 2-wire serial interface. Its low-voltage design permits operation down to 1.7 V with standby and active currents of only $1 \mu \mathrm{~A}$ and 1 mA , respectively. The 24 XX 02 also has a page write capability for up to 8 bytes of data.

Note 1: 24 XX 02 is used in this document as a generic part number for the 24AA02/24LC02B/24FC02 devices.

Package Types

Note 1: Pins A0, A1 and A2 are not used by the 24XX02 (no internal connections).

Block Diagram

24AA02/24LC02B/24FC02

1.0 ELECTRICAL CHARACTERISTICS

Abstract

Absolute Maximum Ratings ${ }^{(\dagger)}$ Vcc. \qquad All inputs and outputs w.r.t. Vss -0.3 V to $\mathrm{Vcc}+1.0 \mathrm{~V}$ Storage temperature .. $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient temperature with power applied.. $40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ \qquad

\dagger NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: DC CHARACTERISTICS

DC CHARACTERISTICS			Industrial (I): $\mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=+1.7 \mathrm{~V}$ to +5.5 V Extended (E): $\mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{Vcc}=+2.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}(24 \mathrm{LC} 02 \mathrm{~B})$ Extended (E): $\mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{VCC}=+1.7 \mathrm{~V}$ to +5.5 V (24FC02)				
Param. No.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
D1	VIH	High-Level Input Voltage	0.7 Vcc	-	-	V	
D2	VIL	Low-Level Input Voltage	-	-	0.3 Vcc	V	
D3	VHYS	Hysteresis of Schmitt Trigger Inputs	0.05 Vcc	-	-	V	Note
D4	VoL	Low-Level Output Voltage	-	-	0.40	V	$\mathrm{IOL}=3.0 \mathrm{~mA}, \mathrm{Vcc}=2.5 \mathrm{~V}$
D5	ILI	Input Leakage Current	-	-	± 1	$\mu \mathrm{A}$	VIN = Vss or Vcc
D6	ILO	Output Leakage Current	-	-	± 1	$\mu \mathrm{A}$	Vout = Vss or Vcc
D7	$\begin{aligned} & \text { CIN, } \\ & \text { COUT } \end{aligned}$	Pin Capacitance (all inputs/outputs)	-	-	10	pF	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V} \text { (Note) } \\ & \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { FCLK }=1 \mathrm{MHz} \end{aligned}$
D8	ICCWRITE	Operating Current	-	-	3	mA	$\mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{SCL}=400 \mathrm{kHz}$
D9	ICCREAD		-	-	1	mA	$\mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{SCL}=400 \mathrm{kHz}$
D10	Iccs	Standby Current	-	-	1	$\mu \mathrm{A}$	$\begin{aligned} & \text { SDA = SCL = Vcc } \\ & \text { WP = Vss, I-Temp. } \end{aligned}$
			-	-	3	$\mu \mathrm{A}$	$\begin{aligned} & \text { SDA = SCL = Vcc } \\ & \text { WP = Vss, E-Temp. (24FC02) } \end{aligned}$
			-	-	5	$\mu \mathrm{A}$	$\begin{aligned} & \hline \text { SDA = SCL = Vcc } \\ & \text { WP = Vss, E-Temp. (24LC02B) } \end{aligned}$

Note: This parameter is periodically sampled and not 100% tested.

24AA02/24LC02B/24FC02

TABLE 1-2: AC CHARACTERISTICS

AC CHARACTERISTICS			Industrial (I): $\mathrm{TA}^{2}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=+1.7 \mathrm{~V}$ to +5.5 V Extended (E): $\quad \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{Vcc}=+2.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}(24 \mathrm{LCO} 2 \mathrm{~B})$ Extended (E): $\quad \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{Vcc}=+1.7 \mathrm{~V}$ to $+5.5 \mathrm{~V}(24 \mathrm{FC} 02)$				
Param. No.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
1	FCLK	Clock Frequency	-	-	400	kHz	$2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			-	-	100	kHz	$1.7 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}$ (24AA02)
			-	-	1000	kHz	$1.7 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$ (24FC02)
2	THIGH	Clock High Time	600	-	-	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			4000	-	-	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}$ (24AA02)
			260	-	-	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$ (24FC02)
3	TLOW	Clock Low Time	1300	-	-	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			4700	-	-	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}$ (24AA02)
			500	-	-	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$ (24FC02)
4	TR	SDA and SCL Rise Time	-	-	300	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$ (Note 1)
			-	-	1000	ns	$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}(\mathbf{2 4 A A} 02) \\ & \text { (Note 1) } \end{aligned}$
			-	-	1000	ns	$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}(\mathbf{2 4 F C 0 2}) \\ & (\text { Note 1) } \end{aligned}$
5	TF	SDA and SCL Fall Time	-	-	300	ns	Note 1
6	THD:STA	Start Condition Hold Time	600	-	-	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			4000	-	-	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}$ (24AA02)
			250	-	-	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$ (24FC02)
7	Tsu:Sta	Start Condition Setup Time	600	-	-	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			4700	-	-	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}$ (24AA02)
			250	-	-	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$ (24FC02)
8	THD:DAT	Data Input Hold Time	0	-	-	ns	Note 2
9	TSU:DAT	Data Input Setup Time	100	-	-	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			250	-	-	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}$ (24AA02)
			50	-	-	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$ (24FC02)
10	Tsu:sto	Stop Condition Setup Time	600	-	-	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			4000	-	-	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}$ (24AA02)
			250	-	-	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$ (24FC02)
11	Tsu:WP	WP Setup Time	0	-	-	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$ (24FC02)
12	THD:WP	WP Hold Time	1000	-	-	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$ (24FC02)
13	TAA	Output Valid from Clock	-	-	900	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$ (Note 2)
			-	-	3500	ns	$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}(\mathbf{2 4 A A} 02) \\ & \text { (Note 2) } \end{aligned}$
			-	-	450	ns	$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}(\mathbf{2 4 F C 0 2}) \\ & (\text { Note 2) } \end{aligned}$

Note 1: Characterized but not 100% tested.
2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.
3: $\mathrm{CB}=$ total capacitance of one bus line in pF .
4: This parameter is not tested but ensured by characterization.

24AA02/24LC02B/24FC02

TABLE 1-2: AC CHARACTERISTICS

AC CHARACTERISTICS (Continued)			$\begin{array}{ll}\text { Industrial (I): } & \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \mathrm{Vcc}=+1.7 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\ \text { Extended (E): } & \mathrm{TA}^{\circ}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, \mathrm{VCC}=+2.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}(24 \mathrm{LCO} 2 \mathrm{~B}) \\ \text { Extended (E): } & \mathrm{TA}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, \mathrm{Vcc}=+1.7 \mathrm{~V} \text { to }+5.5 \mathrm{~V}(24 \mathrm{FCO2})\end{array}$				
Param. No.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
14	TBUF	Bus Free Time: The time the bus must be free before a new transmission can start	1300	-	-	ns	$2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
			4700	-	-	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}$ (24AA02)
			500	-	-	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$ (24FC02)
15	ToF	Output Fall Time from VIH Minimum to VIL Maximum	20+0.1Св	-	250	ns	$\begin{aligned} & 2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}(\mathbf{2 4 L C O 2 B}) \\ & \text { (Notes } 1 \text { and 3) } \\ & \hline \end{aligned}$
			-	-	250	ns	$1.7 \mathrm{~V} \leq \mathrm{Vcc}<2.5 \mathrm{~V}(\mathbf{2 4 A A} 02)$ (Note 1)
16	Tsp	Input Filter Spike Suppression (SDA and SCL pins)	-	-	50	ns	Note 1
17	Twc	Write Cycle Time (byte or page)	-	-	5	ms	
18		Endurance	1,000,000	-	-	cycles	$25^{\circ} \mathrm{C}, 5.5 \mathrm{~V}$, Page Mode (Note 4)

Note 1: Characterized but not 100% tested.
2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.
3: \quad Cв = total capacitance of one bus line in pF .
4: This parameter is not tested but ensured by characterization.
FIGURE 1-1: BUS TIMING DATA

24AA02/24LC02B/24FC02

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.
TABLE 2-1: PIN FUNCTION TABLE

Name	DFN	MSOP	PDIP	SC-70	SOIC	SOT-23	TDFN ${ }^{(1)}$	TSSOP	UDFN ${ }^{(1)}$	Description
A0	1	1	1	-	1	-	1	1	1	Not Connected
A1	2	2	2	-	2	-	2	2	2	Not Connected
A2	3	3	3	-	3	-	3	3	3	Not Connected
Vss	4	4	4	2	4	2	4	4	4	Ground
SDA	5	5	5	3	5	3	5	5	5	Serial Address/Data I/O
SCL	6	6	6	1	6	1	6	6	6	Serial Clock
WP	7	7	7	5	7	5	7	7	7	Write-Protect Input
Vcc	8	8	8	4	8	4	8	8	8	Power Supply

Note 1: The exposed pad on the TDFN/UDFN package can be connected to Vss or left floating.

2.1 A0, A1, A2

The A0, A1 and A2 pins are not used by the 24XX02. They may be left floating or tied to either Vss or Vcc.

2.2 Serial Address/Data Input/Output (SDA)

The SDA input is a bidirectional pin used to transfer addresses and data into and out of the device. Since it is an open-drain terminal, the SDA bus requires a pull-up resistor to Vcc (typical $10 \mathrm{k} \Omega$ for 100 kHz , $2 \mathrm{k} \Omega$ for 400 kHz and 1 MHz).
For normal data transfer, SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating Start and Stop conditions.

2.3 Serial Clock (SCL)

The SCL input is used to synchronize the data transfer to and from the device.

2.4 Write-Protect (WP)

This pin must be connected to either Vss or Vcc.
If tied to Vss, normal memory operation is enabled (read/write the entire memory 00-FF).
If tied to Vcc, write operations are inhibited. The entire memory will be write-protected. Read operations are not affected.

24AA02/24LC02B/24FC02

3.0 FUNCTIONAL DESCRIPTION

The 24XX02 supports a bidirectional, 2-wire bus and data transmission protocol. A device that sends data onto the bus is defined as transmitter, while defining a device receiving data as a receiver. The bus has to be controlled by a host device which generates the Serial Clock (SCL), controls the bus access and generates the Start and Stop conditions, while the 24XX02 works as client. Both host and client can operate as transmitter or receiver, but the host device determines which mode is activated.

4.0 BUS CHARACTERISTICS

The following bus protocol has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high will be interpreted as a Start or Stop condition.
Accordingly, the following bus conditions have been defined (Figure 4-1).

4.1 Bus Not Busy (A)

Both data and clock lines remain high.

4.2 Start Data Transfer (B)

A high-to-low transition of the SDA line while the clock (SCL) is high determines a Start condition. All commands must be preceded by a Start condition.

4.3 Stop Data Transfer (C)

A low-to-high transition of the SDA line while the clock (SCL) is high determines a Stop condition. All operations must be ended with a Stop condition.

4.4 Data Valid (D)

The state of the data line represents valid data when, after a Start condition, the data line is stable for the duration of the high period of the clock signal.
The data on the line must be changed during the low period of the clock signal. There is one clock pulse per bit of data.
Each data transfer is initiated with a Start condition and terminated with a Stop condition. The number of data bytes transferred between the Start and Stop conditions is determined by the host device and is, theoretically, unlimited (although only the last eight will be stored when doing a write operation). When an overwrite does occur, it will replace data based on the first-in first-out (FIFO) principle.

4.5 Acknowledge

Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The host device must generate an extra clock pulse which is associated with this Acknowledge bit.

Note: The 24XX02 does not generate any Acknowledge bits if an internal programming cycle is in progress.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable-low during the high period of the acknowledge-related clock pulse. Moreover, setup and hold times must be taken into account. During reads, a host must signal an end of data to the client by not generating an Acknowledge bit on the last byte that has been clocked out of the client. In this case, the client (24 XX 02) will leave the data line high to enable the host to generate the Stop condition.

FIGURE 4-1: DATA TRANSFER SEQUENCE ON THE SERIAL BUS

24AA02/24LC02B/24FC02

5.0 DEVICE ADDRESSING

A control byte is the first byte received following the Start condition from the host device. The control byte consists of a four-bit control code. For the 24XX02, this is set as ' 1010 ' binary for read and write operations. The next three bits of the control byte are "don't cares" for the 24 XX 02 . The combination of the 4 -bit control code and the next three bits are called the client address.
The last bit of the control byte is the Read $/ \overline{\text { Write }}(\mathrm{R} / \overline{\mathrm{W}})$ bit and it defines the operation to be performed. When set to ' 1 ', a read operation is selected. When set to ' 0 ', a write operation is selected. Following the Start condition, the 24XX02 monitors the SDA bus, checking the device type identifier being transmitted. Upon receiving a valid client address and the R / \bar{W} bit, the client device outputs an Acknowledge signal on the SDA line. Depending on the state of the R/W bit, the 24 XX 02 will select a read or write operation.
The next byte received defines the address of the first data byte within the selected block (Figure 5-2). The word address byte uses all eight bits.

Operation	Control Code	Block Select	R/W
Read	1010	Block Address	1
Write	1010	Block Address	0

FIGURE 5-1: CONTROL BYTE ALLOCATION

FIGURE 5-2: ADDRESS SEQUENCE BIT ASSIGNMENTS

24AA02/24LC02B/24FC02

6.0 WRITE OPERATION

6.1 Byte Write

Following the Start condition from the host, the device code (4 bits), the block address (3 bits, "don't cares") and the R / \bar{W} bit, which is a logic-low, is placed onto the bus by the host transmitter. This indicates to the addressed client receiver that a byte with a word address will follow after it has generated an Acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the host is the word address and will be written into the Address Pointer of the 24XX02. After receiving another Acknowledge signal from the 24XX02, the host device will transmit the data word to be written into the addressed memory location. The 24XX02 acknowledges again and the host generates a Stop condition. This initiates the internal write cycle, and, during this time, the $24 \mathrm{XX02}$ will not generate Acknowledge signals (Figure 6-1).

6.2 Page Write

The write control byte, word address and first data byte are transmitted to the 24XX02 in the same way as in a byte write. However, instead of generating a Stop condition, the host transmits up to eight data bytes to the $24 \times X 02$, which are temporarily stored in the on-chip page buffer and will be written into the memory once the host has transmitted a Stop condition. Upon receipt of each word, the three lower-order Address Pointer bits, which form the byte counter, are internally incremented by one. The higher-order five bits of the word address remain constant. If the host should transmit more than eight words prior to generating the Stop condition, the Address Pointer will roll over and the previously received data will be overwritten. As with the byte write operation, once the Stop condition is received, an internal write cycle will begin (Figure 6-2).

Note: Page write operations are limited to writing bytes within a single physical page regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or 'page size') and end at addresses that are integer multiples of page size -1 . If a page write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page, as might be expected. It is therefore necessary for the application software to prevent page write operations that would attempt to cross a page boundary.

6.3 Write Protection

The WP pin allows the user to write-protect the entire array ($00-\mathrm{FF}$) when the pin is tied to Vcc. If tied to Vss, the write protection is disabled.

FIGURE 6-1: BYTE WRITE

24AA02/24LC02B/24FC02

FIGURE 6-2: PAGE WRITE

7.0 ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the Stop condition for a write command has been issued from the host, the device initiates the internally-timed write cycle. ACK polling can then be initiated immediately. This involves the host sending a Start condition followed by the control byte for a write command $(R / \bar{W}=0)$. If the device is still busy with the write cycle, no ACK will be returned. If the cycle is complete, the device will return the ACK and the host can then proceed with the next read or write operation. See Figure 7-1 for a flow diagram of this operation.

FIGURE 7-1: ACKNOWLEDGE POLLING FLOW

24AA02/24LC02B/24FC02

8.0 READ OPERATION

Read operations are initiated in the same way as write operations, with the exception that the R / \bar{W} bit of the client address is set to ' 1 '. There are three basic types of read operations: current address read, random read and sequential read.

8.1 Current Address Read

The 24XX02 contains an Address Pointer that maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous access (either a read or write operation) was to address n , the next current address read operation would access data from address $\mathrm{n}+1$. Upon receipt of the client address with R / \bar{W} bit set to ' 1 ', the 24XX02 issues an acknowledge and transmits the 8-bit data word. The host will not acknowledge the transfer, but does generate a Stop condition and the 24XX02 discontinues transmission (Figure 8-1).

8.2 Random Read

Random read operations allow the host to access any memory location in a random manner. To perform this type of read operation, the word address must first be set. This is accomplished by sending the word address to the 24XX02 as part of a write operation. Once the word address is sent, the host generates a Start condition following the acknowledge. This terminates the write operation, but not before the internal Address Pointer is set. The host then issues the control byte again, but with the R / \bar{W} bit set to a ' 1 '. The 24XX02 will then issue an acknowledge and transmits the 8-bit data word. The host will not acknowledge the transfer, but does generate a Stop condition and the 24XX02 discontinues transmission (Figure 8-2).

8.3 Sequential Read

Sequential reads are initiated in the same way as a random read, except that once the 24XX02 transmits the first data byte, the host issues an acknowledge (as opposed to a Stop condition in a random read). This directs the 24XX02 to transmit the next sequentially addressed 8 -bit word (Figure 8-3).
To provide sequential reads the 24XX02 contains an internal Address Pointer which is incremented by one at the completion of each operation. This Address Pointer allows the entire memory contents to be serially read during one operation.

8.4 Noise Protection

The SCL and SDA inputs have Schmitt Trigger and filter circuits which suppress noise spikes to assure proper device operation even on a noisy bus.

FIGURE 8-1: CURRENT ADDRESS READ

24AA02/24LC02B/24FC02

FIGURE 8-2: RANDOM READ

FIGURE 8-3: SEQUENTIAL READ
Bus Activity Host

SDA Line

Bus Activity

24AA02/24LC02B/24FC02

9.0 PACKAGING INFORMATION

9.1 Package Marking Information*

8-Lead 2×3 DFN

8-Lead MSOP

5-Lead SC-70

8-Lead SOIC (3.90 mm)

Example

Example

Example

Example

Example

5-Lead SOT-23 (1-Line Marking)

5-Lead SOT-23 (2-Line Marking)

8-Lead 2×3 TDFN

8-Lead 2×3 UDFN

Example

Example

Example

Example

Example

24AA02/24LC02B/24FC02

	$1^{\text {st }}$ Line Marking Codes										
	TSSOP	MSOP	UDFN	SOT-23		DFN		TDFN		SC-70	
				I-Temp.	E-Temp.	I-Temp.	E-Temp.	I-Temp.	E-Temp.	I-Temp.	E-Temp.
24AA02	4A02	$4 \mathrm{A02T}{ }^{(1)}$	-	B2NN ${ }^{(2,3)}$	-	221	-	A21	-	B5NN ${ }^{(2)}$	-
24LC02B	4L02	$4 \mathrm{~L} 2 \mathrm{BT}{ }^{(1)}$	-	M2NN ${ }^{(2,3)}$	N2NN ${ }^{(2,3)}$	224	225	A24	A25	B4NN ${ }^{(2)}$	B6NN ${ }^{(2)}$
24FC02	AADQ	24FC02	ADN	AAEVYY ${ }^{(4)}$	AAEVYY ${ }^{(4)}$	-	-	-	-	-	-

Note 1: $\mathrm{T}=$ Temperature grade (I, E)
2: $\mathrm{NN}=$ Alphanumeric traceability code
3: These parts use the 1 -line SOT-23 marking format
4: These parts use the 2 -line SOT-23 marking format

Legend: $\mathrm{XX} \ldots \mathrm{X}$ Part number or part number code
$\mathrm{T} \quad$ Temperature (I, E)
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code (2 characters for small packages)
e3 JEDEC ${ }^{\circledR}$ designator for Matte Tin (Sn)

* Standard OTP marking consists of Microchip part number, year code, week code, and traceability code.

Note: For very small packages with no room for the JEDEC ${ }^{\circledR}$ designator e3, the marking will only appear on the outer carton or reel label.
Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

24AA02/24LC02B/24FC02

8-Lead Plastic Dual Flat, No Lead Package (MC) - $2 \times 3 \times 0.9 \mathrm{~mm}$ Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

BOTTOM VIEW

NOTE 2

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	8		
Pitch	e	0.50 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Length	D	2.00 BSC		
Overall Width	E	3.00 BSC		
Exposed Pad Length	D2	1.30	-	1.55
Exposed Pad Width	E2	1.50	-	1.75
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package may have one or more exposed tie bars at ends.
3. Package is saw singulated.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-123C

24AA02/24LC02B/24FC02

8-Lead Plastic Dual Flat, No Lead Package (MC) - $2 \times 3 \times 0.9 \mathrm{~mm}$ Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			1.45
Optional Center Pad Length	T2			1.75
Contact Pad Spacing	C1		2.90	
Contact Pad Width (X8)	X1			0.30
Contact Pad Length (X8)	Y1			0.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2123B

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-111C Sheet 1 of 2

24AA02/24LC02B/24FC02

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		8	
Pitch	e	0.65 BSC		
Overall Height	A	-	-	1.10
Molded Package Thickness	A2	0.75	0.85	0.95
Standoff	A1	0.00	-	0.15
Overall Width	E	4.90 BSC		
Molded Package Width	E1	3.00 BSC		
Overall Length	D	3.00 BSC		
Foot Length	L	0.40	0.60	0.80
Footprint	L1	0.95 REF		
Foot Angle	φ	0°	-	$8{ }^{\circ}$
Lead Thickness	c	0.08	-	0.23
Lead Width	b	0.22	-	0.40

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-111C Sheet 2 of 2

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	C		4.40	
Overall Width	Z			5.85
Contact Pad Width (X8)	X1			0.45
Contact Pad Length (X8)	Y1			1.45
Distance Between Pads	G1	2.95		
Distance Between Pads	GX	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2111A

24AA02/24LC02B/24FC02

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SIDE VIEW

END VIEW

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

ALTERNATE LEAD DESIGN
 (NOTE 5)

	Units	INCHES		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	8		
Pitch	e	.100 BSC		
Top to Seating Plane	A	-	-	.210
Molded Package Thickness	A 2	.115	.130	.195
Base to Seating Plane	A 1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.325
Molded Package Width	E 1	.240	.250	.280
Overall Length	D	.348	.365	.400
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	c	.008	.010	.015
Upper Lead Width	b 1	.040	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing	\S	eB	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
5. Lead design above seating plane may vary, based on assembly vendor.

Microchip Technology Drawing No. C04-018-P Rev E Sheet 2 of 2

24AA02/24LC02B/24FC02

5-Lead Plastic Small Outline Transistor (LT) [SC70]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

24AA02/24LC02B/24FC02

5-Lead Plastic Small Outline Transistor (LT) [SC70]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	5		
Pitch	e	0.65 BSC		
Overall Height	A	0.80	-	1.10
Standoff	A 1	0.00	-	0.10
Molded Package Thickness	A 2	0.80	-	1.00
Overall Length	D	2.00 BSC		
Overall Width	E	2.10 BSC		
Molded Package Width	E 1	1.25 BSC		
Terminal Width	b	0.15	-	0.40
Terminal Length	L	0.10	0.20	0.46
Lead Thickness	C	0.08	-	0.26

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

5-Lead Plastic Small Outline Transistor (LT) [SC70]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS						
Dimension Limits						MIN	NOM	MAX
Contact Pitch	E	0.65 BSC						
Contact Pad Spacing	C		2.20					
Contact Pad Width	X			0.45				
Contact Pad Length	Y			0.95				
Distance Between Pads	G	1.25						
Distance Between Pads	Gx	0.20						

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2061-LT Rev E

24AA02/24LC02B/24FC02

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (. 150 In.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

Microchip Technology Drawing No. C04-057-SN Rev F Sheet 1 of 2

24AA02/24LC02B/24FC02

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (. 150 In.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension Limits		MIN		NOM	
	N	8			
Number of Pins	e	1.27 BSC			
Pitch	A	-	-	1.75	
Overall Height	A2	1.25	-	-	
Molded Package Thickness	A1	0.10	-	0.25	
Standoff	E	6.00 BSC			
Overall Width	E1	3.90 BSC			
Molded Package Width	D	4.90 BSC			
Overall Length	h	0.25	-	0.50	
Chamfer (Optional)	L	0.40	-	1.27	
Foot Length	L1	1.04 REF			
Footprint	φ	0°	-	8°	
Foot Angle	C	0.17	-	0.25	
Lead Thickness	b	0.31	-	0.51	
Lead Width	α	5°	-	15°	
Mold Draft Angle Top	β	5°	-	15°	
Mold Draft Angle Bottom					

Notes

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
5. Datums A \& B to be determined at Datum H.

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (. 150 In.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits			MIN	
NOM		MAX		
Contact Pitch	E	5.40		
Contact Pad Spacing	C		5.40	
Contact Pad Width (X8)	X 1			0.60
Contact Pad Length (X8)	Y 1			1.55

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

24AA02/24LC02B/24FC02

5-Lead Plastic Small Outline Transistor (OT) [SOT23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

24AA02/24LC02B/24FC02

5-Lead Plastic Small Outline Transistor (OT) [SOT23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N	5			
Pitch	e	0.95 BSC			
Outside lead pitch	e1	1.90 BSC			
Overall Height	A	0.90	-	1.45	
Molded Package Thickness	A2	0.89	-	1.30	
Standoff	A1	-	-	0.15	
Overall Width	E	2.80 BSC			
Molded Package Width	E1	1.60 BSC			
Overall Length	D	2.90 BSC			
Foot Length	L	0.30	-	0.60	
Footprint	L1	0.60 REF			
Foot Angle	ϕ	0°	-	10°	
Lead Thickness	c	0.08	-	0.26	
Lead Width	b	0.20	-	0.51	

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

24AA02/24LC02B/24FC02

5-Lead Plastic Small Outline Transistor (OT) [SOT23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.95 BSC		
Contact Pad Spacing	C		2.80	
Contact Pad Width (X5)	X			0.60
Contact Pad Length (X5)	Y			1.10
Distance Between Pads	G	1.70		
Distance Between Pads	GX	0.35		
Overall Width	Z			3.90

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2091-OT Rev F

24AA02/24LC02B/24FC02

8-Lead Plastic Dual Flat, No Lead Package (MNY) - $2 \times 3 \times 0.8 \mathrm{~mm}$ Body [TDFN] With $1.4 \times 1.3 \mathrm{~mm}$ Exposed Pad (JEDEC Package type WDFN)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-129-MNY Rev E Sheet 1 of 2

24AA02/24LC02B/24FC02

8-Lead Plastic Dual Flat, No Lead Package (MNY) - $2 \times 3 \times 0.8 \mathrm{~mm}$ Body [TDFN] With 1.4x1.3 mm Exposed Pad (JEDEC Package type WDFN)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	8		
Pitch	e	0.50 BSC		
Overall Height	A	0.70	0.75	0.80
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Length	D	2.00 BSC		
Overall Width	E	3.00 BSC		
Exposed Pad Length	D2	1.35	1.40	1.45
Exposed Pad Width	E2	1.25	1.30	1.35
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.25	0.30	0.45
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package may have one or more exposed tie bars at ends.
3. Package is saw singulated
4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

8-Lead Plastic Dual Flat, No Lead Package (MNY) - $2 \times 3 \times 0.8 \mathrm{~mm}$ Body [TDFN] With $1.4 \times 1.3 \mathrm{~mm}$ Exposed Pad (JEDEC Package type WDFN)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			
Dimension Limits		MIN		
	E	0.50 BSC		
	NOM	MAX		
Contact Pitch			1.60	
Optional Center Pad Width	X 2			1.50
Optional Center Pad Length	Y 2		2.90	
Contact Pad Spacing	C			0.25
Contact Pad Width (X8)	X 1			0.85
Contact Pad Length (X8)	Y 1			
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

8-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW A-A

24AA02/24LC02B/24FC02

8-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension Limits		MIN		NOM	MAX
Number of Pins	N	8			
Pitch	e	0.65 BSC			
Overall Height	A	-	-	1.20	
Molded Package Thickness	A 2	0.80	1.00	1.05	
Standoff	A 1	0.05	-	-	
Overall Width	E		6.40 BSC		
Molded Package Width	E 1	4.30	4.40	4.50	
Overall Length	D	2.90	3.00	3.10	
Foot Length	L	0.45	0.60	0.75	
Footprint	L 1		1.00 REF		
Lead Thickness	C	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.19	-	0.30	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-086 Rev C Sheet 2 of 2

8-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	C		5.80	
Contact Pad Width (X8)	X1			0.45
Contact Pad Length (X8)	Y1			1.50
Contact Pad to Center Pad (X6)	G1	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

24AA02/24LC02B/24FC02

8-Lead Ultra Thin Plastic Dual Flat, No Lead Package (Q4B) - 2×3 mm Body [UDFN] Atmel Legacy Global Package Code YNZ

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

24AA02/24LC02B/24FC02

8-Lead Ultra Thin Plastic Dual Flat, No Lead Package (Q4B) - $2 \times 3 \mathrm{~mm}$ Body [UDFN] Atmel Legacy Global Package Code YNZ

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Terminals	N	8		
Pitch	e	0.50 BSC		
Overall Height	A	0.50	0.55	0.60
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.152 REF		
Overall Length	D	2.00 BSC		
Exposed Pad Length	D2	1.40	1.50	1.60
Overall Width	E	3.00 BSC		
Exposed Pad Width	E2	1.20	1.30	1.40
Terminal Width	b	0.18	0.25	0.30
Terminal Length	L	0.25	0.35	0.45
Terminal-to-Exposed-Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

24AA02/24LC02B/24FC02

8-Lead Ultra Thin Plastic Dual Flat, No Lead Package (Q4B) - 2×3 mm Body [UDFN] Atmel Legacy Global Package Code YNZ

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	X 2			1.60
Optional Center Pad Length	Y 2			1.40
Contact Pad Spacing	C		2.90	
Contact Pad Width (X8)	X 1			0.30
Contact Pad Length (X8)	Y 1			0.85
Contact Pad to Center Pad (X8)	G 1	0.33		
Contact Pad to Contact Pad (X6)	G 2	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

APPENDIX A: REVISION HISTORY

Revision M (03/2021)

Replaced terminology "Master" and "Slave" with "Host" and "Client" respectively. Changed "MUY" with "Q4B" part number for UDFN package. Updated TSSOP and UDFN package drawings. Added Automotive Product Identification System.

Revision L (05/2019)

Corrected Part Marking for UDFN package. Added note about exposed pad on the TDFN and UDFN packages.

Revision K (11/2018)

Added the 24FC02 device.

Revision J (02/2009)

Added TDFN Package; Updated Package Drawings.
Revision H (08/2008)
Added SC-70 Package; Updated Package Drawings.

Revision G (03/2007)

Replaced Package Drawings (Rev. AM).

Revision F (01/2007)

Revised Features section; Changed 1.8 V to 1.7 V in Tables and text; Revised Ambient Temperature, Section 1.0; Replaced Package Drawings; Revised Product ID section.

Revision E

Revised Figure 3-2 Control Byte Allocation; Figure 4-1 Byte Write; Figure 4-2 Page Write; Section 6.0 Write Protection; Figure 7-1 Current Address Read; Figure 7-2 Random Read; Figure 7-3 Sequential Read.

Revision D

Added DFN package.

Revision C

Corrections to Section 1.0, Electrical Characteristics.

24AA02/24LC02B/24FC02

NOTES:

24AA02/24LC02B/24FC02

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support - Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support - Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip - Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.
To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.
Technical support is available through the website at: http://microchip.com/support

24AA02/24LC02B/24FC02

PRODUCT IDENTIFICATION SYSTEM (INDUSTRIAL)

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

24AA02/24LC02B/24FC02

PRODUCT IDENTIFICATION SYSTEM (AUTOMOTIVE)

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, QuietWire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2007-2021, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-7682-5

